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Effective information spreading 
based on local information in 
correlated networks
Lei Gao1,2, Wei Wang1,2, Liming Pan1,2, Ming Tang1,2 & Hai-Feng Zhang3

Using network-based information to facilitate information spreading is an essential task for spreading 
dynamics in complex networks. Focusing on degree correlated networks, we propose a preferential 
contact strategy based on the local network structure and local informed density to promote the 
information spreading. During the spreading process, an informed node will preferentially select a 
contact target among its neighbors, basing on their degrees or local informed densities. By extensively 
implementing numerical simulations in synthetic and empirical networks, we find that when only 
consider the local structure information, the convergence time of information spreading will be 
remarkably reduced if low-degree neighbors are favored as contact targets. Meanwhile, the minimum 
convergence time depends non-monotonically on degree-degree correlation, and a moderate 
correlation coefficient results in the most efficient information spreading. Incorporating the local 
informed density information into contact strategy, the convergence time of information spreading can 
be further reduced, and be minimized by an moderately preferential selection.

In the last decade, spreading dynamics in complex networks has attracted much attention from disparate disci-
plines, including mathematics, physics, social sciences, etc.1–4. Spreads of rumors5–7, innovations8–10, credits11, 
behaviors12 and epidemics13,14 were studied both in theoretical and empirical aspects. Spreading models, such 
as susceptible-infected (SI)15–17, susceptible-infected-susceptible (SIS)18,19 and susceptible-infected-recovered 
(SIR)20–22 have been studied to investigate the essential aspects of spreading processes in complex networks23. 
Theoretical studies revealed that underlying network structure have significant impacts on the outbreak threshold 
as well as outbreak size3. Specially, for scale-free networks with degree exponent γ ≤​ 3, the outbreak threshold 
vanishes in the thermodynamic limit18,19,24,25. Further studies revealed that the degree heterogeneity promotes 
spreading outbreaks, however limits the outbreak size at large transmission probability13.

Utilizing network information to effectively enhance the spreading speed and outbreak size is an important 
topic in spreading dynamics studies26–30. The studies on effective information spreading can provide inspiration 
for epidemic controlling31–33, as well as marketing strategies optimization34–36. Methods for effective spreading 
roughly fall into two categories: one is to choose influential nodes as the spreading sources37,38, while the other is 
to employ proper contact strategies to optimize spreading paths39. Noticeable methods have been proposed for 
both the two classes. For the identification methods of influential nodes, Kitsak et al. revealed that selecting nodes 
with high k-shells as spreading sources can effectively enhance the spreading size26. Recently, Morone et al. pro-
posed an optimal percolation method to identify the influential nodes40. As for the contact process (CP) without 
bias in heterogenous networks, scholars found that the spreading process follows a precise hierarchical dynam-
ics, i.e., the hubs are firstly informed, and the information pervades the network in a progressive cascade across 
smaller degree classes41. Yang et al. proposed a biased contact process by using the local structure information in 
uncorrelated networks, and their results indicate that the spreading can be greatly enhanced if the small-degree 
nodes are preferentially selected39,42. Rumor spreading and random walk models with biased contact strategy 
were also studied in refs 43 and 44.

Previous results have manifested that in uncorrelated networks, designing a proper contact strategy can effec-
tively promote the information spreading. However, degree-degree correlations (i.e., assortative mixing by degree) 
are ubiquitous in real world networks45–47. A positive degree-degree correlation coefficient indicates that nodes 
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tend to connect to other nodes with similar degrees. While for negative correlation coefficients, large-degree 
nodes are more likely to connect to small-degree nodes. The degree-degree correlations have significant impacts 
on spreading dynamics. For instance, assortative (dissortative) networks have a smaller (larger) outbreak thresh-
old, however outbreak size is on the contrary inhibited (promoted) at large transmission rates48,49.

Although correlations are prevalent in real-world systems, there still lack studies of effective spreading strategy 
focusing on correlated networks. To promote the information spreading in correlated networks is the motivation 
of this paper. We propose a preferential contact strategy (PCS), based on the local information of network struc-
ture and informed nodes densities. Our findings demonstrate that, when the strategy only consider local struc-
ture (LS) information, small-degree nodes should be preferentially contacted to promote the spreading speed, 
irrespective to the values of degree correlation coefficients. For highly assortative or disassortative networks, 
small-degree nodes should be more strongly favored to achieve the fastest spreading. Actually, the minimum con-
vergence time of information spreading depends non-monotonically on the correlation coefficient. In addition, 
we find that the spreading can be further promoted when the information of informed density is incorporated 
into the PCS. The local informed density (LID) based strategy can better accelerate the spreading, as compared 
with the global informed density (GID) case.

Results
Model of correlated network.  To study the interplay of degree correlations and contact strategies, we build 
correlated networks with adjustable correlation coefficients by employing a degree-preserving edge rewiring pro-
cedure. First we generate uncorrelated configuration networks (UCN)50 with power-law degree distributions and 
a targeted mean degree. Then, we adjust the degree correlation coefficient by using the biased degree-preserving 
edge rewiring procedure51. Details about the network generation can be found in the Methods Section.

Model of information spreading.  We consider a contact process (CP) of susceptible-informed (SI)52 as the 
information spreading model. For the SI model, each node can either be in susceptible (S) state or informed (I) 
state. Initially, a small fraction of nodes are chosen uniformly as informed nodes, while the remainings are in the 
S state. At each time step, each informed node i select one of its neighbors j to contact with a pre-defined contact 
probability Wij. If the node j is in S state, then it will become I state with the transmission probability λ. During 
the spreading process, the synchronous updating rule is applied, i.e., all nodes will update their states synchro-
nously in each time step53. Repeat this process till all nodes are informed, and the network converges to an unique 
all-informed state. Thus for the model we consider, spreading efficiency can be evaluated by the convergence time 
T, which is defined as the number of time steps that all nodes become informed.

Preferential contact strategy based on local information.  In real spreading processes, it is hard for 
nodes to known explicitly the states of neighbors. The lack of information may arise many redundant contacts 
between the two informed nodes in the CP, which will greatly reduce the spreading efficiency. Thus, we propose 
a preferential contact strategy (PCS), which combines the local structure (LS) and local informed density (LID) 
information in a comprehensive way. The probability Wij that an informed node i selecting a neighbor j for con-
tact is given by
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Here Γ​i is the set of neighbors of i and ki its degree. In addition, α and β are two tunable parameters. The prefer-
ential structure exponent α determines the tendency to contact small-degree or large-degree nodes. Large-degree 
neighbors are preferentially contacted when α >​ 0, while small-degree neighbors are favored when α <​ 0. When 
α =​ 0 all neighbors are randomly chosen, and it reduces to the classical CP process52. The preferential dynamic 
exponent β reflects whether the neighbors with small or large LIDs are favored. For a specific node j, the LID is 
defined as
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where Ij(t) is the number of informed neighbors of node j at time t.
Taking ρ t( )j

L  into the contact strategy is based on several reasons. Firstly, suppose there are two neighbors with 
the same degree, clearly the neighbor with a higher ρ t( )j

L  has a larger probability to be already informed. It is 
reasonable to preferentially choose the neighbor of the smaller ρ t( )j

L  as contact target by setting a suitable negative 
β. Secondly, contacting neighbors with low LIDs can further provide more latent chances to inform the 
next-nearest neighbors. Third, the LID is relatively easier to obtain, as compared with the global informed density 
(GID) of network ρG(t) =​ I(t)/N, where I(t) is the total number of informed nodes in the network at time t. For 
comparison, we also investigate the performance of GID information based strategy, where the contact probabil-
ity is given by replacing ρ t( )j

L  with ρG(t) in Eq. (1).

Case of α = β = 0 in uncorrelated networks.  We investigate the time evolutions of information spread-
ing with unbiased contact strategy in heterogeneous random networks. When α =​ β =​ 0, hubs have a higher 
probability to be contacted since they have more neighbors. As a result, the hubs will become informed quickly. 
In contrast, small-degree nodes with fewer neighbors are less likely to be contacted and informed. To be concrete, 
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the above scenario is illustrated in Fig. 1. We show the time evolutions of the informed density ρG(t), mean degree 
of newly informed nodes 〈​kI(t)〉​, and the degree diversity of the newly informed nodes D(t)54. Here D(t) is defined 
as
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where Ik(t) is the number of informed nodes with degree k at time t. The larger values of degree diversity D(t) 
indicate that the newly informed nodes are from diverse degree classes.

At initial time steps, the informed density ρG(t) is small, and a large value of 〈​kI(t)〉​ indicates that hubs are 
quickly informed. The value of D(t) is also very large during this stage since most nodes are in S state and nodes 
from all degree classes can be get informed. With the rapid increase of ρG(t), both 〈​kI(t)〉​ and D(t) decreases, 
which indicates intermediate degree nodes are gradually informed. In the late stage of spreading, small values 
of 〈​kI(t)〉​ and D(t) reveal that the time-consuming part of the spreading is to reach some small-degree nodes. 
Previous studies showed that the optimal biased contact strategy basing on the neighbor degrees is which when 
α ≈​ −​152. In this case, the small-degree nodes will be informed more easily, while the central role of the hubs 
for transmitting information is not excessively weakened. Therefore, balancing the contacts to small-degree and 
large-degree nodes is essential to the problem of facilitating the spreading.

Assortative and disassortative networks display distinct structure characteristics, with small-degree nodes play 
different roles23. For assortative networks, many small-degree nodes locate in the periphery of the network. While 
for disassortative networks, some small-degree nodes act as bridges of connecting two large-degree nodes, and 
with more small-degree nodes act as leaf nodes in the star-like structures (see illustration in Fig. S1 of Supporting 
Information). While the locations of small degree nodes have been altered by the degree correlations, transmit-
ting information effectively to small degree nodes is essential for facilitating the spreading as discussed above. 
This suggests that we should treat small degree nodes more carefully in correlated networks. In the LS based 
PCS, nodes are identified by their degrees, and all neighbors with the same degree are treated as equivalent. This 
motivates that we could further distinguish the small degree nodes to better enhance the spreading. To this end, 
we incorporate the LIDs of neighbors into the PCS and favor transmitting information to low informed regions.

Cases of β = 0 in correlated networks.  We first study the effect of PCS by only considering the LS infor-
mation, i.e., β =​ 0. We verify the performance of the contact strategies in scale-free networks with given mean 
degrees and degree correlation coefficients. The networks are generated according to the method described in the 
Model Section. The size of networks is set to N =​ 104 and average degree 〈​k〉​ =​ 8. In addition, we apply the method 
to two empirical networks which are the Router55 and CA-Hep56. Initially, 5‰ nodes are randomly chosen as the 
seeds for spreading. Without lose of generality, the transmission probability is set as λ =​ 0.1. All the results are 
obtained with averaging over 100 different network realizations, with 100 independent runs on each realization.

For a specific network, there always exists an optimal value of preferential structure exponent αo, which 
will lead to the minimum convergence time To [see the inset of Fig. 2(a)]. Figure 2 shows αo, To versus r for 
networks with different degree exponent γ. From Fig. 2(a), we find that the values of αo are negative irrespec-
tive of r. In other words, preferentially contacting small-degree neighbors will promote the spreading effi-
ciency, which is consist with the previous studies for uncorrelated networks52. More importantly, αo depends 
non-monotonically on r. In particular, when r is either very large or small, αo tends to be smaller than that 
for the intermediate values of r. Thus, for highly assortative and disassortative networks, it requires stronger 
tendency to contact small-degree nodes to achieve optimal spreading. This is due to the distinct local structure 
characteristics of small degree nodes (see details in Sec. S1 of Supporting Information). We test the method 
for networks with different values of degree exponent γ in Fig. 2(a). It can be seen that for different γ the 
behaviors are similar. However, one noticeable difference is that for γ =​ 2.1, αo is significantly larger than the 
other three cases when r is small. We argue that this anomaly is caused by the structural constrains imposed 

Figure 1.  For unbiased contacts, the time evolutions of information spreading in random scale-free 
networks. The mean degree 〈​kI(t)〉​ of newly informed nodes (red circles), the density of informed nodes ρG(t) 
(black hollow squares), and the informed diversity of degrees D(t) (blue diamonds) versus time steps t. Other 
parameters are set as N =​ 104, γ =​ 3.0, 〈​k〉​ =​ 8, λ =​ 0.1, and ρ =(0) 5‰G  respectively.



www.nature.com/scientificreports/

4Scientific Reports | 6:38220 | DOI: 10.1038/srep38220

by the strong heterogeneity of degrees for γ =​ 2.1. Some structural properties for γ =​ 2.1 and γ =​ 3.0 are sum-
marized in Table S1 (see details in Sec. S2 of Supporting Information). To further clarify the effects of corre-
lation coefficient r on the convergence time T, we plot the minimum convergence time To as a function of r 
in Fig. 2(b). One can see that To also depends non-monotonically on r. Specifically, To first decreases with r 
and then increases. For those highly disassortative networks, many small clusters are interconnected via some 
small-degree nodes. The inter-cluster transmissions of information delay the spreading and lead to a large 
value of To. When r is very large for assortative networks, though the core composed of large-degree nodes is 
easily informed, small nodes in the periphery are harder to be contacted. The core-periphery structure also 
gives rise to a slightly large value of To.

To complete the above discussions, we study the time evolution properties of the spreading process. 
Figure 3(a) depicts the informed density ρG(t) versus time t for the case of r =​ 0.55 and γ =​ 3.0. Note that r =​ 0.55 
minimize To when γ =​ 3, as shown in Fig. 2(b). The three different lines correspond to different values of α, which 
are α =​ −​1.5, −​0.8, 0.0, respectively. It’s clear from Fig. 3(a) that the case for αo =​ −​0.8 spreads faster than the two 
other cases. The number of newly informed nodes nI(t) as a function of t is given in Fig. 3(b). One can observe 
that, compared with α =​ 0 and α =​ −​1.5, the nI(t) for αo =​ −​0.8 is larger (smaller) than the other two cases at 
the early (late) stages, indicating the fastest spread of information. When the network is almost fully informed at 
late stages, the inset in Fig. 3(b) demonstrates that nI(t) decays faster with time for αo =​ −​0.8. Figure 3(c) and (d) 
respectively show the time evolutions of mean degree of new informed nodes 〈​kI(t)〉​ and the corresponding 
degree diversity D(t). For αo =​ −​0.8, the 〈​kI(t)〉​ and D(t) remain relatively stable with time. In other words, nodes 
with different degrees almost have uniform probabilities of being informed, which is close to the ideal situation 
for effective spreading52. However, for α =​ 0 large-degree nodes are first informed and then the small-degree ones, 
while for α =​ −​1.5 the order is reversed. For the two cases, the degree diversity becomes small at the late stages of 
information spreading. Together with the 〈​kI(t)〉​ we can conclude that the spreading is delayed by small-degree 
(large-degree) nodes for α =​ 0 (α =​ −​1.5). Correspondingly, the results of informed degree diversity D(t) in 
Fig. 3(d) validate the advantage of αo =​ −​0.8 again, which is more stable than that for α =​ 0 and α =​ −​1.5.

We also apply the LS information based PCS to two empirical networks. (1) Router. The router level topology 
of the Internet, collected by the Rocketfuel Project55. (2) CA-Hep. Giant connected component of collaboration 
network of arxiv in high-energy physics theory56. More details about the two networks can be found in Sec. S3 of 
Supporting Information. We find the similar phenomena that observed in Fig. 2, i.e., the non-monotonic depend-
ence of αo and To on r for the case of the empirical networks (see Fig. 4). Nevertheless, some abnormal bulges of 
αo and To emerge at certain values of r. By analyzing the structures of the networks, we find that the networks are 
very similar to the original networks as there are few rewiring edges in the networks at these certain values of r 
with abnormal bulges. Owing to the structural complexity of the real networks, which are significantly different 

Figure 2.  The optimal performance of LS information based PCS in correlated configuration networks. 
(a) The optimal value of preferential structure exponent αo and (b) the convergence time To versus correlation 
coefficient r for degree exponents γ =​ 2.1 (orange up triangles), γ =​ 2.5 (blue diamonds), γ =​ 3.0 (red circles), 
and γ =​ 4.0 (green down triangles), respectively. The inset of (a) shows the relationship between T and α when 
γ =​ 3.0 and r =​ 0.4. We set other parameters as N =​ 104, 〈​k〉​ =​ 8, and λ =​ 0.1, respectively.
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Figure 3.  The effect of LS information based PCSs on the time evolution of information spreading in 
correlated networks. (a) The informed density ρG(t), and (b) the number nI(t), (c) mean degree 〈​kI(t)〉​, and 
(d) degree diversity D(t) of newly informed nodes versus t for different values of α. Different colors indicate 
different values of α. The inset of (a) shows the time evolution of ρG(t) in the time interval [80, 100]. The inset of 
(b) shows nI(t) in the time interval [150, 500]. We set other parameters as N =​ 104, γ =​ 3.0, 〈​k〉​ =​ 8, λ =​ 0.1, and 
r =​ 0.55, respectively.

Figure 4.  The optimal performance of LS information based PCS in correlated networks by rewiring real-
world networks (red circles) and randomized networks (blue diamonds). The optimal value of preferential 
structure exponent αo (a) and convergence time To (b) versus correlation coefficient r for the Router network. 
The αo (c) and To (d) versus r for the CA-Hep network.
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from the synthetic networks, leading to abnormal bulges at certain values of r. To prove that the above abnor-
mal phenomenon comes from the structural complexity of the empirical networks, we randomize the empir-
ical networks by sufficient rewiring process but do not change the original degree distribution and the degree 
of each node. After sufficient times of randomization, we then check the contact strategy in the randomized 
networks, and one can see the abnormal bulges disappear. Moreover, the curves become more smooth and the 
non-monotonic phenomenon becomes more evident.

Cases of α = αo and β < 0 in correlated networks.  When α =​ αo, the LS information based PCS can 
effectively enhance the spreading efficiency. We further incorporate the LID information, i.e., with β <​ 0 and 
α =​ αo in Eq. (1). The spreading efficiency Δ​Tβ is measured by ∆ = −β βT T T T( )/o o, where Tβ represents the 
convergence time when β <​ 0, and To denotes the convergence time when β =​ 0. Thus Δ​Tβ >​ 0 (Δ​Tβ <​ 0) indi-
cates that introducing LID information can enhance (inhibit) the spreading efficiency. For comparison we also 
study the effects of GID information, by replacing ρ t( )j

L  with ρG(t) in Eq. (1). The results in Fig. 5(a), (b) and (c) 
manifest that, the effective use of LID information can further reduce the convergence time when β is set as a 
small negative value (e.g., β =​ −​0.1 and −​0.2). Yet, β with larger magnitude (e.g., β =​ −​0.5) will increase the con-
vergence time. For different values of degree correlation coefficient r, there is obviously an optimal value βo at 
which the information spreading can be effectively enhanced. Moreover, compared with the GID information, 
utilizing the LID information not only speeds up the spreading more significantly but also has a wider range of β 
with Δ​Tβ >​ 0. For disassortative networks, as shown in Fig. 5(d) with r =​ −​0.3, the LID based PCS can speed up 
the spreading of information for a wide range of β. Such an improvement is more evident as compared to uncor-
related [Fig. 5(a)] and assortative networks [Fig. 5(b) and (c)]. We conclude that LID based PCS performs better 
than the GID case in reducing the convergence time.

Figure 6 presents time evolutions of some statistics of the spreading process in disassortative networks with 
r =​ −​0.3. Figure 6(a) and the inset suggest that the optimal value βo =​ −​1.7 can better improve the speed of 
spreading. Figure 6(b) emphasizes that, for the case of β <​ 0, the number of newly informed nodes nI(t) increases 
faster than the case of β =​ 0 at the initial stage. However, the inset of Fig. 6(b) illustrates that, for the case of βo =​
−1.7, nI(t) goes to zero faster than the case of β =​ −​3.5. Similar to Fig. 3(c) and (d), the results in Fig. 6(c) and (d) 
also manifest that too large (small) values of β make the small-degree (large-degree) nodes uneasy to be informed, 
which will inhibit the spreading. In strongly disassortative networks, complex local structures and dynamical 
correlations cause nodes with the same degree to be in different local dynamical statuses. The LS information 

Figure 5.  In correlated networks, the effects of LID and GID based PCSs on the convergence time. The 
relative ratio of the convergence time Δ​Tβ versus β for different r values: (a) r =​ 0, αo =​ −​1.2, (b) r =​ 0.55, 
αo =​ −​0.8, (c) r =​ 0.75, αo =​ −​0.95, and (d) r =​ −​0.3, αo =​ −​2.5, respectively. We set other parameters as 
N =​ 104, γ =​ 3.0, 〈​k〉​ =​ 8, and λ =​ 0.1. It is noted that the results for the GID case are not shown when β − .⩽ 0 7 
in subfigure (c), because their values exceed the minimum value of vertical coordinate. Obviously, Δ​Tβ 
monotonically increases with β.
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based PCS can not effectively reflect and overcome the difference of local dynamical status. The optimal value βo 
guarantee the probability of being informed more homogeneous and steady for different degree classes, leading to 
the fastest spreading of information. Similarly, we also explain why the PCS based on the LID information yields 
better performance than the GID case (see details in Sec. S4 of Supporting Information).

Finally, we verify the effectiveness of the informed density information based strategies in Router network and 
CA-Hep network. Figures S3–S7 show that the LID case performs better in improving the speed of information 
diffusion, and there exists an optimal value of β (see details in Sec. S5 of Supporting Information).

Conclusions
To effectively promote the information spreading in correlated networks, we proposed a PCS by considering both 
the LS and LID information. Based on extensive simulations in artificial and real-world networks, we verified the 
effectiveness of the proposed strategy, and generally found that preferentially selecting nodes with smaller degrees 
and lower LIDs is more likely to promote information spreading in a given network. First, we studied the strategy 
which only considers the LS information. For a given network, there generally exists an optimal preferential expo-
nent αo, at which the small-degree nodes are favored and the convergence time To reaches its minimum value. 
Especially, the small-degree nodes should be favored more strongly to achieve optimal spreading when networks 
are highly assortative or disassortative. Also, the optimal convergence time To depends non-monotonically on the 
correlation coefficient r. Then, we induced the informed density into the LS information based PCS with optimal 
exponent αo. Compared to the strategy with GID, the LID information based PCS reduces the convergence time 
more significantly. For the LID case, an optimal value βo can be observed and minimize the convergence time. We 
further discussed the effects of different parameter combinations (α, β) and source nodes on the effectiveness of 
our proposed PCS based on LID information (see details in Sec. S6 of Supporting Information). We found that 
these factors do not qualitatively affect the above stated results, i.e., the LID based PCS can effectively accelerate 
the spreading.

Utilizing network information to improve the spreading is an important topic in spreading dynamics stud-
ies. In this work, we study the effect of correlated networks on the effective contact strategy basing on the local 
structure and informed density. Our results would stimulate further works about contact strategy in the more 
realistic situation of networks such as community networks57,58, weighted networks13,59, temporal networks60,61, 
and multiplex networks33,62. And this work maybe provide reference for the promotion of social contagions such 
as technical innovations, healthy behaviors, and new products10–12. The results presented in our work are based 
on extensive numerical simulations, how to get accurate theoretical results needs further study. We may get some 
meaningful insights of the theoretical approaches from other dynamics on complex networks, especially the 

Figure 6.  The effect of LID based PCS on the time evolution of information spreading in disassortative 
networks. (a) The informed density ρG(t), and the number nI(t) (b), mean degree 〈​kI(t)〉​ (c) and degree diversity 
D(t) (d) of newly informed nodes versus t for different values of β. Different colors indicate different values of β. 
The inset of (a) shows the time evolution of ρG(t) in the time interval [80, 140]. The inset of (b) shows nI(t) in the 
time interval [550, 3000]. We set other parameters as γ =​ 3.0, N =​ 104, 〈​k〉​ =​ 8, λ =​ 0.1, r =​ −​0.3, and α =​ −​2.5, 
respectively.
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similar dynamics zero range process63–69, in which a jumping-rate with biasing low-degree nodes would possibly 
avoid particle condensation.

Methods
Uncorrelated configuration model.  We generate uncorrelated configuration networks (UCN)50 with 
power-law degree distributions and targeted mean degrees as follows: (1) A degree sequence of N nodes is drawn 
from the power-law distribution P(k) ~ k−γ, with all the degrees confined to the region k N[ , ]min , where γ is the 
degree exponent. Note that the average of the degrees is un-controlled but depends on γ. (2) Adjust the average of 
the degree sequence to a targeted value to eliminate the difference of mean degree between synthetic networks 
with different degree exponents70. In detail, to transform mean degree from original mean degree 〈​k〉​now to tar-
geted mean degree 〈​k〉​tar, the degree of each node i is re-scaled as ′ =k k k k/i i tar now

. Now the new degrees ′ki  
may be not integers, therefore we need to convert then to integers while preserving the degree distribution and 
the mean degree. Since ′ki  can be written as ′ = ′ +⌊ ⌋k k bi i  with b ∈​ [0, 1), we take ′ = ′⌊ ⌋k ki i  with probability 
1 −​ b, while ′ = ′ +⌊ ⌋k k 1i i  with probability b. (3) The nodes with updated degrees are randomly connected via 
standard procedure of the UCN model.

Adjusting degree correlation coefficient.  We use the biased degree-preserving edge rewiring pro-
cedure to adjust the degree correlation coefficient51. Note that this procedure is also applicable to empirical 
networks. The procedure is as follows: (1) At each step, two edges of the network are randomly chosen and 
disconnected. (2) Then we place another two edges among the four attached nodes, according to their degrees. 
To generate assortative (dissortaive) networks, the highest degree node is connected to the second highest 
(lowest) degree node, and also connect the rest pair of nodes. If one or both of these new edges are already 
exist in the network, the step will be discarded and a new pair of edges will be randomly chosen. (3) Repeat 
this procedure till the degree correlation coefficient reaches the target value. Here the degree correlation coef-
ficient23 is defined as:

δ
=
∑ −

∑ −
r

A k k m k k
k k k m k k
( /2 )

( /2 )
,

(4)

ij ij i j i j

ij i ij i j i j

where m is the total number of edges in the network, A is the adjacency matrix (If there is an edge between nodes 
i and j, Aij =​ 1; otherwise, Aij =​ 0.) and δij is the Kronecker delta (which is 1 if i =​ j and 0 otherwise.). When 
r =​ 0 there is no degree-degree correlation in the network, while r >​ 0 and r <​ 0 indicate positive and negative 
degree-degree correlations respectively.
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