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Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superanti-
genic toxins produced by myriad microbes, are potent stimulators of the immune system 
causing a variety of human diseases from transient food poisoning to lethal toxic shock. 
These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and 
major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting 
in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells 
produce excessive amounts of proinflammatory cytokines and chemokines, especially 
tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage 
chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. 
Because of superantigen-induced T cells skewed toward TH1 helper cells, and the 
induction of proinflammatory cytokines, superantigens can exacerbate autoimmune 
diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the 
mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in 
activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin 
pathways. Various mouse models exist to study SEB-induced shock including those with 
potentiating agents, transgenic mice and an “SEB-only” model. However, therapeutics 
to treat toxic shock remain elusive as host response genes central to pathogenesis of 
superantigens have only been identified recently. Gene profiling of a murine model for 
SEB-induced shock reveals novel molecules upregulated in multiple organs not previ-
ously associated with SEB-induced responses. The pivotal genes include intracellular 
DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome 
components, as well as antiviral and IFN-stimulated genes. The host-wide induction of 
these, and other, antimicrobial defense genes provide evidence that SEB elicits danger 
signals resulting in multi-organ damage and toxic shock. Ultimately, these discoveries 
might lead to novel therapeutics for various superantigen-based diseases.
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THe BACTeRiUM: Staphylococcus aureus

Staphylococcus aureus causes many human and animal diseases, some of them are life-threatening 
and found throughout the world (1–4). Humans are naturally colonized by S. aureus that often cause 
no problems and are considered a “harmless” commensal. However, when given an opportunity 
(i.e., weakened immune system, compromised epidermis, or mucosa, etc.), this bacterium can cause 
various diseases that become life threatening.
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TABLe 1 | Staphylococcus aureus: some virulence factors and diseases.

virulence factors

Antibiotic resistance (multiple mechanisms)

Biofilm/capsule

Coagulase

Exfoliative toxin

Microbial surface components recognizing adhesive matrix molecules 
(MSCRAMMs)

Plasminogen activator

Pore-forming toxins (hemolysins and leukocidins)

Quorum sensing mechanism

Superantigens (enterotoxins and toxic shock syndrome toxin-1)

Toll/interleukin 1 receptor (TIR)-like protein

Diseases

Bacteremia

Endocarditis

Osteomyelitis

Pneumonia

Pyoarthrosis

Skin and soft tissue infections (boils, cellulitis, impetigo, scalded-skin syndrome, sty)

Toxic shock syndrome
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Staphylococcus aureus is a Gram-positive coccus and member 
of the Micrococcaceae family, which includes non-pathogenic 
genera found in soil, water, and on skin. Both planktonic- and 
biofilm-based versions of S. aureus can cause disease in an 
infected host, subsequently becoming (at times) quite difficult to 
clear from the body (5, 6). Characteristics of this genus called 
Staphylococcus (“staphyle” in Greek, meaning grape cluster and 
“coccus” meaning grain or berry) and species called aureus 
(“golden” in Latin, as per colony color on agar media), include 
Gram-positive, non-spore forming, facultative, β-hemolytic, 
catalase-positive, mannitol fermentation, and salt tolerant (7).

Staphylococcus aureus is known for producing many different 
protein toxins involved in pathogenesis. Clearly, the bacterium 
is very good at surviving harsh conditions in/on a host by using 
a vast array of virulence factors that promote the many diseases 
caused by infiltrating S. aureus and their toxins. One group of 
toxins, the staphylococcal enterotoxins (SEs), is the focus of this 
review. Antibiotic-resistant strains (community-, nursing home-, 
and hospital-acquired) are a particular problem in health care 
and its associated economics, requiring effective infection control 
plans that prevent S. aureus spread locally and globally (8).

Staphylococcus aureus was first described in the early 1880s 
by a Scotsman, Dr. Alexander Ogston, after microscopy analysis 
of over a hundred, pus-filled abscesses of human origins (9). 
S. aureus readily colonizes mammalian epidermis/dermis, 
mucosa, soft tissues, bone, and medical devices such as catheters. 
Furthermore, medically relevant strains of the bacterium have 
become variably resistant to many antibiotics, including methicil-
lin and vancomycin, which negatively impacts psychological and 
economic aspects of human society (10–13). S. aureus strains that 
are methicillin resistant (MRSA) are commonly treated first with 
vancomycin. Both methicillin and vancomycin target bacterial 
cell-wall synthesis. Other antimicrobials that have been used for 
fighting S. aureus include (1) linezolid (inhibits protein synthesis 
at the 50S ribosome); (2) daptomycin (inserts into membranes); 
(3) fusidic acid (inhibits protein elongation at the ribosome); (4) 
teicoplanin (like vancomycin, inhibits cell wall synthesis but not 
used in the United States); and (5) tigecycline (inhibits protein 
synthesis at the 30S ribosome) (14, 15).

For various reasons, alternative methods for treating 
 antibiotic-resistant strains of S. aureus (i.e., MRSA) are being 
explored by different groups around the world (16–23). Some of 
the exotic sources for these novel drugs include snake venom, tree 
bark/stems/leaves, and carnivorous plants. Risk factors for MRSA 
colonization include antibiotic exposure, admittance into an 
intensive care unit, surgery, long-term care residency, and expo-
sure to others carrying MRSA (4, 24). In 2011, the United States 
Centers for Disease Control and Prevention reported >80,000 
MRSA cases that were life threatening, with >11,000 fatalities 
(14%) (22, 25). This is remarkably a number of deaths greater than 
that attributed to acquired immunodeficiency syndrome (AIDS) 
for the same time period. Furthermore, the economic burden 
of MRSA in the United States is upwards to $13.8 billion/year 
and represents one of the most costly, acute infectious diseases 
requiring treatment (10). Invasive forms of MRSA include the fol-
lowing in order of prevalence: bacteremia, pneumonia, cellulitis, 
osteomyelitis, endocarditis, and septic shock (24). Black males 

older than 65 years are the most common patients suffering from 
invasive MRSA; however, the reasons for this are to date unknown 
(24). MRSA from hospital/health-care settings are perhaps the 
origins of community strains now seen throughout the human 
population (4). The latter types of S. aureus are often more suscep-
tible to antibiotics than those from hospital/health-care settings.

From a historical perspective, MRSA was detected within a 
year after introducing this new beta-lactam antibiotic called 
methicillin in 1959, further highlighting the rapid adaptability 
of this microbe (26, 27). Methicillin was meant to overcome the 
increasingly prevalent, penicillin-resistant strains of S. aureus 
first detected during the mid-1940s in hospitals and throughout 
the community. These strains were isolated just 2  years after 
penicillin’s introduction into clinical practice (27). This pattern 
of antibiotic resistance is evident with various pathogens, sug-
gesting furthermore the importance of developing truly novel 
antimicrobials and embracing a paradigm shift for discovering/
creating antimicrobials. Perhaps vaccines will play a bigger role 
in fighting various pathogens, in the future?

Transmission of antibiotic-resistant strains between livestock 
and humans working with and/or consuming the former is a 
real problem, poorly understood to date (28–31). Furthermore, 
aerosol transmission of MRSA from farm animals or human 
patients in hospital wards, to humans, is also a scary reality 
(32–34). As just one known example of S. aureus transmission 
between species, strain CC398 was most commonly associated 
with asymptomatic colonization of swine, but now causes inva-
sive infections of humans (35). Evidently, farm animals are an 
important reservoir for disease-causing S. aureus that colonize 
humans. Humans (~30%) can be asymptomatic carriers of 
S.  aureus strains that possess virulence factor genes encoding 
antibiotic resistance, toxins, and other proteins that promote 
some nasty, potentially fatal diseases (1, 3, 36–40) (Table 1). The 
risk factors are many for children carrying MRSA nasally, and 
include (1) <4 years of age; (2) being male; (3) family size >4; (4) 
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antibiotic use during previous 3 months; (5) smoking by parents; 
and (6) sleeping with parents (39). For adults, risk factors that 
enhance carriage of S. aureus include: (1) being male; (2) having 
diabetes; (3) use of hormonal contraception by women; (4) close 
physical contact with others (i.e., sports); and interestingly (5) 
being a non-smoker (40).

Clearly, Homo sapiens are not strangers to hosting S. aureus 
on, and in, themselves. This bacterium is rather adaptable and 
employs various virulence factors seemingly important in its 
survival. Are we, in the near and distant future, able to co-adapt 
and effectively counter this microbial medical challenge, which is 
just one of many? We now focus upon one remarkable virulence 
factor, a family of protein toxins that vary in structure and bio-
logical effects upon mammals: the SEs.

THe STAPHYLOCOCCAL eNTeROTOXiNS

From a historical perspective, the SEs (and S. aureus) were first 
described as “ptomaine” (derived from Greek “ptoma,” meaning 
corpse) in 1914 by Barber (41), after human consumption of 
cow’s milk contaminated by staphylococci (from the cow) led to 
vomiting and diarrhea of unsuspecting visitors. Family members 
were remarkably resistant to this poisoning effect, perhaps due to 
repeated exposure and development of toxin-specific immunity. 
Barber included himself as a “human guinea pig” to prove his 
point that milk from this one farm, during the hot season in the 
Philippines, was indeed the medium for enteric illness. His final 
analysis revealed that short-term storage of the milk at ambient 
temperature enabled staphylococcal growth and toxin produc-
tion (41).

Dack et al. reported in 1930 an enteric-acting toxin produced 
by a “yellow hemolytic Staphylococcus” isolated from sponge cake 
involved in food poisoning (42). Upon administering culture 
filtrate of the isolated bacterium grown in the laboratory to a rab-
bit (intravenous) or humans (n = 3; oral), there was respectively 
death and uniform nausea/diarrhea. Some of the SEs were first 
purified by various groups during the 1950s (43–45), further 
linked to a major cause of food poisoning evident around the 
world, and found to stimulate specific subsets of T cells leading 
to shock (1, 46, 47).

Regarding staphylococcal food poisoning and diagnosis, 
the latter can be done upon suspected food/drink using classic 
microbiology and agar plates (105 viable S. aureus/gram food), or 
by direct detection of toxin (47). SE detection in food is most com-
monly accomplished by employing immunological techniques 
(i.e., commercially available enzyme/fluorescent immune assays) 
that are to date limited in detecting relatively few toxin types. 
However, next generation assays involving mass spectrometry are 
now being developed for the future pending higher throughput 
and cost-effectiveness (47).

The SEs are characteristically stable proteins resistant to high 
heat, low pH, freezing, drying, and proteases. Partly because of 
their stable nature and powerful effects upon humans at very 
low doses, the SEs (particularly SEB) have been studied from a 
biodefense perspective spanning decades of research by various 
countries (48, 49). SEB is also considered a Category B select agent 
by various United States federal agencies. SEB, when inhaled, 

can induce several symptoms within 120 min involving an ach-
ing feeling (head and muscles), increased heartbeat, coughing, 
enteric dysfunction (i.e., nausea, vomiting, and diarrhea), as 
well as eye irritation (49). Nanogram levels of inhaled SEB are 
incapacitating while microgram levels can be fatal. SEB adversely 
affects the immune system, and it is plausible that opportunistic 
viruses and bacteria can cause further harm to the host exposed 
to any SE (50–52).

Upon ingestion, the SEs (A–V and counting) are responsible 
for a prevalent form of food poisoning globally (1, 38, 46, 47, 53). 
There are five, sequence-based groups of SEs generally recognized 
to date (1). These single-chain proteins (~25 kDa) are generally 
composed of two domains containing both alpha helices and beta 
sheets, separated by a groove, as evidenced by one of the first SEs 
to be crystallized: SEB (54). Since the mid-2000s, the literature 
has also adopted the designation of SE-like (SEl) (55). This defines 
a staphylococcal protein that shares amino acid sequence homol-
ogy with a previously characterized SE, yet has not to date been 
tested (or at least reported in the literature) for enteric effects in 
primates (56). Regarding staphylococcal food poisoning, SEA 
is the most commonly detected culprit in the United States, 
followed by SED and SEB. Classic poisoning due to food-based 
SEs can occur after ingesting processed meats or dairy products 
contaminated by improper handling (i.e., S. aureus transfer from 
the skin of a food handler to food) and subsequent storage of 
food at an elevated temperature conducive to bacterial growth. 
Depending upon the S. aureus strain, there can be one (or more) 
SEs released into the tainted food. Following consumption of SEs 
in food/drink, one may still experience a general malaise 24–72 h 
later (56). Poisoning by the SEs via many different food types is 
rarely fatal for healthy individuals, and occurs around the world; 
however, as is often the case with many diseases, the very young 
and old represent higher risk groups for severe morbidity and 
possible death due to SE exposure (57).

Exactly how the SEs cause enteric illness is still remarkably 
unresolved, but prostaglandins and leukotrienes might mediate 
the effects (58, 59). Serotonin release in the intestines and vagal 
nerve stimulation may also be involved in SE-induced emesis (60, 
61). The mode of action is seemingly more complex than many 
other enterotoxins that work directly upon gastric epithelial cells 
and/or supporting matrix.

The term “superantigen” commonly describes the S. aureus 
SEs and toxic shock syndrome toxin-1 (TSST-1), while related 
streptococcal pyrogenic exotoxins (SPEs), also known as superan-
tigens, are produced by Streptococcus pyogenes. Superantigen was 
first used in late 1980s literature to describe microbial proteins 
that activate a large population of specific T-cells at very minute 
(picogram) concentrations (62, 63). Typical “conventional” 
antigens stimulate far fewer T-cells at higher concentrations. 
Superantigens and conventional counterparts also differ by: (1) 
superantigens bind to the exterior of the peptide-binding groove 
of major histocompatibility complex class II (MHC II); (2) 
superantigens bind to different MHC II types; (3) superantigenic 
effects occur without internalization and antigen processing; and 
(4) T-cell receptor (TCR) recognition of a superantigen: MHC II 
complex requires the variable region of a TCR β chain (Vβ), not 
the Vα–Vβ chain used by conventional antigens (62–67). From a 
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virulence perspective, superantigens corrupt host immunity that 
then enables pathogen survival.

Microbial superantigens are reportedly produced by other 
bacterial genera (Mycobacterium, Mycoplasma, Yersinia), fungi 
(Candida), and even viruses (herpes, rabies), thus suggesting a 
conserved and successful strategy employed throughout Nature 
(68). Versus superantigens of Staphylococcus and Streptococcus, 
those from the other aforementioned microbes are poorly char-
acterized to date.

ReCePTOR BiNDiNG AND SiGNAL 
TRANSDUCTiON

Superantigens interact with both CD4 and CD8 T-cells and the 
signaling, post-TCR binding, is similar to conventional antigen 
binding to TCR; however, binding is to specific Vβ regions of 
TCR unlike conventional antigens. In addition, the interaction 
of superantigen with MHC class II on antigen-presenting cells 
(APC) is also different, with superantigens binding outside the 
peptide-binding groove of MHC class II. Structural and binding 
studies indicate at least two different binding sites on MHC class II 
for SE and TSST-1. A common overlapping binding region exists 
on HLA-DR for these toxins, referred to as the generic MHC 
class II binding site involving the α chain. An additional binding 
site with higher affinity can be found within the C-terminus of 
SEA/SED/SEH, which binds to the HLA-DR β chain in a Zn2+-
dependent manner (69–71). The presence of two MHC binding 
sites allows SEA to cross-link MHC class II on APC and activate 
monocytes, inducing potent proinflammatory mediators. The 
binding of staphylococcal superantigens to MHC class II, and 
bridging to TCR, activates a high percentage of T cells. Two dec-
ades of intense investigations focused upon superantigen binding 
to cellular receptors reveal how superantigens activate cells of 
the immune system (46, 62, 72–76). Interaction of superantigen 
with TCR transmits the classical first signal for T-cell activation. 
The binding of superantigen to costimulatory receptors such 
as CD28 promotes supramolecular clusters, stabilizes cellular 
interaction, and optimizes protein kinase signal transduction 
(77). CD28 co-stimulation enhances mRNA stability of IL-2 
and T-cell survival by increased expression of anti-apoptotic 
Bcl-xl (78). Other cell-surface molecules such as CD2, CD11a/
ICAM-1, and ELAM facilitate optimal activation of endothelial 
and T cells by SEB (79). TCR and costimulatory receptors activate 
protein tyrosine kinases (PTKs), LCK and ZAP-70, resulting 
in phospholipase C gamma (PLCγ) activation, the release of 
intracellular second messengers, and subsequent protein kinase 
C (PKC) activation (67, 80, 81). Accompanying this T-cell activa-
tion is F-actin polymerization and increased intracellular Ca2+. 
PTK and PKC activation lead to mitogen-activated protein kinase 
(MAPK), extracellular signal regulated kinase (ERK), and cJun 
N-terminal kinase (JNK) pathways that activate transcriptional 
factors NFκB, NF-AT, and AP-1 (67, 81, 82). PKCθ activation 
leads to CARMA1, Bcl10, and MALT1 (CBM) complexes that 
induce NFκB transcriptional activation and controls T-cell pro-
liferation (83). Many proinflammatory cytokine genes contain 
NFκB-binding sites in their promotor region, and are induced 

by NFκB (84). The NFκB cascade is a major signal transduction 
pathway for many pattern recognition receptors (PRR), such as 
toll-like (TLR) and proinflammatory cytokine receptors (85). The 
cytokines IL-1, TNFα, IFNγ, IL-2, IL-6 and chemokines, specifi-
cally MCP-1, are induced by superantigens (74, 75, 86). IL-1 and 
TNFα also activate fibroblasts, epithelial and endothelial cells to 
induce NFκB and additional mediators, cell adhesion molecules, 
and tissue proteases (87). Mediators produced by superantigen-
activated cells exert profound damaging effects on the immune 
and cardiovascular system, culminating in multi-organ dysfunc-
tion and lethal shock. PTKs and T-cell cytokines also activate 
phosphoinositide 3 kinase (PI3K), signaling protein kinase B 
(Akt), and mammalian target of rapamycin complex 1 (mTORC1) 
downstream (88). Two signaling molecules, NFκB and mTORC1, 
are key hubs mediating the major biological responses to SE from 
TCR, co-stimulator CD28, and cytokine signaling.

Pi3K/MTORC1 PATHwAY iN T-CeLL 
ACTivATiON

T-cell activation via the TCR-CD3 complex subsequently activates 
membrane proximal PTKs that phosphorylate TCR intracellular 
components, other cellular substrates, as well as adaptors (67, 
80–82). PLCγ cleaves phosphatidylinositol 4,5-bisphosphate, 
generating second messengers to activate PKC and the proto-
oncogene Ras. PTK also activates PI3K, generating several inosi-
tol phospholipids and ultimately activating Akt and PKCθ (89). 
A number of receptors besides TCR, including those for CD28, 
IL-2 (IL-2R), insulin, growth factor, and the G-protein-coupled 
receptor (GPCR), also transduce activation signals upon ligand 
binding via the PI3K pathway. The cytosolic signalsome formed 
by PKCθ and CBM is located at an immunological synapse 
formed after T-cell activation by anti-CD3 and -CD28 (89, 90). 
CBM complexes activate the inhibitor of κB (IκB) kinase complex 
(IKK) through ubiquitin ligases (91). IKK phosphorylates IκB, 
releasing NF-κB for nuclear translocation and gene activation. 
Nuclear NFκB binds DNA coding for proinflammatory cytokines 
and many other NFκB target genes, activating diverse proinflam-
matory mediators, as well as pro- and anti-apoptotic molecules.

Toxic shock syndrome toxin-1 induces inositol phospholipid 
turnover, PKC translocation, and calcium mobilization in human 
T-cells resembling responses from those of a mitogenic signal 
(92). SEE uses an alternative LCK-independent pathway by acti-
vating PLCβ signaling in T cells (93). This alternative pathway 
also triggers influx of Ca2+, activates PKC, ERK1/2, and ultimately 
nuclear translocation of NFκB and NF-AT.

Downstream of PI3K is the serine/threonine kinase Akt, 
which mediates many diverse biological processes upon specific 
binding to TCR, growth factors, insulin receptor, tyrosine kinase 
receptor, and GPCR. Two potent cytokines from superantigen-
stimulated T cells, IFNγ and IL-2, also activate the PI3K/Akt/
mTORC1 pathway via the transducer Janus kinase 1 (JAK1) 
after binding IFNγ and IL-2 receptors, respectively (94, 95). 
Site-specific phosphorylation/dephosphorylation modulates the 
PI3K/Akt signaling to activate mTORC1. Activation of mTORC1 
causes phosphorylation and activation of the ribosomal 40S 
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protein p70S6 kinase (p70S6K) plus eukaryotic initiation factor 
binding protein 1 (4EBP1) (96–101). Thus mTORC1 controls 
protein translation essential for G1 to S phase transition (100). 
An mTORC1-specific inhibitor, rapamycin, blocks SEB-induced 
T cell proliferation as well as SEB-induced IL-2 and IFNγ in vitro 
and in  vivo (102). Importantly, inhibition of the SEB-induced 
PI3K/Akt/mTORC1 pathway by rapamycin prevents lethal toxic 
shock in a mouse model (102).

iNFLAMMATORY MeDiATORS, TCR/
COSTiMULATORS, AND MHC CLASS ii 
CROSS LiNKiNG ACTivATe NFκB

In vitro and in vivo studies reveal that excessive release of proin-
flammatory cytokines (IL-1, TNFα, IL-6, and IFNγ) mediates the 
toxic effects of superantigens (49, 51, 52, 76, 79). Proinflammatory 
cytokines like IL-1 and TNFα activate the transcriptional factor 
NFκB in many cell types, thus perpetuating the inflammatory 
response. IL-1 and TNFα have tissue damaging effects, and 
together with SEB-induced metalloproteinases (MMP) and the 
pro-coagulant tissue factor (TF), promote inflammation and 
coagulation (87, 103). IL-2 from superantigen-activated T cells 
causes vasodilation, vascular leak, and edema.

Many cell types respond directly to staphylococcal superan-
tigens besides T and APC/monocytes, including B, endothelial, 
synovial fibroblasts, intestinal epithelial, and mast (58, 79, 
104–109). Cross-linking of TCR with MHC class II on B cells by 
superantigen triggers B cell proliferation and differentiation into 
plasma cells (104). Stimulation of synovial fibroblasts with superan-
tigens induces chemokine gene expression, raising the possibility 
that superantigens can trigger chemotactic responses and initiate 
inflammatory arthritis (105). Human T84 colonic cells increase 
ion flow after incubation with SEB and PBMC, suggesting that 
superantigens indirectly affect gut mucosa via the immune system 
(106). SEB and TSST-1 transcytose intestinal epithelial cell barri-
ers, unlike SEA (107), and TSST-1 can also induce chemotactic 
cytokines (IL-8 and MIP-3α) from human vaginal epithelial cells 
(109). S. aureus frequently colonizes vaginal mucosa, producing 
TSST-1, which penetrates the mucosa through chemokines from 
epithelial cells (110). Chemokines recruit neutrophils and other 
immune cells activated furthermore by superantigens. The potent 
activation of T cells by superantigen interaction of MHC class II 
and TCR induces T-cell proliferation via cell activation pathways 
in T cells and APC. The proliferative response as a result of IL-2 
induction from superantigen-activated T cells is similar to that 
induced by mitogens. IL-2 increases vascular permeability, caus-
ing edema and multiple organ damage (111). TNFα synergizes 
with IL-2 to induce pulmonary vascular leak and lymphocyte 
accumulation (112). The combination of TNFα and IFNγ elabo-
rated by SEB-activated cells disrupt the epithelial barrier, causing 
edema and vascular leak in gut mucosa (106).

Interleukin 1 interacts with IL-1 receptor 1 (IL-1R1) and an 
additional accessory protein, triggering downstream signal-
ing molecules like the adaptor myeloid differentiation factor 
88 (MyD88), IL-1R- associated protein kinase 1 (IRAK1), and 
TNF receptor-associated factor 6 (TRAF6) that activate NFκB 

(113). A  set of structurally related receptors, the TLRs, signal 
with similar intracellular adaptors as those used for IL-1R1, 
but are not used for superantigen signaling (85, 114). The TLRs 
are conserved, type-1 transmembrane receptors that recognize 
pathogen-associated molecular patterns (PAMPs), such as lipo-
protein, peptidoglycan, LPS, flagellin, dsRNA, and viral RNA, 
which stimulate host innate immunity and enhance adaptive 
immunity (85, 114). SEB reportedly increases cellular expression 
of TLR2 and TLR4, synergistically promoting lethal shock with 
LPS (115, 116). Activation of NFκB induces proinflammatory 
genes as well as pro- and anti-apoptotic genes. An auto-feedback 
loop exists to downregulate NFκB, which induces IκBα. Other 
cytosolic PRR sense intracellular damage-associated molecular 
patterns (DAMPs), triggering inflammasome activation and 
release of caspases plus IL-1β (117).

TNFα binds to TNF receptor 1 (TNFR1) or TNFR2, activating 
NFκB and inducing expression of other cytokines, adhesion, as 
well as co-stimulatory molecules (118, 119). The cytotoxic func-
tions of TNFα are mostly mediated by binding TNFR1 via intra-
cellular death domains that trigger apoptosis through caspase 
activation. SEB increases expression of CD95 (Fas), a receptor of 
the TNFR superfamily. Intracellular adaptors TNFR-associated 
death domain (TRADD), Fas-associated death domain (FADD), 
and receptor interacting protein kinase (RIP) are used by the 
TNFR superfamily to activate the caspase 8 cascade, JNK, and 
NFκB that subsequently elicit apoptosis, cell activation, coagula-
tion, inflammation, and host defense (119). TNFα and IFNγ act 
synergistically on epithelial cells to increase ion transport, caus-
ing cell damage and epithelial leakage (120). The critical role of 
TNFα in mediating pathological effects of SEB and lethality was 
recognized early on as anti-TNFα antibodies confer protection 
from SEB-induced shock in a d-galactosamine (d-gal)-sensitized 
mouse model (121). Both IL-1 and TNFα enhance the procoagu-
lant activity of TF and activate neutrophils, accounting for tissue 
damage and organ injury commonly seen in animal models of 
septic shock and SEB-induced lethal shock.

Type II interferon (IFNγ) binds to IFNγR, which belongs to 
the family of interferon receptors (IFNR), including the struc-
turally different receptors for type I interferons (IFNα, IFNβ) 
(122, 123). The signal transducer and activator of transcription 1 
(STAT1) is a common signal transducer for both types of IFNR, 
and phosphorylation of STAT1 by Janus kinases initiates signal 
transduction. IFNα and IFNβ induce indistinguishable signals, 
which include anti-proliferative and antiviral activities. Types I 
and II IFNs have many overlapping activities and stimulate many 
common interferon-stimulated genes (ISG) (123, 124). However, 
in addition to host-defense functions, IFNγ also induces immu-
noproteasomes and expression of MHC class II. IFNγ promotes 
cell-mediated immunological activities essential for antibacterial 
defense. The IFNγ-activated JAKs also activate PI3K in a STAT1-
independent manner culminating in mTORC1 activation, 
promoting protein translation (125). IFNγ activates PKC leading 
to MAPK activation, which is also commonly activated by IL-1, 
TLR ligands, and TNFα. IFNγ has a critical role in host defense as 
the induction of immunoproteasome components and antigen-
processing peptidases enhance cellular immune responses 
against pathogens. Both types of IFNs induce apoptosis and many 
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ISGs have antiviral, anti-angiogenic, and immunomodulatory 
functions. IFNs induce apoptosis by activating death receptors 
such as Fas (CD95), which then activates the adaptor FADD, 
leading to subsequent caspase-8 activation. Activation of the 
caspase 8 cascade causes cell death plus release of cytochrome c 
and mitochondrial DNA (mtDNA). SEA-induced hepatotoxicity 
is mediated by FasL and the hepatocellular damage is inde-
pendent of leukocyte recruitment (126). IFNγ disrupts barrier 
function and ion transport in superantigen-activated epithelial 
cells. In vitro, disturbances in epithelial barrier function can be 
duplicated with IFNγ plus TNFα (106). Recent studies suggest 
that IFNγ downregulates regulatory T-cells (Treg), accounting 
for the potent polarizing effects of IFNγ on TH1/TH2 cell dif-
ferentiation and an inflammatory environment for cell migration 
and activation (127).

IL-2 binds to IL-2R and activates PI3K and Ras (128). 
Activation of the PI3K/Akt/mTORC1 pathway and Ras controls 
proliferation, growth, and differentiation of many cell types. Ras 
activates the MAPK and ERK cascades, leading to transcriptional 
activation of AP-1, cJun/Fos, and NFAT. The MAPK cascade 
induces ER stress and NFκB (129). IL-2 induces vasodilation and 
increases microvascular permeability by suppressing endothe-
lin-1, causing perivascular edema seen in SEB-induced acute 
lung injury (130, 131). IL-2-deficient mice are resistant to SEB-
induced toxic shock, providing evidence for the critical roles of 
PI3K/mTORC1 and NFκB (132).

The chemokines IL-8, MCP-1, MIP-1α, and MIP-1β are 
induced directly by SEB or TSST-1. These chemoattractant 
chemokines activate leukocytes and influence migration of neu-
trophils, dendritic cells, and leukocytes (133, 134). Chemokines 
bind to seven-transmembrane GPCR, induce early Ca2+ flux, 
activate PLC and signal via the PI3K/mTORC1 pathway (133). 
Cytokine- and chemokine-activated neutrophils, recruited 
to sites of tissue injury and inflammation, produce reactive 
oxygen species (ROS) and activate MMPs contributing to 
organ dysfunction. MMPs cause tissue degradation and change 
chemokine interactions with the extracellular matrix (ECM), 
creating a chemokine gradient affecting cell recruitment (133). 
Exudates from superantigen-injected air pouches are predomi-
nantly neutrophils with some macrophages (135). Both systemic 
and intranasal administration of SEB cause acute lung injury 
characterized by increased: (1) expression of adhesion molecules 
ICAM-1 and VCAM; (2) neutrophil and mononuclear cell infil-
trate; (3) endothelial cell injury; and (4) vascular permeability 
(135–137).

The PI3K/mTORC1 pathway plays a dominant role in 
superantigen-induced cell proliferation and migration as TCR, 
CD28, IL-2R, IFNγR, and chemokine receptors all signal through 
this pathway. IL-1 and TNFα independently activate NFκB via 
MyD88/TRAF6/IRAK and FADD/TRADD/RIP, respectively 
(87). TCR and CD28 via PKC also activate NFκB signaling. Other 
PRR, including surface and cytosolic TLRs, signal via MyD88 to 
activate NFκB via different adaptors. In addition, TLR3 and TLR4 
activate TRIF (toll/IL-1 receptor homology domain-containing 
adaptor inducing interferon β) signaling, inducing interferon 
regulatory factors (IRFs) (114). The overlap of PRR signaling 
by NFκB and IRFs with TCR and co-stimulatory signals by 

superantigens to activate NFκB and mTORC1 cannot be under-
stated. These pathways activate inflammatory genes, as well as 
antiviral, anti-apoptotic, and pro-apoptotic molecules. Thus the 
three initial signals provided by TCR, costimulatory receptors, 
and cytokines converge on NFκB and mTORC1 to promote host 
defense against superantigens.

IN VIVO eFFeCTS OF SUPeRANTiGeN

Injection of SEB into mice has been used to study activation-
induced apoptosis and T-cell anergy in vivo. This effect may be 
linked to a rapid (within 1  h) loss of l-selectin on the surface 
of specific Vβ-bearing T cells, thus resulting in decreased signal 
transduction (138). Via endocytosis, surface levels of TCR-CD3 
decrease ~50% among Vβ-reactive T cells within 30  min after 
SEB exposure (139). The rapid hyperactivation and prolifera-
tion of T cells in mice following an SEB injection is transient, as 
within 48 h the majority of proliferating T cells is eliminated by 
activation-induced cell death (140). CD95 mediates elimination 
of SEB-activated T cells and the residual Vβ-specific cells become 
anergic, or functionally unresponsive. However, controversy still 
exists regarding the functional ability and fate of these anergic T 
cells. After injection of SEB into mice, splenic Vβ8+ T cells are 
deleted or no longer respond to SEB, and produce less IL-2 and 
IFNγ. In contrast, others report that these anergic cells synthesize 
less IL-2 but still secrete IFNγ that can mediate toxic shock fol-
lowing a subsequent dose of SEB (141). An evident paradox is 
that the anti-inflammatory cytokine IL-10, which protects against 
SE-induced shock (142), is also produced by SEB-primed T cells. 
Treg cells likely downregulate superantigen activation in vitro and 
in vivo.

Immune homeostasis is maintained by Treg cells through a 
number of mechanisms depending on the “immune environ-
ment” (143). Natural and induced Foxp3+ Treg cells control 
excessive immune activation deleterious to the host. Treg cells 
also downregulate autoimmune responses, and superantigens 
can subvert the functional activity of Treg cells in atopic derma-
titis (144). Although the immunosuppressive function of Treg 
cells is well known, the mechanisms of action and involvement 
of different cell types are still debated. The markers used in iden-
tifying different Treg cells are evolving, but the surface receptor 
cytotoxic T lymphocyte antigen 4 (CTLA4) likely plays a role 
particularly in superantigen-related counter regulation (145). 
CTLA4 interacts with costimulatory molecules CD80 and CD86, 
preventing costimulatory signals in superantigen-activated T 
cells (146). Systemic inflammatory responses elicited by SEB 
actually destabilize Treg cells and additional expansion of them 
in vivo does not protect transgenic mice from SEB-induced toxic 
shock (147).

SUPeRANTiGeN-iNDUCeD 
AUTOiMMUNiTY

The ability of superantigens to cross-link MHC class II and 
specific TCR Vβ enables these microbial toxins to stimulate the 
immune system and induce autoimmunity by activating APC 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


February 2016 | Volume 7 | Article 237

Krakauer et al. Superantigens and Immunity

Frontiers in Immunology | www.frontiersin.org

and normally quiescent, autoreactive T- and B-cells. Activation 
results in cytokine and chemokine release, thus mediating a 
potently acute inflammatory response. Several experimental 
animal models show that staphylococcal superantigens are 
arthrogenic (148, 149). TSST-1 exacerbates bacterial cell 
wall-induced arthritis in rats, possibly linked to accumulating 
Vβ11+ T cells and IFNγ production within arthritic joints (149). 
TSST-1 also plays a pivotal role in murine septic arthritis, as 
the frequency and severity of this disease are increased after 
intravenous administration of TSST-1-secreting S. aureus 
(150). SEA or SEB can also induce relapses of experimental 
autoimmune encephalomyelitis in a murine model for multiple 
sclerosis (151). How exogenously administered toxin triggers 
autoimmune processes like arthritis is unknown, but it is likely 
that proinflammatory cytokines and chemokines produced 
in response to superantigens facilitate specific recruitment 
and migration of autoreactive T-cells into synovial tissue and 
joints. Thus, proinflammatory cytokines and chemokines have 
acute toxic effects promoting cell activation and recruitment. 
Following minor tissue injury or inflammation due to superan-
tigen exposure, an increased presence of immune cells might 
initiate a destructive autoimmune reaction.

Psoriasis and atopic dermatitis also represent autoimmune 
diseases linked to staphylococcal and streptococcal colonization 
of skin and subsequent production of superantigens (152). SEB 
on healthy human skin induces inflammatory reactions, possibly 
linked to degranulation of cutaneous mast cells (58). T cells from 
patients with severe atopic dermatitis are apoptotic, which may 
lead to chronic infections and subsequent worsening of disease 
(153). Bacterial density on skin can affect relative sensitivity 
toward these toxins and development of atopic dermatitis.

PATHwAY ANALYSiS YieLDS POTeNTiAL 
DRUG TARGeTS

There are currently no available therapeutics for treating 
superantigen-induced shock, except for the use of intravenous 
human immunoglobulin (154, 155). Targeting and neutralizing a 
superantigen directly is most suitable at early stages of exposure 
before cell activation and initiation of the proinflammatory 
cytokine cascade. Therapies targeting superantigens at the 
receptor level have been extensively reviewed recently (156) and 
include receptor-blocking peptides derived from toxins, chimeric 
inhibitors composed of Vβ and MHC class II domains, as well 
as synthetic blockers of co-stimulatory receptor CD28. However, 
preventing toxin-receptor interaction is ineffective post-toxin 
exposure and some inhibitors must be tailored to target individual 
toxins. Failed sepsis clinical trials of eritoran (anti-endotoxin), a 
drug that prevents the early steps of receptor interaction, suggest 
that blocking superantigen–receptor interactions will likely not 
protect against SEB-induced shock (157).

An important class of therapeutic compounds blocks signal 
transduction pathways activated by superantigens, and as these 
events are post-exposure, they are perhaps more amenable to sup-
pressive manipulation. One example is the NFκB cascade contain-
ing many upstream activators. In vitro studies indicate numerous 

genes for cell adhesion molecules, cytokines, chemokines, acute 
phase proteins, and inducible nitric oxide synthase that are impli-
cated in superantigen-induced lethal shock and contain NFκB 
binding sites in the promotor/enhancer region (84). Activation 
of NFĸB leads to the inducible expression of many mediators 
involved in inflammation and tissue injury seen in SEB-induced 
lung injury and toxic shock models. Inhibition of NFκB is benefi-
cial, or has no effect, in preventing SEB-induced shock depending 
upon the mouse model (136, 158, 159); however, NFκB inhibitor 
must be given early and for a long duration to afford any protec-
tion (136).

Pathway inhibitors are used for identifying molecules and 
signaling pathways crucial for cellular responses to a specific 
stimulus. The superantigenic properties of SEB make it an “ideal” 
toxin to study cell activation signals and molecular pathways. 
An obvious step in testing new therapeutic approaches for SEB-
induced shock is finding relevant animal models that mimic 
important aspects of human disease. Mice are much less suscep-
tible to SEB due to lower affinity of superantigen for mouse MHC 
class II (51, 62, 160). Potentiating agents such as LPS, viruses, 
d-gal, and actinomycin D are used together with SEB to sensitize 
mice (50–52). These synergistic agents alone activate similar host 
signaling pathways as superantigens, confounding the “pure” host 
response to SEB. An alternative model utilizes transgenic mice, 
with either human HLA-DR3 or -DQ8, that lethally respond 
to SEs without a potentiating agent (161, 162). Another recent, 
simplified model employs “double-hit,” low dose SEB in C3H/HeJ 
mice, an LPS-resistant strain (131). Pathological lesions, cytokine 
response, and time to lethality in this “double-hit” model resem-
ble findings in non-human primates (NHP) and staphylococcal 
toxic shock syndrome in patients (49). Host signatures arising 
from “SEB-only” exposure unexpectedly include many IFN-
induced genes in multiple organs, not previously linked to SEB 
pathogenesis (163).

OLiGONUCLeOTiDe MiCROARRAY 
ReveALS SeB-iNDUCeD DANGeR 
SiGNALS

Oligonucleotide microarray analysis in the “double-hit” SEB 
mouse model reveals induction of danger signals bearing IFN 
signatures (163). These genes cover five important molecular 
hubs signaling danger similar to those activated by IFNs and 
pathogens. The upregulated transcripts present in PBMC, spleen, 
lung, liver, kidney, and heart include (1) innate mediators;  
(2) DNA/RNA sensing system; (3) ER stress; (4) metabolic/oxi-
dative stress; and (5) the apoptosis pathway. Proinflammatory 
cytokines IL-1, IL-6, TNFα, IFNγ, and IFNγ-induced 
chemokines (CXCL9, CXCL10, CXCL11) are most prominent 
in SEB-stimulated PBMC, confirming previous observations 
in vitro and in vivo (51, 86, 135, 161, 162, 164). Activation of 
other innate host-defense genes include the Fc receptor for 
phagocytosis, MHC class I and II for increased APC function, 
as well as cell-surface receptors and adhesion molecules to pro-
mote cell recruitment. Z-DNA binding protein 1 (ZBP1), a DNA 
sensor triggering ISGs via DNA binding (165), is surprisingly 
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TABLe 2 | Common differentially expressed genes induced by 
superantigens in vitro and in vivo.

Pathway/network Gene Major function

Innate response IL6, TNFα, LTA, IL17A, IL22 Host defense, inflammation

IFNγ Host defense, antimicrobial

CXCL11, CXXC5, CCL7, 
XCL1

Host defense, cell migration

CISH, CIITA, GBP2, TRAF1, 
RGS16

Signal transduction

PDE4DIP, PDE4B, PTGER3, 
P2RY14

Signal transduction

NEDD9, GNAS, CSF1R Signal transduction

STAT1, STAT2, STAT3, IRF7 Transcription factor (TF)

BATF, BATF2 IFN-inducible TF

SOCS1, SOCS2, SOCS3 JAK/STAT counter-regulator

CD69, CD74, ICAM Immune regulation

NRP2 Vascular signaling

Rel A, Rel, NFκBia NFκB regulator

DNA damage 
response

RIPK2 DNA sensor interactor

CTPS, UPP1 Nucleic acid synthesis

PIM1, PIM2 DNA repair/assembly

GADD45G DNA repair adaptor

ER stress/oxidative 
stress

SIAH2 Ubiquitin E3 ligase

KCNE4 Membrane integrity

JunB Stress response TF

MGST1 Cell protection

Metabolic stress IL2, IL2RA, MACF1 Cell proliferation regulator

FABP4, CD36 Fatty acid metabolism

HK1, PDK4, PGS1 Cell metabolism

TARS, NDST2 Synthetase

Apoptosis PLSCR1, NR4A1 Membrane integrity

CD40, TNFRSF9 TNFRSF, death receptor

Casp 4, CFLAR Caspase regulator

VCAN, LMNB1 Cell matrix breakdown

BCL2, BCL6 Anti-apoptotic regulator

CCND2 Cell cycle regulator

PLA2G7 Cardiovascular damage

Others ARID5A, ZBTB32, NDST2

ARID5A, AT-rich interactive domain 5A (MRF1-like); BATF2, basic leucine zipper 
transcription factor (TF); CCND2, cAMP specific cyclin D2; CFLAR, caspase 8 and 
FADD-like apoptosis regulator; CIITA, MHC class II transactivator; CISH, cytokine 
inducible SH2-containg protein; CTPS, cytidine 5′-triphosphate synthase; FABP4, 
fatty acid binding protein 4; GADD45G, growth arrest and DNA-damage-inducible 45 
gamma; GBP2, IFN-inducible guanylate binding protein 2; GNAS, guanine nucleotide 
binding protein; HK1, hexokinase 1; KCNE3, potassium voltage-gated channel; 
LMNB1, lamin B1; MACF1, microtubule-actin crosslinking factor 1; MGST1, microsomal 
glutathione-S-transferase 1; NDST2, N-deacetylase/N-sulfotransferase; NEDD9 (HEF1), 
neural precursor cell expressed; NR4A1, nuclear receptor subfamily 4, group A, 
membrane 1; NRP2, neuropilin transmembrane protein receptor; P2RY14, purinergic 
receptor P2Y, G protein coupled; PDE4DIP, phosphodiesterase 4D interacting protein; 
PDE4B, cAMP specific phosphodiesterase 4B; PDK4, pyruvate dehydrogenase kinase 
isoenzyme 4; PGS1, phosphatidylglycerophosphate synthase 1; PIM1, pro-viral DNA 
integration; PLA2G7, phospholipase A2 group VII; PLSCR1, phospholipid scramblase; 
PIM1, proviral integration site 1; PTGER3, prostaglandin E receptor 3; RGS16, regulator 
of G protein signaling 16; RIPK2 (RIP2), TNFRSF-interacting protein kinase; SIAH2, 
seven in absentia 2; SLC30A1, solute carrier family 30 (zinc transporter); SOCS1, 
suppressor of cytokine signaling 1; TARS, threonyl-tRNA synthetase; UPP1, uridine 
phosphorylase 1; VCAN, verican; ZBTB32, zinc finger and BTB domain containing 32.
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upregulated in all tissues from the “double-hit” SEB mouse 
model (163). T-cell proliferation requires elevated protein 
translation and increased metabolism, resulting in misfolded 
proteins and oxidative stress. ER stress response genes such 
as ubiquitin ligases, immunoproteasome components, protea-
some peptidases, and WARS (tryptophanyl-tRNA synthetase) 
are likely a result of Ca2+ flux, unfolded proteins, and activated 
PKC following cell activation and increased protein synthesis. 
Unresolved ER stress activates caspases and apoptosis (166, 
167). Enhanced activity of the mitochondrial electron transport 
chain ultimately leads to oxidative stress, evidenced by activated 
NADPH oxidase in lung (163). MMP, cathepsins, and other 
proteases from lysosomes are also seen in this mouse model 
and in vitro stimulation of PBMC with SEA or SEB (168, 169). 
Increased ROS and protease levels are major factors in organ 
injury. Although the “double-hit” mouse model is not perfect, 
it mimics many in  vivo responses of NHP to SEB and there 
are many similarities of gene expression by mouse and human 
PBMC incubated with SEB.

The cell death pathway triggered in vitro and in vivo includes 
genes associated with apoptosis such as FADD, death receptor 
ligand TRAIL, caspases, CARD, and phospholipid scramblase 
1 (PLSCR1). These genes are activated in PBMC and major 
organs from the “double-hit” SEB model and human PBMC, 
following SEA or SEB exposure (163, 168, 169). PLSCR1 is 
implicated in moving phosphatidyl serine to the outside plasma 
membrane of apoptotic cells. Other danger signals include 
K+ efflux, particulate ligands such as cholesterol crystals and 
lysosome destabilization that triggers inflammasome activation 
via NLRP3 which converts pro-IL-1β to IL-1β through caspase 
1 (117). Catabolic enzymes cause destruction of cell matrix, 
accounting for the liver and lung injury seen in SEB-mediated 
shock.

Induction of ZBP1 leads to binding of DNA and endosomal 
TLR9, upregulating antiviral genes via the IRF3 and IRF7 
(114, 170). TLR9 activation also promotes NFκB-mediated 
cytokine gene transcription and inflammasome activation 
(171). Mitochondria are the most likely source of cytosolic 
DNA induced by SEB, as ER stress and increased mitochondrial 
respiration due to T-cell proliferation and activation are known 
to induce ROS (172). Elevated ROS activates the intrinsic cell 
death pathway via caspase 9, leading to mitochondrial damage 
that releases cytochrome c and mtDNA (173). MtDNA acts as a 
direct inducer of ZBP1. In addition, mtDNA has motifs similar 
to bacterial DNA (CpG), binds cytosolic TLR9, and promotes 
activation of NFκB and IRFs. Mitochondrial ROS is also a potent 
inducer of the inflammasome NLRP3 (117). Both NLRP3 and 
CARD are identified in microarray studies in vivo and in vitro 
with superantigen-stimulated PBMC. Cathepsins, another 
category of “destroyer” molecules identified by microarray in 
SEB-activated PBMC (169), are indicative of lysosomal rupture 
which also activates inflammasomes.

Upon comparing the microarray data from an in vivo “SEB-
only” mouse model (163), and human PBMC stimulated with 
SEA (168) or SEB (169), several commonly activated genes 
importantly induce the pathogenic effects of SEB (Table 2). These 
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genes are activated by IFN and account for the therapeutic effec-
tiveness of rapamycin in preventing SEB-induced shock (102).

DRUG TARGeTS: wHAT wORKS AND 
wHAT DOeS NOT

The early induction of three key proinflammatory cytokines, 
IL-1, TNFα, and IFNγ, work via individual receptor-mediated 
signaling molecules that, respectively, activate distinct path-
ways: (1) IL-1R/MyD88/NFκB; (2) TNFαR/FADD/RIP; and 
(3) IFNγR/JAK/IRF. IL-1, TNFα, and IFNγ have independent 
and synergistic effects signaling inflammation, caspase activa-
tion/cell death, and an antiviral response. IL-1 from inflam-
masome activation has pleiotropic effects, while TNFα has an 
established role that initiates cell death through the adaptor 
FADD, activating caspases 3 and 8. IFNγ triggers innate 
host defense responses, antiviral genes, apoptotic programs, 
immunoproteasomes, and has many immunomodulatory 
functions. Interruption of these concurrent cascades early 
after SEB exposure is effective in preventing SEB-induced 
lethal shock.

Decades of drug development against sepsis and septic 
shock point to the failure of using anti-inflammatory cytokines 
alone, and early interruption of cytokine release is perhaps a 
necessary but insufficient target. Drugs also act on multiple 
targets, some known and unknown, as exemplified by statins 
that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A with 
anti-inflammatory effects (174). Statins, used therapeutically to 
reduce cholesterol, are under consideration for treating various 
inflammatory diseases (175). Superantigens trigger multiple 
pathways that cross-regulate each other positively and negatively, 
thus targeting downstream effectors might be more specific and 
perhaps interfere less with normal cell function. Knowledge of 
immunoregulation within activated pathways by SEB enables a 
better choice of inhibitors.

Apoptosis plays a critical role in sepsis-induced lethality 
(176). The two pathways leading to apoptosis are operative in 
SEB-induced lethal shock, as induction of genes for both path-
ways occurs in the “double-hit” SEB model and other mouse 
models employing potentiating agents such as d-gal. The 
death receptor pathway used by the TNFR superfamily with 
ligands like TNFα and FasL induces cell death following supe-
rantigen exposure (121, 126). A second apoptosis pathway, the 
intrinsic pathway, is dependent on mitochondria and the Bcl2 
family of pro- and anti-apoptotic proteins. ROS and loss of 
mitochondrial transmembrane potential play important roles, 
as previous studies implicate both in SEB pathogenesis (177). 
Other cell-surface receptors like CD44 might also contribute 
to SEB-induced injury, as CD44-knockout mice have elevated 
liver damage in the d-gal-sensitized SEB model (178). Since 
d-gal is hepatotoxic, the induction of pro-apoptotic molecules 
by SEB likely act synergistically with d-gal to promote cell 
death.

Microarray gene analysis in an “SEB-only” mouse model 
implicates both extrinsic and intrinsic pathways in SEB-
induced apoptosis. Apoptosis plays a role in down-regulating 

immune responses but simultaneously has devastating effects 
when apoptotic cells or associated molecules are not removed. 
Autophagy is a cellular mechanism that removes bacteria, pro-
tein aggregates, and damaged organelles to maintain homeosta-
sis (176, 179). A recent study indicates that blocking autophagy 
augments T-cell activation (180). Degradation and removal of 
Bcl10, which is part of CBM and a critical component for TCR 
and costimulatory signaling, is dependent on autophagy (176). 
IFN induces many genes regulating NFκB and apoptosis. The 
damage response induced by superantigens likely starts with 
inflammatory cytokines and apoptotic programs activated 
by IFNγ and TNFα. DAMPs such as mitochondrial ROS and 
mtDNA trigger more apoptosis, activate inflammasomes, 
and induce transcription factors for ISGs. Increasing energy 
demand and mitochondrial respiratory-chain activity also 
lead to elevated ROS. Normally, mitochondria damaged by 
excessive membrane permeability and ROS are removed by 
a specialized form of autophagy called mitophagy. However, 
overactivation of PI3K/mTORC1 in superantigen-stimulated 
cells likely blocks autophagy, resulting in inflammasome activa-
tion and accumulation of damaged mitochondria. Rapamycin, 
a well-known inducer of autophagy, prevents SEB-induced 
shock by removing damage-inducing molecules and damaged 
mitochondria. Two other FDA-approved immunosuppressants 
for organ transplants, cyclosporine A and tacrolimus, do not 
protect against superantigen-induced shock in NHP and 
human HLA-DR3 transgenic mice, respectively (181, 182). The 
calcineurin inhibitor, cyclosporine A, protects d-gal-sensitized 
mice from SEB-induced shock (121) but does not protect NHP 
challenged with SEB (181). Tacrolimus suppresses SEB-induced 
T-cell proliferation in vitro but does not confer protection from 
toxic shock in transgenic mice (182). Tacrolimus also fails to 
protect mice from lethal pneumonia induced by superantigen-
producing S. aureus (182).

There is good agreement between the genes significantly 
induced in mouse PBMC from this “double-hit” SEB model and 
SEA- or SEG-stimulated human PBMC (163, 168). Many genes 
of the apoptosis-related cell death pathway account for the dam-
age response initiated by SEB. MtDNA is ancestrally related to 
bacterial DNA (CpG motifs), inducing a “foreign” DNA sensor 
(ZBP1) or alternatively binding endosomal TLR9 that triggers 
host defense including type 1 IFN-mediated responses via IRF3 
(114). Important clues from animal models, old and new, reveal 
acute release of proinflammatory cytokines that culminate in 
damaged organs and lethal shock.

CONCLUSiON

Staphylococcus aureus is a toxin-producing pathogen that causes 
various diseases found throughout the body. Increasingly, 
S.  aureus becomes more resistant to various therapeutics (i.e., 
antibiotics) over time, thus our own immune systems must more 
effectively clear this pathogen. Further knowledge of our immune 
system will clearly enable us to better thwart S. aureus and other 
pathogens. Mammals sense invading microbes via conserved 
PRR for detecting molecular patterns on, or released by, various 
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bacterial, viral, and fungal pathogens. This rapid innate immune 
response produces proinflammatory mediators, cell activation, 
and recruitment of inflammatory cells to infection sites. However, 
some sensors for detecting PAMPs also bind to host DAMPs, 
confusing the “stranger” versus “danger” signaling. Host response 
to staphylococcal superantigens typifies the generation of these 
danger signals as shown in a mouse model of SEB-induced shock. 
The induction of cell death through apoptotic proteins observed 
during sepsis or superantigen exposure may provide a common 
target for therapeutic intervention.
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