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Abstract

Oral delivery of BCG in a lipid formulation (LiporaleTM-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes
and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the
effector and memory immune response induced by LiporaleTM-BCG vaccination is unknown. Therefore, we compared the
effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with LiporaleTM-BCG to the response
induced by subcutaneous BCG vaccination. LiporaleTM-BCG vaccination induced a long-lived CD4+ T cell response, evident
by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific
CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, LiporaleTM-BCG
vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs
capable of producing IFNc and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These
results demonstrate that orally delivered LiporaleTM-BCG vaccine induces a long-lived multifunctional immune response,
and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines.
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Introduction

Bacille Calmette-Guérin (BCG) is the only available vaccine for

the prevention of tuberculosis [1] and has been given to over 3

billion individuals, making it the most widely administered vaccine

to date. BCG is typically administered soon after birth, and while

it is effective at preventing TB during childhood, its effectiveness

wanes over time [2,3]. To that end, the efficacy of BCG against

adult pulmonary TB is highly variable, ranging from 0–80%

[4,5,6]. Due to the success of BCG in reducing childhood TB, and

its proven safety record, strategies to develop a more effective TB

vaccine have focused on improving the efficacy of BCG, either

through the development of recombinant BCG strains and

attenuated Mycobacterium tuberculosis (Mtb) vaccine strains or through

the development of subunit and virus-vectored vaccines that can

be used as a boost for BCG [7]. In that regard, most of the novel

TB vaccines currently in the vaccine pipeline are designed to

incorporate BCG or attenuated Mtb [8].

Optimizing the delivery of this live bacterial vaccine is a further

way in which the efficacy of BCG could be improved. Oral

delivery of BCG has many advantages over the standard

intradermal method of BCG vaccination, including reduced cost,

ease of administration, avoidance of needles and the associated risk

of disease transfer. More importantly, it has been shown that oral

delivery more effectively targets the mucosal immune response

than intradermal vaccination [9]. This is critical, given that the

primary site of TB infection is the lungs.

BCG is most effective when delivered as a live vaccine [10,11].

We have previously reported that oral delivery of BCG in a lipid

formulation protects the bacilli from degradation in the stomach

and provides immunity against an aerosol Mtb or Mycobacterium

bovis challenge in mice and guinea pigs [12,13,14,15]. Moreover,

oral BCG vaccination has been shown to boost antigen-specific

immune responses in human volunteers [16,17] and reduce the

incidence of virulent M. bovis in livestock and wildlife

[18,19,20,21].

Immunity to TB is highly dependent upon CD4+ T cells and the

acquisition of a T helper cell type 1 (Th1) immune response [22].

Control of a primary TB infection is reliant on the production of

IFNc and TNFa in the lungs by CD4+ effector T cells

[23,24,25,26,27]. These cytokines activate infected macrophages,

enabling them to kill or restrict the growth of the invading

mycobacteria [22]. The requirements for a protective memory

response to TB are less clear [28]. Lung-resident CD4+ T cells

appear to be the principal mediators of protection, since following
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BCG vaccination lung-resident memory T cells have been shown

to be sufficient for protection against a mycobacterial challenge

[29]. However, the level of IFNc produced by CD4+ T cells is not

a reliable predictor of vaccine efficacy [30,31]. More recently,

efforts have focused on measuring the quality of the vaccine-

induced immune response by assessing the proportion of

multifunctional Th1 CD4+ T cells, which are capable of

simultaneously producing high levels of IFNc, TNFa and IL-2

[32]. The increased presence of these cells in the spleens, [33,34]

and perhaps more importantly the lungs, of vaccinated mice has

been shown to correlate with protection against TB [35].

Although the vaccine-elicited immune response to parenteral

BCG vaccination is well characterized, the CD4+ T cell immune

response to lipid-formulated oral BCG vaccination is unknown. In

this study, we compare the magnitude and quality of the CD4+ T

cell response in the spleen and lungs of mice induced by orally

delivered lipid-formulated BCG to the response induced by

subcutaneous (s.c.) BCG vaccination. We report that lipid-

formulated oral BCG vaccination (LiporaleTM-BCG) induced a

long-lived CD4+ T cell response, demonstrated by the persistence

of activated, antigen-specific CD4+ T cells in the spleens and a

greater number of multifunctional CD4+ T cells in the lungs than

s.c. vaccinated mice at 30 weeks post immunization. These

findings suggest that LiporaleTM-BCG vaccination could present

an effective means of delivering novel BCG-based vaccines for the

prevention of TB.

Materials and Methods

Ethics Statement
This project was undertaken within the provisions of the Animal

Welfare Act (1999) of New Zealand and was approved by the

Victoria University of Wellington Animal Ethics Committee.

Mice
Inbred C57BL/6 mice were purchased from The Jackson

Laboratory and bred and housed under SPF conditions at the

Malaghan Institute of Medical Research Biomedical Research

Unit in Wellington, New Zealand. Groups of 5 age- and sex-

matched mice were used at each time point for each experimental

group.

BCG Preparation and Vaccination
Mice were vaccinated per oral or subcutaneous route, as

indicated, with M. bovis BCG Danish strain 1331. BCG was grown

to mid log-phase in 175 ml flasks (Falcon, NJ, USA) containing

Middlebrook 7H9 medium (Difco, Detroit, MI, USA) supple-

mented with albumin-dextrose-catalase (BBL, Becton Dickinson,

MD, USA) and 0.01% Tween 80. BCG in vaccine preparations

was enumerated by plating onto modified Middlebrook 7H11 agar

(Difco, Detroit, MI, USA) containing oleic acid-albumin-dextrose-

catalase ((BBL, Becton Dickinson, MD, USA) and glycerol and

counting retrospectively after incubation for 2–3 weeks. For

formulating the oral vaccine, broth-grown BCG bacilli were

pelleted by centrifugation and encapsulated into LiporaleTM as

previously described (13). For subcutaneous vaccination, 50 uL of

7H9 medium, containing approximately 16106 CFU BCG, was

injected into the right flank. For oral BCG administration, mice

were temporarily separated into individual cages and offered

0.3mL chocolate-flavored LiporaleTM containing 1–26107 CFU

BCG. After 12 hours, the oral vaccine had been entirely consumed

and mice were placed back in their original cages.

Tissue Preparation
At times indicated, mice were culled by cervical dislocation.

Single lymphocyte suspensions were prepared from spleens of mice

by passing them through a 70 mm cell strainer and subjecting them

to red blood cell lysis (Red Blood Cell Lysing Buffer, Sigma, St.

Lois, MO). Lung lymphocytes were isolated by enzymatic

digestion of lung tissue (2.4 mg/mL Collagenase Type I (Invitro-

gen, Carlsbad, CA), 0.12 mg/mL DNase 1 (Roche, Mannheim,

Germany) in Iscove’s Modified Dulbecco’s Medium (IMDM)

without additives), and CD45+ cells were isolated using magnetic

bead enrichment with CD45 MicroBeads (MACS, Miltenyi

Biotec, Germany). Total cell counts per organ were determined

using a haemocytometer following red blood cell lysis of spleens or

following CD45 MicroBead isolation from lungs.

In Vitro Restimulation
Single cell lymphocyte suspensions from spleens and lungs were

plated at a density of 46106/mL in a 24 well plate and incubated

for 6 hours at 37uC in IMDM (supplemented with 5% FCS, 1%

penicillin/streptomycin, 1% L-glutamine (GlutaMAX, Gibco,

Invitrogen, Auckland, New Zealand), 0.1% 2-mercaptoethanol

(Gibco, Invitrogen)) containing 2 mg/mL anti-CD3 (clone 2C11)

and 2 mg/mL anti-CD28 (clone 37.51) (both prepared in house).

3 mg/mL Brefeldin A (eBioscience, San Diego, CA) and 2 mM

monensin (Sigma) were added for the last 4 hours of incubation.

Identification of Tetramer-specific Cells
Single cell suspensions from spleens were stained with I-A(b)

Mtb antigen 85B precursor 280–294 (FQDAYNAAGGHNAVF)

tetramer-APC or with I-A(b) human class II-associated invariant-

chain peptide (PVSKMR MARPLLMQA) tetramer-APC as a

negative control (NIH MHC Tetramer Core Facility at Emory

University, Atlanta, GA), and enriched by positive magnetic bead

isolation using the AutoMACS cell sorter (Miltenyi Biotec)

following staining with anti-APC MicroBeads (MACS, Miltenyi

Biotec) and were identified by flow cytometry. For phenotype

analysis we used a minimum number of 50 events in the tetramer

gate, with a mean of 180 events.

Flow Cytometry
Lymphocytes were labeled with anti-CD4-Pac Blue, (BD

Biosciences, San Diego, CA), anti-CD44-PE-Cy7, anti-CD62L-

APC-AlexaFluor 750 (both from eBioscience) for cell surface

staining, and anti-IFNc-PE-Cy7, anti-IL2-APC (both from

eBioscience), and anti-TNFa-PE (BD Biosciences) for intracellular

staining. Dead cells were excluded following staining with the

viability dye LIVE/DEADH Fixable Blue Dead Cell Stain

(Invitrogen). All samples were collected on a BD LSRII SORP

(Becton Dickinson, San Jose, CA) and FlowJo software version 9.4

was used for data analysis.

Statistical Analysis
Statistical significance was determined by one-way ANOVA

followed by the Tukey post-test, two way ANOVA followed by the

Bonferroni post test, or by the Mann Whitney test, as indicated in

figure legends, using Prism software.

Results

LiporaleTM-BCG Significantly Increases the Number of
Ag85B-specific CD4+ T Cells in the Spleen

To compare the immune response elicited by LiporaleTM-BCG

to the response induced by s.c. BCG vaccination, we isolated

CD4+ T Cell Response to Lipid-Formulated Oral BCG
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lymphocytes from the spleens of vaccinated C57Bl/6 mice at 4, 8

and 30 weeks post immunization. Naı̈ve mice served as

unvaccinated controls. Splenic CD4+ T cells specific for the

immunogenic BCG and Mtb antigen Ag85B were identified using

an MHCII-Ag85B tetramer (Fig. 1a). Importantly, only mice that

received LiporaleTM-BCG had a significant increase in the

Figure 1. Oral vaccination with LiporaleTM-BCG increases the number of Ag85B-specific CD4+ T cells in the spleen. Lymphocytes from
the spleens of naı̈ve, LiporaleTM-BCG vaccinated (BCG oral) or subcutaneously vaccinated (BCG s.c.) mice were stained with an Ag85B/MHCII tetramer
and enriched for tetramer positive cells by magnetic bead isolation. (A) Representative flow cytometry plots show Ag85B-specific CD4+ T cells in the
spleens of naı̈ve or BCG vaccinated mice at 4, 8 and 30 weeks post immunization. (B) Bar graphs show the number of Ag85B-specific CD4+ T cells in
the spleens of naı̈ve or BCG vaccinated mice at 4, 8 and 30 weeks post vaccination. Results are displayed as mean +SEM of n = 5 for each group,
significance expressed relative to naı̈ve: *p,0.05, **p,0.01, ***p,0.001 (one way ANOVA with Tukey post test). The 8 and 30 weeks results are
representative of 2 independent experiments.
doi:10.1371/journal.pone.0045888.g001
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Figure 2. Oral vaccination with LiporaleTM BCG induces effector and central memory Ag85B-specific CD4+ T cells in the spleen.
Lymphocytes from the spleens of naı̈ve, LiporaleTM-BCG vaccinated (BCG oral) or subcutaneously vaccinated (BCG s.c.) mice were stained with an
Ag85B/MHCII tetramer and enriched for tetramer positive cells by magnetic bead isolation. (A) Representative flow cytometry density plots showing
CD62L and CD44 expression on total CD4+ T cells from spleens of naı̈ve mice, or Ag85b-specific CD4+ T cells from the spleens of BCG vaccinated mice.
(B) Bar graphs showing the proportion of naı̈ve (CD62Lhi, CD44lo), TEFF/TEM (CD62Llo, CD44hi) or TCM (CD62Lhi, CD44hi) CD4+ T lymphocytes of total
CD4+ T cells from naı̈ve mice or Ag85B-specific CD4+ T cells from the spleens of BCG vaccinated mice at 4, 8 and 30 weeks post vaccination. Results
are displayed as mean + SEM of n = 5 for each group: *p,0.05, **p,0.01, ***p,0.001 (Mann-Whitney test). Eight and 30 weeks results are
representative of 2 independent experiments.
doi:10.1371/journal.pone.0045888.g002
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number of Ag85B-specific cells in the spleen compared to naı̈ve

controls at 8 and 30 weeks following immunization (Fig. 1b).

LiporaleTM-BCG Induces an Ag85B-specific CD4+ Effector
T Cell Phenotype in the Spleen

To distinguish between naı̈ve, effector (TEFF)/effector-memory

(TEM) and central memory (TCM) CD4+ T cell populations, total

CD4+ lymphocytes from naı̈ve mice or Ag85B-specific CD4+ T

cells from vaccinated mice, were stained for the expression of

CD62L, a lymphoid homing receptor that is downregulated

shortly following T cell activation, and the activation marker

CD44. CD4+ T cell subsets were categorized as follows: naı̈ve cells

as CD62Lhi, CD44lo; TCM as CD62Lhi, CD44hi and TEM/TEFF as

CD62Llo, CD44hi [36,37].

At 4 weeks post immunization, the Ag85B-specific CD4+ T cells

from the spleens of mice vaccinated with LiporaleTM-BCG or s.c.

BCG displayed a predominantly TEM/TEFF phenotype (Fig. 2 a

and b). The antigen-specific CD4+ effector immune response was

maintained up to 8 weeks post immunization, illustrating that

LiporaleTM-BCG can induce an antigen-specific CD4+ effector T

cell response in the spleen that is equivalent to s.c. BCG

vaccination.

By 30 weeks post immunization, .50% of the Ag85B-specific

CD4+ T cells in the spleens of vaccinated mice were TCM,

consistent with reports demonstrating that central memory cells

are capable of long term survival [38]. Interestingly, there was a

significant increase in the proportion of TCM cells in mice that

received BCG orally compared to mice that received a s.c. BCG

immunization (p,0.05), suggesting that LiporaleTM-BCG vacci-

nation can induce a long-lived antigen specific memory immune

response.

LiporaleTM-BCG Induces a Long-lived CD4+ Effector T Cell
Phenotype in the Lungs

To investigate the immune response to lipid-formulated oral

BCG vaccination in the lung, we isolated lymphocytes from the

lungs of mice 4, 8 and 30 weeks post oral or subcutaneous BCG

vaccination. We determined the phenotype of the total CD4+ T

cell population using antibodies against CD62L and CD44 to

distinguish between naı̈ve, TEM/TEFF and TCM subsets (Fig. 3a).

Similar to the antigen-specific response in the spleen, at 4 and 8

weeks post immunization, LiporaleTM-BCG induced a TEM/TEFF

CD4+ T cell phenotype in the lungs that was equivalent to the

immune response observed when BCG was administered subcu-

taneously (Fig. 3b). Importantly, by 30 weeks following immuni-

zation, only mice that received LiporaleTM-BCG maintained a

CD4+ TEM/TEFF phenotype relative to naı̈ve controls. The

maintenance of a CD4+ TEM/TEFF cell population in the lungs

of orally vaccinated mice 7 months after immunization suggests

that oral BCG vaccination induces a prolonged effector response

in the lungs compared to subcutaneous vaccination.

Cytokine Production by CD4+ T Cells from the Lungs of
LiporaleTM-BCG Vaccinated Mice

To assess the quality of the immune response in the lung

following LiporaleTM-BCG vaccination, lymphocytes were isolat-

ed from the lungs of naı̈ve or BCG-vaccinated mice and

restimulated for 6 hours in vitro in the presence of Brefeldin A

and monensin. Cytokine producing CD4+ T cells were identified

by intracellular staining and flow cytometry. At 4 and 8 weeks after

vaccination, there was a significant increase in the proportion of

CD4+ T cells producing IFNc or TNFa, but not IL-2, in the lungs

of mice that received either LiporaleTM-BCG or s.c. BCG vaccines

compared to naı̈ve controls (Fig. 4 a and b). Of note, by 30 weeks

post immunization, there was a significant increase in the

proportion of IFNc-producing CD4+ T cells from the lungs of

mice that received LiporaleTM-BCG vaccination relative to cells

from s.c. BCG vaccinated mice and naı̈ve controls (Fig. 4 a and b).

The frequency of multifunctional CD4+ T cells in the lungs of

vaccinated and naı̈ve mice was determined using Boolean gating.

At 4 and 8 weeks after vaccination with either LiporaleTM-BCG or

s.c. BCG there was a significant increase in the percentage and

number of multifunctional CD4+ T cells in the lungs of mice

compared to cells from naı̈ve controls (Fig. 5 a, b and c). The

proportion of IFNc+TNFa+IL-22 double positive CD4+ T cells

also was also significantly increased in the lungs of LiporaleTM-

BCG or s.c. BCG vaccinated mice compared to naı̈ve controls

(Fig. 5 b and c). Interestingly, at 30 weeks after immunization,

there was a significant increase in the frequency of multifunctional

CD4+ T cells in the lungs of mice that received LiporaleTM-BCG

compared to s.c. vaccinated or naı̈ve controls (Fig. 5d).

Discussion

Oral delivery of live BCG using a lipid formulation has been

shown to be effective at protecting animals against a virulent

mycobacterial challenge [12,14,15,39]; however, the immune

response elicited by this vaccine had not been fully investigated.

Therefore we compared the CD4+ T cell response in mice

vaccinated with LiporaleTM-BCG to mice vaccinated with BCG

through the conventional s.c. route. We observed a significantly

increased number of Ag85B tetramer-specific CD4+ T cells in the

spleens of mice vaccinated with LiporaleTM-BCG and found that

oral vaccination induced TEFF/TEM and TCM CD4+ T cell

populations in the spleen that were similar to s.c. BCG vaccinated

mice. Moreover, following polyclonal stimulation, we found that

mice vaccinated with LiporaleTM-BCG had significantly more

IFNc-producing, and multifunctional CD4+ T cells in the lungs,

the primary site of TB infection, than s.c. BCG vaccinated or

control mice .6 months after vaccination.

The earlier control of bacterial growth observed following

pulmonary mycobacterial challenge of memory immune mice has

been shown to coincide with the early arrival of antigen-specific

Th1 CD4+ T cells in the lungs [40]. Supporting this, it has been

demonstrated that adoptively transferred activated, transgenic

Th1 ESAT-6-specific cells traffic to the lungs and protect from an

Mtb challenge in a frequency dependent manner [41]. Moreover,

using FTY720 to block egress of lymphocytes from the lymph

nodes, it has been shown that T cells in the lungs of BCG

vaccinated mice are sufficient to protect against a mycobacterial

challenge [29]. Together, these studies suggest that the presence of

Th1 CD4+ T cells in the lungs is critical for the immune protection

afforded by vaccination. We found that both LiporaleTM-BCG

Figure 3. Oral vaccination with LiporaleTM-BCG induces long-lived CD4+ effector T cells in the lung. Lymphocytes from the lungs of
naı̈ve, LiporaleTM-BCG vaccinated (BCG oral) or subcutaneous vaccinated (BCG s.c.) mice were analyzed by flow cytometry. (A) Representative flow
cytometry plots show the gating strategy used to identify CD4+ T cells. (B) Bar graphs show the proportion of naı̈ve (CD62Lhi, CD44lo), TEFF/TEM

(CD62Llo, CD44hi) or TCM (CD62Lhi, CD44hi) CD4+ T lymphocytes of total CD4+ T cells from the lungs of naı̈ve or BCG vaccinated mice at 4, 8 and 30
weeks post vaccination. Results are displayed as mean + SEM of n = 5 for each group, significance expressed relative to naı̈ve: *p,0.05, **p,0.01,
***p,0.001 (one way ANOVA with Tukey post test). Eight and 30 weeks results are representative of 2 independent experiments.
doi:10.1371/journal.pone.0045888.g003
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vaccination and s.c. BCG vaccination led to a statistically

significant increase in the frequency of IFNc-producing CD4+ T

cells in the lungs at 4 and 8 weeks after immunization, which

coincided with the presence of a predominantly effector phenotype

of the CD4+ T cells in the lungs. By 30 weeks post vaccination, a

significant population of TEFF/TEM CD4+ T cells capable of

producing IFNc was identified only in the lungs of mice that were

vaccinated with LiporaleTM-BCG, suggesting that the oral route of

vaccination produces a more sustained immune response in the

lungs than traditional s.c. vaccination.

Although IFNc is necessary to control an Mtb infection, the

IFNc response induced by TB vaccination is an unreliable

correlate of vaccine-elicited protection [30,31]. For this reason

we also assessed the frequency of multifunctional cells in the

spleens and lungs of vaccinated mice, since these cells have been

shown to correlate with vaccine-elicited protection from Mtb in

mice [32,33,35]. We found an increase in the proportion and

frequency of triple cytokine producing cells in the lung at 4 and 8

weeks in mice vaccinated with BCG orally or s.c., but interestingly,

only LiporaleTM-BCG maintained a significant population of

multifunctional CD4+ T cells in the lungs of mice by 30 weeks post

vaccination. Therefore, the oral, mucosal vaccination route

maintains the multifunctional CD4+ T cell population in the lung

for longer than the traditional s.c. route of immunization.

By contrast, Kaveh et al. recently reported that intradermal

BCG vaccination induces a long-lived population of multifunc-

tional CD4+ T cells in the lungs [42]. In this study an increase in

the proportion of multifunctional cells in vaccinated mice

compared to naı̈ve controls was detected at 6 weeks post

immunization, however, it is unclear whether the percentage of

multifunctional cells in BCG vaccinated mice were above that

found in naı̈ve mice at 6, 12 and 18 months after vaccination

because unvaccinated controls were not included at later time

points. The phenotype of the multifunctional cells in the spleens of

intradermally BCG vaccinated mice was reported as TEM–like

(CD44hi, CD62Llo); however, it is important to note that this

phenotype was assessed after an 18 hour in vitro restimulation, and

it is likely that the phenotype of these cells was altered by the

restimulation [43].

Figure 4. Oral vaccination with LiporaleTM-BCG induces CD4+ T cell cytokine production in the lung. Lymphocytes from the lungs of
naı̈ve, LiporaleTM-BCG vaccinated (BCG oral) or subcutaneous vaccinated (BCG s.c.) mice were stimulated for 6 hours in vitro in the presence of
Brefeldin A and monensin then analyzed by flow cytometry. (A) Representative plots show CD4+ T cells from the lungs of naı̈ve or BCG vaccinated
mice expressing IFNc, TNFa or IL-2. (B) Bar graphs show the percentage of CD4+ T cells from the lungs of naı̈ve or BCG vaccinated mice expressing
cytokines at 4, 8 or 30 weeks post immunization. Results are displayed as mean + SEM of n = 5 for each group, significance expressed relative to naı̈ve:
*p,0.05, **p,0.01, ***p,0.001 (one way ANOVA with Tukey post test). Eight and 30 weeks results are representative of 2 independent experiments.
doi:10.1371/journal.pone.0045888.g004

CD4+ T Cell Response to Lipid-Formulated Oral BCG

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e45888



CD4+ T Cell Response to Lipid-Formulated Oral BCG

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e45888



In our study we found that Ag85B tetramer-specific CD4+ T

cells in the spleen maintained an effector phenotype up to 8 weeks

following either s.c. or LiporaleTM-BCG vaccination. By contrast,

at 30 weeks post vaccination, over 50% of the antigen-specific

CD4+ T cells in the spleens of vaccinated mice had a TCM

phenotype, with a significantly higher proportion of TCM in the

orally vaccinated mice. Similar to the early response in the spleen,

we observed a pool of CD4+ TEFF/TEM cells at 4 and 8 weeks in

the lungs of mice that received BCG either orally or subcutane-

ously. This population of CD4+ TEFF/TEM cells was maintained

up to 30 weeks post LiporaleTM-BCG vaccination. It is possible

that the low level of persisting antigen in the lungs following oral

BCG vaccination contributed to the maintenance of TEFF/TEM

cells in the lung up to 6 months after vaccination; however it

should be noted that an earlier study demonstrated that viable

bacteria could not be recovered from the lungs by 8 weeks

following oral BCG vaccination [44].

A further possible mechanism for the extended presence of

TEFF/TEM lymphocytes following oral BCG vaccination is tissue-

specific homing, in which T cells preferentially migrate to the

tissues in which they were primed [45]. There is evidence that T

cells primed in mucosal lymphoid sites, such as the mesenteric

lymph nodes and Peyer’s patches, express homing markers and

chemokines specific for the major mucosal sites in the body, the

lung and the intestine [46,47,48]. Following LiporaleTM-BCG

vaccination, live mycobacteria are predominantly found in

mucosal lymphatic tissues, such as the mesenteric lymph nodes,

cervical lymph nodes and the Peyer’s patches, and is therefore

thought to be where T cell priming occurs [44,49]. Interestingly,

lymphocytes isolated from the spleen of mice vaccinated with

LiporaleTM-BCG did not express the mucosal homing molecules

CD103 or a4b7, but differentially expressed b1 integrin, which

has been shown to be involved in T cell homing to the lung

epithelium [49,50,51]. Whether the antigen-specific CD4+ T cells

recovered from the spleens of LiporaleTM-BCG vaccinated mice

express b1 integrin remains to be determined.

We have shown previously that LiporaleTM-BCG vaccination

effectively protects against Mtb infection and in this present study

we have provided evidence that orally delivered, LiporaleTM-BCG

vaccination induces a strong antigen-specific CD4+ TEFF/TEM

and TCM response, which appears superior to s.c. BCG

vaccination. Due to the ability of BCG to protect against

childhood TB, most TB vaccines currently in clinical trial

incorporate either recombinant BCG, attenuated Mtb strains or

boosting regimes to maintain this protection [8]. Given the long-

lived immune response we see in the lungs of mice following

LiporaleTM-BCG vaccination, we speculate that the delivery of

novel live TB vaccines via the oral route may more effectively

target the mucosal immune response than traditional immuniza-

tion routes, enhancing protection against aerosol Mtb infection.
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