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Introduction:We aimed to compare automated ventilation with closed–loop

control of the fraction of inspired oxygen (FiO2) to automated ventilation with

manual titrations of the FiO2 with respect to time spent in predefined pulse

oximetry (SpO2) zones in pediatric critically ill patients.

Methods: This was a randomized crossover clinical trial comparing Adaptive

Support Ventilation (ASV) 1.1 with use of a closed–loop FiO2 system vs. ASV 1.1

with manual FiO2 titrations. The primary endpoint was the percentage of time

spent in optimal SpO2 zones. Secondary endpoints included the percentage of

time spent in acceptable, suboptimal and unacceptable SpO2 zones, and the

total number of FiO2 changes per patient.

Results: We included 30 children with a median age of 21 (11–48)

months; 12 (40%) children had pediatric ARDS. The percentage of time

spent in optimal SpO2 zones increased with use of the closed–loop

FiO2 controller vs. manual oxygen control [96.1 (93.7–98.6) vs. 78.4

(51.3–94.8); P < 0.001]. The percentage of time spent in acceptable,

suboptimal and unacceptable zones decreased. Findings were similar with

the use of closed-loop FiO2 controller compared to manual titration in

patients with ARDS [95.9 (81.6–98.8) vs. 78 (49.5–94.8) %; P = 0.027].

The total number of closed-loop FiO2 changes per patient was 52

(11.8–67), vs. the number of manual changes 1 (0–2), (P < 0.001).
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Conclusion: In this randomized crossover trial in pediatric critically ill patients

under invasive ventilation with ASV, use of a closed–loop control of FiO2

titration increased the percentage of time spent within in optimal SpO2 zones,

and increased the total number of FiO2 changes per patient.

Clinical trial registration: ClinicalTrials.gov, identifier: NCT04568642.

KEYWORDS

intensive care, pediatric intensive care, mechanical ventilation, Adaptive support

ventilation, ASV, closed loop ventilation, automated ventilation, FiO2 controller

Introduction

Critically ill invasively ventilated children frequently need

supplementary oxygen, which is provided in humidified

warmed air, either via a stand-alone gas blender or via a

blender inside the ventilator. Both hypoxemia and hyperoxemia

should be adequately responded to, either by increasing

or lowering the fraction of inspired oxygen (FiO2), as

deteriorations in pulse oximetry (SpO2) readings are associated

with worse outcomes, including a higher mortality (1),

development of retinopathy, chronic lung disease, and brain

injury (2).

The Pediatric Acute Lung Injury Consensus Conference

(PALICC) guidelines suggest targeting “safe” SpO2 targets

at the lowest possible FiO2. Obviously, this comes with

challenges. First, a too low SpO2 increases the risk of mortality

(3). Second, with use of the lowest possible FiO2, children

may develop dangerous hypoxemia much easier. Last but

not least, maintaining SpO2 in predefined target ranges in

critically ill children is difficult due to frequent fluctuations in

saturation caused by their respiratory instability. The scarcity

of doctors and nurses skilled in titrating FiO2 or inadequate

resources to adhere to a tight manual FiO2 regimen exacerbates

these issues.

Automated, or closed–loop FiO2 control could prevent

hyperoxemia and hypoxemia, incorrect use of oxygen,

and reduce the workloads of intensive care unit staff. A

recent meta-analysis suggest that use of automated FiO2

titrations are associated with improvement in terms of

the time spent in target SpO2 ranges, reduces periods

of hyperoxia and severe hypoxia on positive pressure

respiratory support in preterm infants (4). It is uncertain

whether this the use of closed–loop FiO2 control has similar

effects in pediatric patients. Therefore, we evaluated the

performance of a closed–loop FiO2 titration system in

pediatric patients under Adaptive Support Ventilation.

We hypothesized that oxygenation would be safer

and more efficient with the use of a closed–loop FiO2

titration system.

Methods

Study design and ethics

This was a single center randomized crossover clinical

trial, performed in the Dr. Behcet Uz Children’s Research and

Training Hospital, Izmir, Turkey. The study was conducted in

accordance with the Declaration of Helsinki, the study protocol

was approved by the local Institutional Review Board, and the

study was registered at clinicaltrials.gov (NCT04568642).

Patient selection

Patients were eligible for participation if: (1) aged between

1 month and 18 years; (2) with an ideal body weight of

7 kg; (3) receiving invasive ventilation with an FiO2 ≥ 25%;

and after having received written informed consent from the

legal representative. Patients were excluded if hemodynamic

instable, or when it was expected that they would not stay

stable in the next 5 h, or when there were air leaks around

the endotracheal tube ≥40%. Patients could also not participate

if the legal representatives had not given written informed

consent. We also excluded patients with congenital or acquired

hemoglobinopathies affecting SpO2 readings.

Collected data

Demographic data collected using a case report form (CRF)

were age (months), gender, height (cm), ideal body weight for

the measured height (kg), pediatric index of mortality (PIM)

score, admission diagnosis, and lung physiology during the

study. Additionally, arterial blood gas (ABG) data were recorded

to the CRF.

Breath–by–breath ventilation parameters collected

using a MemoryBox (Hamilton Medical AG, Bonaduz,

Switzerland) included FiO2 and SpO2, positive end expiratory

pressure (PEEP), mean airway pressure (MAP), minute
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ventilation volume (MinVent), respiratory rate (RR), end-tidal

CO2 (EtCO2).

Measurement and calculation

A single-use flow sensor (Hamilton Medical AG, Bonaduz,

Switzerland) was placed between the endotracheal tube and

the Y-piece (8) to measure the airway pressures and flows,

while volume was obtained by integrating the flow signal.

CO2 measurements were obtained using a mainstream CO2

sensor (Capnostat5, Philips GmbH, Germany) together with the

corresponding adult/pediatric airway adapter that has a dead-

space volume of 5ml (5). Ventilation parameters were measured

at each breath. Patients’ SpO2 was monitored by means of a

Masimo Set sensor attached to their finger (MasimoRD;Masimo

Corp., Irvine, CA, USA) to provide the signal used by the

closed-loop controller.

Ventilation protocol

Both spontaneously breathing and passive patients were

enrolled in the study. They were intubated with an appropriately

sized and inflated cuffed tube and ventilated in a semi-

recumbent position with a Hamilton-S1 ventilator. If required,

patients were sedated and if necessary paralyzed according to

the local protocol for sedation and using Comfort behavior scale

(6). The IntelliCuff device (Hamilton Medical AG, Bonaduz,

Switzerland) was used to target a cuff pressure slightly lower

than the patients’ peak inspiratory pressure (PIP) level. In auto

mode, relative cuff pressure was adjusted 2–5 cm H2O lower

than PIP to ensure minimal leak around the ETT with minimal

administered cuff pressure. However, according to pediatric

ventilation guidelines, the maximum cuff pressure was limited

to 20 cm H2O (7). Active humidification with the Hamilton-

H900 (Hamilton Medical AG, Bonaduz, Switzerland) was used

as required.

Ventilation was started with standard Adaptive Support

Ventilation (ASV) 1.1 settings. ASV 1.1 is a closed-loop

ventilation mode in which the clinician first enters the height

of the patient to calculate ideal body weight, then determines

the percentage of MinVent to be multiplied by the patient’s

ideal body weight. Then, using the Otis and Mead equations,

this MinVent is distributed algorithmically between RR and

tidal volume (VT) respecting expiratory time constant (RCexp)

of the patient in order to accomplish minimum work of

breath and minimum applied pressure. The attending physician

subsequently checked the breathing parameters according to

the study protocol and wrote them on the CRF while he

began collecting data with the MemoryBox in mixed mode.

Afterwards, the clinician started the first phase of the study

continuing ventilation with standard ASV 1.1 with with only

the FiO2 controller activated, the PEEP and minute volume

controller deactivated, according to randomization. After 2.5 h

of recording in the first phase, the clinician switched the

patient to the alternate mode, according to the randomization

order. If the patient was ventilated without the FiO2 controller

activated in the first phase, the Intellivent FiO2 controller was

activated in the second phase. The patient remained in the

second phase for 2.5 h as well. The first 0.5 h of the first

phase were considered as a run-in phase and the first 0.5 h

of the second phase were considered as a wash-out phase.

Therefore, the first 0.5 h of each phase were excluded from data

analysis. For each patient we collected data for 120min with

the FiO2 controller activated and for 120min with the FiO2

controller deactivated, and these time periods were compared

with regard to the primary and secondary endpoints (Figure 1).

The same values for both MinVent and PEEP were maintained

during the two phases. Intellivent FiO2 closed-loop controller

is a rule based, proportional integral controller described in

Supplementary Table 1.Manual titration protocol is described in

the same file, too.

Endpoints

The primary endpoint of the study was the percentage of

time spent in a predefined optimal SpO2 range over the 2-h

observation periods. Secondary endpoints were the percentage

of time spent in the predefined acceptable, suboptimal, and

unacceptable SpO2 ranges, as well as the number of FiO2

adjustments (manual or performed automatically by the closed-

loop controller).

Definitions

The definitions for optimal, acceptable, suboptimal, and

unacceptable SpO2 ranges are provided in Table 1. We had

different predefined cut-offs for the patients at higher and lower

PEEP based on PALICC and PEMVEC guidelines (7, 8).

Power calculation and statistical analysis

The sample size was calculated by means of a pilot study

in seven patients. In those seven patients the mean difference

between the two phases was 12 ± 19%, median time spent in

the optimum range were 86% [55–99 (IQR)] vs. 67% [50–81

(IQR)]. Based on this pilot data, G∗Power computed that we

needed 30 participants to detect an effect size of Cohen’s d= 0.64

with 95% power (α = 0.05, one-tailed) in a Wilcoxon signed-

rank test (9). Shapiro-Wilk, skewness and kurtosis normality

tests were used to check the distribution of data. Continuous

data were expressed in terms of either mean and standard
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FIGURE 1

Study Protocol. Run-in: Patient was ventilated with the same mode as Phase 1, excluded from data analysis; Wash-out: Patient was ventilated

with the same mode as Phase 2, excluded from data analysis.

TABLE 1 SpO2 (Peripheral oxygen saturation) ranges.

Group Unacceptably low Suboptimally low Acceptably low Optimal Acceptably high Suboptimally high

Lower PEEP (<10 cmH2O) <85% ≥85 and <90% ≥90 and <93% ≥93 and ≤97%; >97%

if FiO2= 0.21

>97 for ≤ 60 s >97 for >60 s

HigherPEEP (≥10 cmH2O) <80% ≥80 and <85% ≥85 and <88% ≥88 and ≤92%; >92%

if FiO2= 0.21

>92 for ≤ 60 s >92 for >60 s

PEEP, positive end expiratory pressure; FiO2, Fraction of inspired oxygen.

deviation or median and interquartile range (IQR). We used

a paired samples t–test to compare normally distributed data,

and the Wilcoxon test when data were not normally distributed.

The Wilcoxon signed-rank test was used for the comparison

between the percentage of time spent in the target SpO2 range

with manual FiO2 control and the percentage with closed-

loop FiO2 control, and p-values of <0.05 were considered

to be statistically significant for all comparisons. Statistical

testing was carried out with the XLSTAT statistical package

(version 2016).

Results

Patients

During the period from October 2020 and April 2021,

investigators in the PICU of the Dr. Behcet Uz Children’s

Research and Training Hospital screened a total of 91 intubated

and mechanically ventilated patients for inclusion. Of those,

19 were excluded due to meeting at least one of the exclusion

criteria and informed consent was not given for a further

35 patients. Of the 37 included patients, the first seven were

enrolled for the pilot study and the remaining 30 were enrolled

in the present study (Figure 2). Their baseline characteristics,

which include their oxygenation index (OI) (10), and pediatric

index of mortality 3 (PIM3) scores (11), can be seen in

Table 2.

Ten patients had restrictive lung disease, while five had

obstructive and a further ten mixed lung disease. Five patients

had a normal lung condition. Patient’s respiratory mechanics

and ventilation variables during the two study phases are

shown in Table 3. Also, ABG parameters were presented in

Table 4. Seven of the 30 patients met the criteria for mild

pediatric acute respiratory distress syndrome (PARDS), four

for moderate and one for severe PARDS. The way the study

was designed meant there was no change to either MinVent

or PEEP.

Time spent in optimal SpO2 zones

Patients spent more time in the target SpO2 range when

the FiO2 controller was activated. During the study phase

with closed-loop FiO2 control, patients spent 96.1% (93.7–98.6

[IQR]) of their time in the optimal range compared to 78.4%

[51.3–94.8 (IQR)] of their time in the optimal range when FiO2

was controlled manually (p < 0.001).
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FIGURE 2

Consort 2010 flow diagram.

Time spent in acceptable, suboptimal,
and unacceptable SpO2 zones

Patients spent less time in the unacceptably low, sub-

optimally low, acceptably low, and sub-optimally high

zones while the FiO2 controller was activated with p-

values 0.032, 0.008, 0.004 and 0.001, respectively. There

was no significant difference at the time spent in the

acceptably high zone (p = 0.151). A comparison of the

percentage of time spent in optimal SpO2 ranges is shown

in Figures 3, 4.

Number of adjustments made to the FiO2

controller

Another secondary outcome was the number of

adjustments made to the FiO2 controller. In the phase
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of closed-loop FiO2 control, the median number of

adjustments was 52 [11.8–67 (IQR)], while the number

of FiO2 adjustments during the manual phase was 1

[0–2 (IQR)].

Subgroup analysis

For the normal PEEP group (<10 cm H2O), the median

SpO2 in the closed-loop phase was 94.7% [93.6–95.4 (IQR)],

whereas the same value for the manual phase was 95.6 % [93.2–

96.4 (IQR)] (p = 0.229). For the higher PEEP group (≥10 cm

H2O), the median SpO2 in the closed-loop phase was 89.4%

[87.6–90.9 (IQR)], whereas the same value for the manual phase

was 90 % [88.1–92.1 (IQR)] (p = 0.688). For the closed-loop

phase the median OI ratio was 3.1 [2.4–6 (IQR)], the median

FiO2 was 31.4% [25.1–44.1 (IQR)], and the median therapeutic

O2 usage was 0.3 L/min [0.1–0.7 (IQR)], whereas the same

values for the manual phase was 3.5 [2.6–6.6 (IQR)], 36.5%

[30–49.1 (IQR)] and 0.5 L/min [0.2–0.9 (IQR)], respectively.

Pediatric ARDS subgroup with closed-loop FiO2 control,

patients spent 95.9% [81.6–98.8 (IQR)] of their time in the

optimal range compared to 78% [49.5–94.8 (IQR)] of their time

in the optimal range when FiO2 was controlled manually. Also,

they spent less time in the unacceptably low, sub-optimally low,

acceptably low, and sub-optimally high zones while the FiO2

controller was activated, too. In the phase of closed-loop FiO2

control, the median number of adjustments for the PARDS

subgroup was 57 [47–69 (IQR)], while the number of FiO2

adjustments during the manual phase was 1 [0–2 (IQR)].

Discussion

In this randomized crossover clinical trial, we compared

the percentage of time spent in the target SpO2 range during

closed-loop FiO2 control vs. during manual control of FiO2

by the physician in pediatric intensive care patients ventilated

in ASV mode. This rule based proportional integral closed-

loop FiO2 controller is commercially available since 2011.The

groups with a target oxygenation range of 93% to 97% when

set PEEP was below 10 cm H2O and 88% to 92% when set

PEEP was equal or above 10 cmH2O, may represent the

vast majority of mechanically ventilated patients in pediatric

intensive care. The median time spent in the target SpO2 range

was 96.1% [93.7–98.6 (IQR)] during the closed-loop phase,

whereas the same value was 78.4% [51.3–94.8 (IQR)] in the

manual phase. This result was consistent with similar studies

performed previously in preterm infants (4, 12–16). We can

conclude that the automated FiO2 controller performs better

and is more effective than manual setting of FiO2 in terms of

maintaining patients in the optimal SpO2 range. The median

FiO2 in the closed-loop phase was 31.4%, whereas the same

TABLE 2 Baseline characteristics of the patients.

Variables

Gender ratio (%f/%m) 40/60

Age (months) 21 (11–48)

Height (cm) 93.5 (71.8–111.5)

IBW (kg) 13.5 (8.8–19.8)

OI 3.9 (3–7)

PIM3 11.9 (5.9–21.2)

Admission diagnosis (n, %)

Respiratory

A.pneumonia

A.bronchiolitis

LRTI

Chylothorax

Laryngotracheomalacia

9, 30

Neurologic

SE

Meningoencephalitis

7, 23

Renal/Metabolic

RTA

HUS

DKA

5, 17

Cardiovascular

VSD

PDA

AS

3, 10

HAI

CLABSI

2, 7

Other

Trauma

Gastrointestinal surgery

4, 13

Lung physiology (n, %)

Restrictive 10, 33

Mixed 10, 33

Obstructive 5, 17

Normal 5, 17

Data are expressed in median and interquartile range (25th−75th) or percentage.

IBW, Ideal body weight; ABW, Actual body weight; OI, Oxygenation index, PIM3,

Pediatric index of mortality 3, probability of death; A.pneumonia, Acute pneumonia;

A.bronchiolitis, Acute bronchiolitis; LRTI, Lower respiratory tract infection; VSD,

Ventricular septal defect; PDA, Patent ductus arteriosus; AS, Aortic stenosis; RTA, Renal

tubular acidosis; HUS, Hemolytic uremic syndrome; DKA, Diabetic Keto Acidosis; SE,

Status epilepticus; HAI, Healthcare-associated infections; CLABSI, Central line related

blood stream infection.

value during the manual phase was 36.5% (p < 0.001). The

median oxygenation index (OI) in the closed-loop phase was

3.1 [2.4–6 (IQR)], whereas the same value during the manual

phase was 3.5 [2.6–6.6 (IQR)].We also calculated the therapeutic

O2 usage, with the median O2 usage being 0.5 L/min [0.2–0.9

(IQR)] in the manual phase, decreasing to 0.3 L/min [0.1–0.7

(IQR)] in the automated phase. This decrease in FiO2 use and
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TABLE 3 Ventilation parameters during study phases.

Ventilation variable ASV + FiO2 controller (n = 30) ASV + Manual FiO2 (n = 30) p1

MinVent (l/min) 2.9 (2.4–3.5) 2.9 (2.4–3.4) 0.642

VT/IBW (ml/kg) 7.5 (6.4–8.1) 7.4 (6.3–8.4) 0.19

RR (b/min) 29.3 (23.1–38.8) 29.5 (24.3–35.9) 0.257

PetCO2 (mmHg) 42 (33.4–50.3) 42.8 (33.7–54.1) 0.17

PIP (cmH2O) 20.2 (14–26.6) 20 (15.4–25.5) 0.719

PEEP (cmH2O) 5 (5–6.5) 5 (5–6.5) 1

FiO2 (%) 31.4 (25.1–44.1) 36.5 (30–49) <0.001

FiO2 adjustment (n/2h) 52 (11.8–67) 1 (0–2) <0.001

Ti (s) 0.7 (0.6–0.8) 0.7 (0.6–0.8) 0.234

Te (s) 1.3 (0.9–1.7) 1.4 (0.9- 1.7) 0.176

SpO2 (%) 96.2 (95.8–96.8) 97 (95.2–97.6) 0.245

SpO2 DOT (%) 96.4 (93.6–98.7) 78.4 (51.4–98) <0.001

OI 3.1 (2.4–6) 3.5 (2.6–6.6) <0.001

S/F 300.7 (210.8–382.2) 254.1 (189.2–302.4) <0.001

TO2 (l/min) 0.3 (0.1–0.7) 0.5 (0.2–0.9) <0.001

Data are expressed in median and interquartile range (25–75th) and compared between ASV+closed loop FiO2 controller and ASV+ Manuel FiO2 titration groups by Wilcoxon

signed-rank test (p1).

ASV, Adaptive support ventilation; FiO2, fraction of inspired oxygen; VT, tidal volume expired; IBW, ideal body weight; RR, respiratory rate; PetCO2 ,

end-tidal carbondioxide; PIP, peak inspiratory pressure; Ti, inspiratory time; Te, expiratory time; SpO2 , peripheral oxygen saturation; SpO2DOT, peripheral

oxygen saturation duration in optimal target; OI, oxygenation index; S/F, peripheral oxygen saturation to fraction of inspired oxygen ratio; TO2, therapeutic

oxygen use.

TABLE 4 ABG parameters.

ABG variable ASV + Closed-loop FiO2 (n = 30) ASV + Manual FiO2 (n = 30) p1

pH 7.36 (7.24–7.44) 7.36 (7.23–7.43) 0.13

PaO2 (mmHg) 97.5 (89.5–114.5) 102 (91.8–117) 0.936

PaCO2 (mmHg) 38.5 (32.8–48.3) 38 (32.7–46.5) 0.873

Data are expressed in median and interquartile range (25–75th) and compared between Closed-loop FiO2 and manual FiO2 group by Wilcoxon signed-rank test (p1).

ABG, Arterial blood gas; ASV, Adaptive support ventilation; PaO2, partial oxygen content; PaCO2, partial carbon dioxide content.

OI may represent a more efficient use of therapeutic oxygen.

A similar decrease was also noted by Bourassa et al. with their

automated FiO2 titration device (17). Considering the surge

in demand for mechanical ventilation and the possible scarcity

of oxygen gas supply for these patients during pandemics,

closed-loop FiO2 control may contribute to a more sparing

use of this therapeutic agent (18–20). Friedman et al. aimed

to characterize mechanical ventilation patterns in children

receiving VV-ECMO and explore whether such practices are

correlated to clinical outcomes (21). They found that after

adjusting for sickness severity, FiO2 remained the only variable

that could be modified. They also found that a 10% rise in

FiO2 may be associated for 38% increase of the mortality of

aforementioned group (21). Themedian FiO2 percentage during

the automated phase was 31.4 [25.1–44.1 (IQR)], which was less

than the median FiO2 during the manual phase at 36.5 [30–49.1

(IQR)]. Based on Friedman’s study, it is possible that closed-loop

FiO2 control may lower mortality in this population. The

median number of manual adjustments required for patients

in the manual phase of the study period was 1 [0–2 (IQR)],

which means that the clinician may have to change the FiO2

setting at least 12 times per day. Bearing inmind the need during

a pandemic for isolation measures and for donning personal

protective equipment before entering an isolation room each

time an adjustment is made, there may have been too little

appreciation of this advantage with a closed-loop system prior

to the pandemic.

Due to the small number of patients enrolled in the

study, PARDS subgroups cannot be statistically analyzed.

Furthermore, the automated FiO2 controller can be used

only in ASV mode, which does not allow us to analyze

the performance of the oxygen controller in other modes

and patients below 7 kg of IBW. However, the ASV 1.1

algorithm was recently found to be safe in pediatric

patients in terms of using less driving pressure (22).

Another limitation was the unblinded bedside clinicians,
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who were aware that the closed-loop FiO2 controller

was active. More stringent manual titration policy in

the control group may have benefited the control group.

However, we tried to compare closed- loop FiO2 control

vs. standard care applied at the study site. Lastly, 2-h

comparisons may not represent the whole course of a real

clinical condition; however, due to the need for stable and

similar oxygen demand we had to change patients over

after 2 h.

FIGURE 3

Comparison of duration in optimal target (DOT) SpO2 between

study phases. {The median percentage of time spent in the

optimal zone was 96.4% [93.6–98.7 (IQR)] when the FiO2

controller was activated and the median percentage of time

spent in the optimal zone was 78.4% [51.4–98 (IQR)] when FiO2

was controlled manually (p < 0.001)}.

Conclusion

In this randomized crossover trial in pediatric

patients with different lung conditions, the percentage

of time spent in the target SpO2 range in ASV

1.1 with closed-loop FiO2 control was greater

compared to the time spent in the target SpO2

zone in ASV 1.1 with manual FiO2 control. The

use of closed-loop FiO2 control with ASV 1.1 may

therefore contribute to maintaining ventilation in

the target range of SpO2 in invasively ventilated

pediatric patients.
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