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abstract

PURPOSE Accurate assessment of a molecular classifier that guides patient care is of paramount importance in
precision oncology. Recent years have seen an increasing use of external validation for such assessment.
However, little is known about how it is affected by ubiquitous unwanted variations in test data because of
disparate experimental handling and by the use of data normalization for alleviating such variations.

METHODS In this paper, we studied these issues using two microarray data sets for the same set of tumor
samples and additional data simulated by resampling under various levels of signal-to-noise ratio and different
designs for array-to-sample allocation.

RESULTS We showed that (1) unwanted variations can lead to biased classifier assessment and (2) data nor-
malization mitigates the bias to varying extents depending on the specific method used. In particular, frozen
normalization methods for test data outperform their conventional forms in terms of both reducing the bias in
accuracy estimation and increasing robustness to handling effects. We make available our benchmarking tool as
an R package onGitHub for performing such evaluation on additionalmethods for normalization and classification.

CONCLUSION Our findings thus highlight the importance of proper test-data normalization for valid assessment
by external validation and call for caution on the choice of normalization method for molecular classifier
development.
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INTRODUCTION

Precision medicine needs effective quantitative tools
for outcome prediction to tailor treatment choices and
optimize patient care.1,2 Molecular profiling technol-
ogies herald the promise for developing such tools.3–6

However, few of the published molecular classifiers
have been successfully translated into clinical use so
far.7–10 Often a classifier was reported to be effective
based on cross-validation in the initial publication, but
later failed external validation in an independent test
data set.11–14

We recently showed that some of these failures can be
attributed to biased classifier assessment by cross-
validation when training data possess handling effects
(namely systematic data variations because of dis-
parate experimental handling of the specimens) and
subsequently undergo data normalization. The reason
is that normalization can lead to overcompressed data
variability and hence overoptimistic assessment of the
classification error rate.15,16 It remains to be elucidated
how these failed classifiers were influenced by han-
dling effects and their normalization for test data in
external validation.

Although external validation is increasingly used in
recent studies of molecular classification, many of
these studies failed to report the normalization method
used for test data.17–22 Among those that did report, a
jumble of methods was used, including median nor-
malization (MN) and quantile normalization (QN), ei-
ther applied to test data alone or in combination with
training data.23–25 To date, there has been no sys-
tematic study on the relative performance of the
normalization methods for test data.

In this paper, we studied the issues of test data
handling effects and normalization in the context of
microRNA (miRNA) microarrays.6,26,27 Our study used
two data sets for the same set of tumor samples, which
were previously collected at Memorial Sloan Kettering
Cancer Center (MSK).28–30 Arrays in one data set were
collected with uniform handling to minimize handling
effects and balanced array-to-sample allocation to
avoid any confounding, whereas arrays in the other
data set were collected with nonuniform handling and
unbalanced allocation. We then performed resampling-
based simulations using the paired data sets, dubbed
virtual rehybridization, to create additional data under
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various levels of handling effects and biologic signals and
different designs for allocating arrays to samples. In this
paper, we report our findings from this simulation study.
These findings provide critical insights in developing re-
producible miRNA classifiers for clinical application.

METHODS

Empirical Data Collection

A set of 192 untreated primary gynecologic tumor samples
(96 endometrioid endometrial tumors and 96 serous
ovarian tumors) were collected at MSK from 2000 to 2012.
Human tumor tissues of the 192 samples were obtained
from participants who provided informed consent and their
use in our study was approved by the MSK Institutional
Review Board. The samples were profiled using the Agilent
Human miRNA Microarray (Release 16.0; Agilent Tech-
nologies, Santa Clara, CA), following the manufacturer’s
protocol. This array platform contains 3,523 markers
(representing 1,205 human and 142 human viral miRNAs)
and multiple replicates for each marker (ranging from 10 to
40). In addition, it has eight arrays on each glass slide (ie,
an experimental block) arranged as two rows and four
columns. Two data sets were obtained from the same set
of samples using different methods of experimental
handling. The first data set (hereafter referred to as the
uniformly handled data set) was handled by one techni-
cian in one batch with the arrays assigned to tumor
samples using blocked random assignment. By contrast,
the second data set (hereafter referred to as the non-
uniformly handled data set) was handled by two techni-
cians over multiple batches in the order of sample
collection; the first 80 arrays were handled by one
technician in two batches and the last 112 by a second
technician in three batches. More details on data col-
lection can be found in the studies by Qin et al.28,30

Resampling-Based Simulation

As a proof of concept, we used tumor type (endometrial
cancer v ovarian cancer) as the outcome variable for
classification. The specific steps of the resampling-based
simulation are as follows.

1. First, we used the uniformly handled data set to ap-
proximate the biologic effects for each sample. Among a
total of 3,523 markers on the array, 351 (10%) were
significantly differentially expressed (P , .01) between
the two tumor types. To be consistent with the typical
signal strength in a molecular classification study,31–33

we halved the between-group differences of biologic
effects for the 351 significant markers (by deducting a
half of the ovarian-versus-endometrial between-group
differences from their levels of expression in ovarian
samples), reducing the number of significant markers to
63 (2%). The resulting biologic effects served as virtual
samples. They were split randomly in a 2:1 ratio into a
training set (n = 128) and a test set (n = 64), balanced by
tumor type.

2. Second, we used the difference between the two arrays
(one from the uniformly handled data set and the other
from the nonuniformly handled data set, subtracting the
former from the latter) for the same samples to ap-
proximate the handling effects for each array in the
nonuniformly handled data set. These handling effects
served as virtual arrays. They were split nonrandomly to
a training set (n = 128, the first 64 arrays and the last 64
arrays) and a test set (n = 64, the middle 64 arrays). By
definition, handling effects are systematic effects that
are not reproducible in different data sets; therefore,
virtual arrays are split nonrandomly so that they are not
comparable between training data and test data. The
magnitude of handling effects in training data and test
data was then adjusted by adding a constant to training
data and multiplying by a factor for test data. We used
three settings for the constant and the multiplication
factor: (1) 2 and 2, (2) 1 and 1.5, and (3) 0.5 and 1.25,
mimicking the scenarios when handling effects in test
data were (1) highly, (2) moderately, and (3) slightly
different from those in training data, respectively.

3. Third, training data were simulated through virtual
rehybridization by assigning virtual arrays to virtual
samples following a partial confounding design or a
stratification design, and then summing the biologic
effects for a sample and the handling effects for its
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assigned array. A partially confounding design assigned
90% of the first 64 arrays and 10% of the last 64 arrays
to ovarian samples and the rest of the arrays to endo-
metrial samples. A stratification design assigned arrays
in each batch (ie, each of the experimental batches in
the collection of the nonuniformly handled data set) to
the two tumor groups in equal proportion.

4. Finally, test data were simulated also through virtual
rehybridization using a partial confounding design or a
stratification design similar to training data. Note that,
here, the partial confounding design assigned 90% of
the first 32 arrays and 10% of the last 32 arrays were
assigned to endometrial samples and the rest of the
arrays to ovarian samples. As a reference, we also ex-
amined test data that comprised only biologic effects
(without adding any handling effects).

One hundred simulation runs were generated for each sce-
nario of handling-effect pattern and array-allocation design.

Preprocessing and Analysis of the Simulated Data

The analysis for each simulated training data set followed
three main steps: (1) preprocessing training data and test
data; (2) building a classifier using the preprocessed
training data; and (3) assessing the error rate of the
classifier using the preprocessed test data. Further details
are provided as below.

Data preprocessing. Preprocessing of both training data
and test data consisted of three steps: (1) log2 transfor-
mation, (2) across-sample normalization, and (3) marker-
replicate summarization using the median.34 Training data
were normalized with QN as the primary approach and with
MN as an alternative approach. Test data were normalized
by one of the six methods: (1) no normalization (NN), (2)
MN, (3) QN, (4) frozen MN (fMN), (5) frozen QN (fQN; ie,
mapping the empirical distribution of each individual test-
set sample to the frozen empirical distribution of the nor-
malized training data), and (6) pooled QN (pQN; ie, apply
QN after pooling training data and test data).24

Classifier building. We used Prediction Analysis for
Microarrays as the primary approach for classification and
Least Absolute Shrinkage and Selection Operator (LASSO)
as an alternative approach.35,36 R packages pamr and
glmnet were used for applying these methods, with the
tuning parameters chosen by five-fold cross-validation.

Classifier assessment. Classification accuracy was mea-
sured using the misclassification error rate (ie, the pro-
portion of samples that were misclassified). The final model
of each classifier was built using the entire training data and
applied to predict the group label for each sample in test
data. The predicted groups were compared with their true
groups for assessing the misclassification error rate.

Performance Measure of Test-Data Normalization

We denote the error rate based on test data that pos-
sessed handling effects as Error_HE and that based on

test data free of handling effects as Error_noHE. To gauge
the performance of a normalization method for abating
the impact of test-data handling effects, we compared
Error_HE against Error_noHE. A normalization method is
effective if it removes handling effects so well that (1) its
Error_HE approximates the corresponding Error_noHE
and (2) its Error_HE is small.

All analyses in this paper were performed using R 3.5.0.

RESULTS

We present here the simulation results using QN for training
data and Prediction Analysis for Microarrays for classifier
development, under each of the three levels of signal-to-
noise ratio and the four combinations of array-to-sample
allocation design. Additional results using MN for training
data and LASSO for classification are provided in the Data
Supplement.

Results When Handling Effects Were Highly Different

Between Training Data and Test Data

Figure 1A shows the simulation results when handling
effects in test data were highly different from those in
training data. Across all four array-allocation designs, the
error rate based on test data with handling effects (ie,
Error_HE) ranged from 0.283 to 0.495 after normaliza-
tion, compared with that without normalization, 0.465.
The exact level of error rate depended on the specific
normalization method used: fQN (0.283) and fMN
(0.284) were the best performers, QN (0.493) and MN
(0.495) were the worst, and pQN (0.375) was in the
middle. These error rates were in nearly perfect agree-
ment with these for handling-effect-free test data (ie,
Error_noHE) for QN and MN, in their regular and frozen
forms; the agreement for pQN was slightly worse. These
observations suggested that, with this pattern of handling
effects and design for array allocation, fQN and fMN were
the best methods for test-data normalization as they not
only effectively removed the negative impact of handling
effects but also made test data more comparable to
training data, leading to smaller error rates; QN and MN
were the worst performers as they led to an error rate even
worse than NN.

The use of stratification for training data reduced the
small difference in Error_HE between fQN and fMN and
that between QN and MN (Figs 1B and 1D), and its use
for test data alone brought Error_HE for pQN to closer
agreement with Error_noHE (Fig 1C), indicating a
marginal benefit for balanced design in this simulation
scenario.

Results WhenHandling Effects WereModerately Different

Between Training Data and Test Data

Figure 2A shows the simulation results when handling
effects in test data were moderately different from those in
training data. When array allocation followed the partial
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confounding design, Error_HE remained at a similar level
for fMN (0.265) and fQN (0.274), and it decreased for pQN
(0.320), MN (0.387), QN (0.414), and NN (0.387). Its level

of agreement with Error_noHE was again nearly perfect for
fMN and fQN and slightly worse for MN, QN, and pQN. The
exact error rate also depended on the normalization
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FIG 1. Scatterplot of the mean misclassification error rate estimated among 100 simulation runs, with the error rates based on test data free of
handling effects plotted on the x-axis and that based on test data with handling effects on the y-axis. Handling effects were highly different between
training data and test data. (A-D) Array-to-sample allocation followed a confounding design or a stratification design for training data and test data: (A)
PC− training data, PC+ test data; (B) STR training data, PC+ test data; (C) PC− training data, STR test data; and (D) STR training data, STR test data.
Classifiers were developed with the Prediction Analysis for Microarrays method; training data were subject to QN; test data were normalized by a
method indicated by the point symbol. fMN, frozen median normalization; fQN, frozen quantile normalization; HE, handling effects; MN, median
normalization; NN, no normalization; PC, partial confounding; pQN, pooled quantile normalization; QN, quantile normalization; STR, stratification.
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method, and the relative performance of these methods
stayed roughly the same, with fQN and fMN still being the
best performers. The error rates associated with QN and

MN decreased but their level of agreement with Error_noHE
worsened slightly; the error rate for pQN also decreased while
its agreement with Error_noHE remained at a similar level.
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FIG 2. Scatterplot of the mean misclassification error rate estimated among 100 simulation runs, with the error rates based on test data free of
handling effects plotted on the x-axis and that based on test data with handling effects on the y-axis. Handling effects were moderately different
between training data and test data. (A-D) Array-to-sample allocation followed a confounding design or a stratification design: (A) PC− training data,
PC+ test data; (B) STR training data, PC+ test data; (C) PC− training data, STR test data; and (D) STR training data, STR test data. Classifiers were
developed with the Prediction Analysis for Microarrays method; training data were subject to QN; test data were normalized by a method indicated by
the point symbol. fMN, frozen median normalization; fQN, frozen quantile normalization; HE, handling effects; MN, median normalization; NN, no
normalization; PC, partial confounding; pQN, pooled quantile normalization; QN, quantile normalization; STR, stratification.
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Also similar to the pervious scenario, the use of strati-
fication design for training data again reduced the small
difference in Error_HE between fQN and fMN (Figs 2B

and 2D), and its use for test data alone led to better
agreement with Error_noHE for pQN, QN, and MN (Fig
2C).
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FIG 3. Scatterplot of the mean misclassification error rate estimated among 100 simulation runs, with the error rates based on test data free of
handling effects plotted on the x-axis and that based on test data with handling effects on the y-axis. Handling effects were slightly different between
training data and test data. (A-D) Array-to-sample allocation followed a confounding design or a stratification design: (A) PC− training data, PC+ test
data; (B) STR training data, PC+ test data; (C) PC− training data, STR test data; and (D) STR training data, STR test data. Classifiers were developed
with the Prediction Analysis for Microarrays method; training data were subject to QN; test data were normalized by a method indicated by the point
symbol. fMN, frozen median normalization; fQN, frozen quantile normalization; HE, handling effects; MN, median normalization; NN, no nor-
malization; PC, partial confounding; pQN, pooled quantile normalization; QN, quantile normalization; STR, stratification.
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Results When Handling Effects Were Slightly Different

Between Training Data and Test Data

Figure 3A shows the simulation results when handling ef-
fects in test data were slightly different from those in training
data. Although the relative ordering of various normalization
methods remained similar, their differences became smaller
when compared with the previous two scenarios. More
specifically, Error_HE was 0.270, 0.255, 0.288, 0.337, and
0.356 for fQN, fMN, pQN, QN, and MN, respectively,
compared with 0.342 without normalization. Their level of
agreement with Error_noHE remained nearly perfect for fQN
and fMN and worse for the other three methods.

The use of stratification for training data reduced the error
rate for fQN (0.255, 0.244) and fMN (0.257, 0.251; Figs 3B
and 3D). Its use for test data alone led to better agreement
with Error_noHE for pQN (0.271) and QN (0.319; Fig 3C).

Additional Simulation Results for Alternative Methods of

Training-Data Normalization and Classification

We performed additional simulations using MN as an al-
ternative method for training data normalization and using
LASSO as an alternative method for classification. We
observed similar results in terms of the relative performance
of test-data normalization methods, the benefit of balanced
study design, and the effect of various patterns of handling
effects in training data and test data (Data Supplement).

Furthermore, we generated biologic effects parametrically
using a normal distribution for each miRNA with its mean
and standard deviation estimated from the empirical data.
The findings remain the same qualitatively, whereas the
error rates decreased across the board, possibly because of
the lack of between-marker correlation when simulating the
data (Data Supplement).

Software Development for Reproducing Our Study and

Examining Additional Methods

We encourage interested researchers to replicate our study
and explore additional methods for data normalization and
classifier development. Toward this end, we developed an R
package containing the paired data sets and another R
package implementing the resampling-based simulation
study. These two packages, named PRECISION.array.DATA
and PRECISION.array, are deposited at GitHub.37 The data
can also be accessed at Gene Expression Omnibus via a
SuperSeries record (GSE109059). The PRECISION.array
package not only has implemented the methods for nor-
malization and classification reported in this paper, but also
allows additional methods specified by the user.

DISCUSSION

In this paper, we investigated the important yet under-
studied problem of test-data normalization for making
external validation valid. Using paired data sets and
resampling-based simulations, we showed that (1)

handling effects in test data can lead to biased classifier
assessment and (2) test-data normalization can mitigate
the bias but to varying extents depending on the method. In
particular, frozen versions of QN and MN outperformed the
conventional versions, especially when the pattern of
handling effects is highly different between training data
and test data; conventional MN and QN of test data offer
limited benefits compared with NN in our simulations and
can even be worse under some scenarios of handling
effects.

Our findings suggest that improper choice of normalization
methods for test data in published studies may have
undermined validation efforts for molecular classifiers and
disproved some actually useful classifiers because of im-
proper test-data normalization. For example, using the last
64 samples in the nonuniformly handled data as test data
for assessing a classifier built on the first 128 samples, the
error rate was 0.391 for conventional QN but 0.297 for fQN,
whereas the error rate based on the uniformly handled data
of the test samples was 0.281 and 0.266, respectively. For
those classifiers that were successfully validated, inade-
quate description of the methodology used can hamper
both efforts to replicate these studies and application of the
classifiers to future samples in clinical practice. For the
purpose of developing accurate and reproducible molec-
ular classifiers, we recommend using (1) uniform experi-
mental handling in data collection to mitigate handling
effects, (2) frozen normalization of quantiles or medians for
test data when either training data or test data possess
handling effects, and (3) comprehensive description of the
study design and analysis methods in publication, ideally
accompanied by software code to allow faithful replication
and application.

For proof of concept, we report the simulation results for a
limited number of simulation scenarios and statistical ap-
proaches for normalization and classification. We have
developed two R packages, PRECISION.array.DATA and
PRECISION.array, for interested researchers to use for
further exploring this topic with additional simulation sce-
narios and statistical methods. Our simulation approach
makes a working assumption that handling effects are
additive to biologic effects. This assumption has been
considered reasonable for microarray data and adopted in
publications on microarray data normalization and
analysis.38,39

To the best of our knowledge, the issue of data normali-
zation for external validation has not been studied before.
Our findings fill a critical knowledge gap in the advance-
ment of developing reproducible classifiers for clinical use
and speak to the importance of proper methodology and
sufficient reporting.40
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