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Abstract: Glutamate is the major excitatory neurotransmitter in the central nervous system and
is intricately linked to learning and memory. Its activity depends on the expression of AMPA
and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate
transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant
synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical
trauma and contributes to the development of perioperative neurocognitive disorders, which are
characterized by impairment in multiple cognitive domains. In this review, we aim to examine
how glutamate handling and glutamatergic function are affected by neuroinflammation and their
contribution to cognitive impairment. We will first summarize the current data regarding glutamate
in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the
impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial
cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative
neuroinflammation and the implications they have for perioperative neurocognitive disorders.

Keywords: neuroinflammation; AMPA receptor; NMDA receptor; glutamate; microglia; astrocyte;
perioperative; anesthetic; neurotransmission; excitotoxicity

1. Introduction

It is becoming apparent that systemic circulating factors can pass through a dysfunc-
tional blood–brain barrier (BBB) and have a profound impact upon brain homeostasis,
aging, and neurodegeneration [1]. The systemic immune response to endogenous or ex-
ogenous triggers releases substances that can, in turn, initiate immune and inflammatory
reactions in the central nervous system (CNS). Neuroinflammation, oxidative stress, and ex-
citotoxicity are associated with several neurological disorders, such as Alzheimer’s disease
(AD) [2–4], Parkinson’s disease [5–7], and multiple sclerosis [8–10]. Neuroinflammation
can cause disruptions to synaptic transmission and glial and neuronal dysfunction that con-
tribute to cognitive impairment. Among these changes are alterations to the release, uptake,
and clearance of glutamate, as well as changes in the functions and subunit composition of
its receptors [11]. Glutamate, being the major excitatory neurotransmitter in the CNS, is
primarily released from presynaptic vesicles and acts on different types of postsynaptic
glutamate receptors [12,13].

Unlike the development of neurodegenerative diseases that occurs without a single
identifiable trigger or event, perioperative neurocognitive disorders (PNDs) are clearly
linked to surgery. This group of neurological disorders encompasses a range of conditions
from acute delirium to more sustained postoperative cognitive dysfunction. Tissue trauma
from surgery causes the release of substances that can overwhelm the immune system and
set up an inflammatory response in the brain. Patients are usually exposed to anesthetic
agents that also have intrinsic effects on neurotransmitters and neurotransmission. Accu-
mulating evidence indicates that the overactivation of the inflammatory response and the
change in glutamate metabolism contributes to the development of PNDs [14,15].
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The purpose of this review is to outline how glutamatergic neurotransmission is
affected by perioperative neuroinflammation. We will first summarize the current data
regarding glutamate receptor configuration and trafficking, and glutamate release and
handling in the CNS. We will then provide a summary of the effects of peripheral immune
cells and cytokines on glial cells and how they alter normal glutamate regulation. Finally,
we will outline the experimental evidence on the effects of commonly used anesthetic
agents and surgical trauma on glutamate in the CNS and some potential treatments.

2. Glutamate Receptors

Glutamate receptors can be broadly divided into ionotropic and metabotropic types.
Ionotropic receptors are coupled with ion channels to form receptor–channel complexes that
mediate fast signal transmission; these include the α-amino -3 hydroxy-5 methyl-4 isoxazole
propionic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs), and the
kainate receptors (KARs). Metabotropic glutamate receptors are coupled with G-proteins
on cell membranes, and include mGluR1 to mGluR8 types [16,17]. GluA1 to Glu4 AMPARs
are tetrameric assemblies of two dimers encoded by the four GRIA (GRIA1 to GRIA4) genes.
The four main tetrameric complexes are composed of GluA1/2 and GluA2/3 heteromers
and GluA1 homopolymers. GluA1/A2 heteromers are the dominant AMPARs in the CA1
hippocampus, with around 80% of synaptic and more than 95% of somatic extra-synaptic
receptors of this type, with the remainder being the GluA2/GluA3 heteromers. GluA4
mainly appears during embryonic development [18,19]. Calcium-permeable AMPARs (mainly
consisting of a GluA2-lacking AMPAR) may emerge under some pathological conditions,
such as status epilepticus, glaucoma, and neuroinflammation. This GluA2-lacking AMPAR
has a linear current/voltage curve and is permeable to Ca2+ [20–23].

The NMDAR is a heterotetramer composed of NR1 to NR3 subunits, with NR2 having
four subtypes (NR2A, NR2B, NR2C, and NR2D) and NR3 having two subtypes. Under
normal conditions, NMDARs are blocked by magnesium ions; they are activated after
postsynaptic depolarization and the removal of these ions [24]. However, the overactivation
of NMDARs can lead to neuronal excitotoxicity, cell apoptosis, and cell death through the
activation of calcium ion-mediated intracellular pathways [25].

Metabotropic glutamate receptors exist both in the CNS and peripherally and are
mainly expressed in neurons and glial cells in proximity to the synaptic cleft [26,27].
Metabotropic glutamate receptors (mGlus) are a family of G-protein-coupled receptors
activated by the glutamate neurotransmitter. The family has eight molecular clones termed
metabotropic glutamate receptor 1–8 (mGlu1–8) [28]. mGluRs can be divided into three
groups (Group I–III mGlus). Group I includes mGlu1 and mGlu5, Group II includes
mGlu2–3, and Group III includes mGlu4 and mGlu6–8 [29]. mGlus play crucial roles in
the modulation of neuronal excitability, synaptic plasticity, and the release of neurotrans-
mitters [30]. Most metabotropic glutamate receptors are located presynaptically, except for
the Group I (mGluR1 and mGluR5) receptors [31]. These Group I receptors can increase
the activity of NMDARs and induce excitotoxicity [32]. In addition, mGluR5 can mediate
experience-dependent NMDA subunit switching [33].

3. Glutamate Release and Handling

Glutamate can be released by vesicular or non-vesicular release mechanisms. Un-
der physiological conditions, synaptic release is primarily via the vesicular mode. When
an action potential reaches the terminal, an influx of Ca2+ triggers the exocytosis of glu-
tamate vesicles. Ca2+ can then bind to synaptotagmin, causing it to bind to a complex
composed of SNARE and Sec1/Munc18-like (SM) proteins that mediate membrane fusion
during exocytosis, thus promoting the release of neurotransmitters [34]. The non-vesicular
mechanism occurs under pathological conditions and involves anion channel release, the
reverse efflux of glutamate, and xC-system release [35]. The anion channels are mainly
located on astrocytes and can release glutamate if the astrocytes become swollen, as seen in
ischemia-reperfusion injury [36]. The efflux of glutamate is mediated through excitatory
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amino transporters (EAATs) located on endothelial cells and glial cells. EAATs help with
the uptake of glutamate; the BBB can function in efflux mode to selectively move glutamate
from the brain to the blood. The glial cells lining the BBB take up the glutamate and release
it into the proximity of endothelial cells, promoting efflux. [37]. Glutamate transport in
the outward direction is termed reverse transport. The reverse transport of glutamate
occurs both in neurons and astrocytes. Glutamate can be released extracellularly by reverse
transport when the neurons’ extracellular Na+/intracellular K+ levels decrease or when
the intracellular Na+/extracellular K+ levels increase. This process is mediated by the
electrochemical gradient of co- and counter-transported ions produced by the glutamate
transporter EAAC1 (EAAT3) [38,39]. In astrocytes, reverse transport happens in some
extreme situations; for example, after ATP depletion, the membrane gradients collapse,
glutamate uptake ceases, and the efflux of glutamate occurs via reverse transport [40]. In
addition, astrocytes can release glutamate through other modalities such as exocytosis,
hemichannels, anion transporters, and P2X receptors [41]. The system xC- is mainly located
in glial cells and is responsible for exchanging glutamate with cystine, a substrate used
for the synthesis of the antioxidant molecule glutathione (GSH). In many brain regions,
the xC-system acts as the main source of intracellular cystine by exporting glutamate
extracellularly. Extracellular glutamate can inhibit the xC-system and contribute to the
depletion of GSH, which can lead to oxidative glutamate toxicity. Inflammatory cytokines,
including TNF-a and IL-1β, can upregulate the xC-system. Increased xC expression can
have neuroprotective effects or excitotoxic side effects in different animal models [42].

Glutamate would accumulate in the brain if not for the transporter proteins that
remove it from the extracellular fluid to maintain low extracellular concentrations. Extra-
cellular glutamate is controlled by a family of plasma membrane enzymes called EAATs.
EAAT 1–5 are encoded by the SLC1A3, SLC1A2, SLC1A1, SLC1A6, and SLC1A7 genes,
respectively [43]. EAAT1/2 are considered glial transporters and are widely found in the
cerebellum and forebrain, while EAAT3/4 are considered as neuronal transporters and
are widely distributed in the forebrain, spinal cord, and cerebellum [44–46]. Glutamate
transporters are important for the termination of excitatory signals, glutamate recycling,
and the prevention of excitotoxic injury [47]. GLAT1 (EAAT2) is expressed at high levels in
brain astrocytes and at lower levels in neurons. Three variants of GLT1 exist (GLT1a, GLT1b,
and GLT1c); GLT-1a is the only glutamate transporter subtype identified in axon terminals
and contributes significantly to glutamate uptake into excitatory terminals [48,49].

4. Regulation of Glutamatergic Neurotransmission by Glial Cells
4.1. Microglia

Microglia are innate immune cells in the brain parenchyma that have similar actions
to circulating macrophages [50]. In addition to their role in mediating immune responses
in the CNS, microglia also provide nutrition to neurons and can respond dynamically to
changes in neuronal activity [51]. Microglia can prune developing synapses and regulate
synaptic plasticity and function. The dysfunction of microglia–synapse interactions can
lead to synapse loss and neurodegenerative disease [52]. While in their surveillance state,
microglia constantly scan the local microenvironment, but once activated, they can exhibit
different morphologies and their functions can vary from being pro-inflammatory to anti-
inflammatory [53]. They can become activated in the perioperative period through a
series of peripherally initiated processes. Traumatized tissues in the body can release
damage-related molecular patterns (DAMPs), such as high molecular group box I protein
(HMGB1). When these DAMPs are combined with Toll-like receptors (TLRs) and receptors
for advanced glycosylation end products (RAGEs) on the surface of bone marrow-derived
monocytes (BMDMs), the nuclear translocation of NF-κB occurs, resulting in the increased
expression of cytokines [54–56]. The secreted pro-inflammatory cytokines can act on BMDMs
through a positive feedback loop to further promote the translocation of NF-κB and the
release of cytokines [57]. Pro-inflammatory cytokines can upregulate the cyclooxygenase 2
isozyme (COX-2) [58].
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Under normal conditions, the BBB can prevent the entry of harmful substances into
the brain. However, the presence of peripheral pro-inflammatory cytokines damages the
BBB via the action of COX2 and matrix metalloproteins (MMPs) in the endothelial cells.
This allows pro-inflammatory cytokines together with BMDMs to migrate into the CNS,
which in turn leads to the activation of microglia [59]. Inflammatory cytokines can promote
the release of glutamate [60,61], and the glutamate that is released from activated microglia
in turn stimulates glutamate receptors on the microglia to further release cytokines [62].
Thus, activated microglia can display a positive feedback loop to amplify the further release
of cytokines and discharge a large amount of glutamate into the extra-synaptic space [63]
(Figure 1). The degradation of extracellular ATP alleviates glutamate-induced inhibition of
microglial proliferation [64]. Metabotropic glutamate receptors (mGluR2/5) are expressed
on microglia, and when the mGluR2 receptor is activated, they can enhance the release
of inflammatory cytokines, including TNFα, glutamate, and nitric oxide (NO), leading
to neurotoxicity [65,66]. On the other hand, the activation of mGluR5 seems to have an
opposite effect on neuroprotection [67].

Figure 1. Systemic immune responses to trauma. Injured cells release DAMPs, including HMGB1, in
response to surgical trauma after being combined with the TLR and RAGE, which can activate nuclear
factor-kappa B (NF-κB) signaling pathways in BMDMs, promoting the release of pro-inflammatory
cytokines, including IL-6 and TNFα, IL-1. The increased expression of COX-2 and MMPs disrupts the
integrity of the blood–brain barrier. Pro-inflammatory cytokines activate microglia to further amplify
the release of pro-inflammatory cytokines in the brain. Glia activated by the pro-inflammatory
cytokines can further stimulate the release of glutamate. The postsynaptic intracellular Ca2+ concen-
tration increases by the overactivation of NMDARs. The ability of astrocytes to clear glutamate is
decreased. Figure created with Biorender.com (accessed on 2 March 2022).

4.2. Astrocytes

Astrocytes can provide nutritional support, maintain synaptic homeostasis, regu-
late synaptic pruning, and participate in neural signal transduction. They play essential
roles in oxidative stress and the regulation of glutamate metabolism and cycling [68–70].
Microglia can initiate an immune response in the CNS and subsequently activate astro-
cytes [71]. The increased expression of glial fibrillary acidic protein (GFAP) is a marker
of astrocyte activation. Glia cells share some common transcriptional pathways after neu-
roinflammation occurs, such as the NF-κB pathway. The nuclear translocation of NF-κB
is boosted by TNF-α, interleukin (IL)-1b, and IL-17. In addition, sphingolipids, such as
sphingosine 1-phosphate (S1P) and lactosylceramide (LacCer), can also trigger NF-κB
translocation [72]. The sodium-dependent glutamate transporters EAAT2 are present on
astrocytes [73]. Dysfunctional glutamate transporters and increased extracellular gluta-
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mate levels can cause neuronal injury. EAAT2 can reduce excess glutamate levels in the
synaptic cleft to reduce excitotoxicity [74]. More than 90% of glutamate is cleared by the
type 2 EAAT (Figure 1). EAAT2 (termed glutamate transporter I (GLT-1) in rodents) is
the major amino transporter of glutamate in the CNS. Glutamate can be converted into
glutamine, which is then released and taken up by neurons and transported to synaptic
vesicles through glutamate transporters (VGLUT1-3) to complete the cycle of glutamine
metabolism [73,75]. Astrocytes express many immune-derived receptors, including those
for cytokines, chemokines, and complement proteins, and activation by these factors can
recruit macrophages to enter the CNS [76,77]. β-catenin, a transcriptional co-activator in
the Wnt/β-catenin pathways expressed in astrocytes, can positively regulate EAAT2 at the
transcriptional level in progenitor-derived astrocytes by partnering with T cell factor 1 and
3 [78]. TNFα can increase the release of glutamate and decrease EAAT2 protein expression
in astrocytes [79,80].

4.3. Oligodendrocytes

Oligodendrocytes and astrocytes can mutually affect each other during neuroinflam-
mation. Oligodendrocytes secrete pro-inflammatory cytokines to induce NF-κB signaling
and pro-inflammatory functions in astrocytes [72,81]. The receptors on oligodendrocytes
respond to the inflammatory stimuli secreted by the astrocytes. Activated astrocytes pro-
mote the myelination and apoptosis of oligodendrocytes via TNFα, Fas ligand (FasL), and
glutamate secretion [82–84]. Oligodendrocytes have effects on excitatory neurotransmis-
sion. Oligodendrocytes are highly vulnerable to AMPA and kainate receptor-mediated
toxicity. AMPA and kainate receptor-mediated excitotoxicity contributes to demyelina-
tion and axonal injury in mature oligodendrocytes. Glutamate regulation has a potential
neuroprotective strategy, as evidenced by the deletion of GluA4 from mature oligodendro-
cytes in experimental autoimmune encephalomyelitis (EAE) [85,86]. The overactivation
of NMDARs can impair myelin synthesis. Activated microglia release glutamate through
the system xc- cystine-glutamate antiporter and block glutamate transporters in oligoden-
drocytes [87]. In addition, pro-inflammatory cytokines can also impair the clearance of
glutamate by the EAATs on oligodendrocytes [88].

5. Regulation of Glutamate Neurotransmission by Peripheral Immune Cells
5.1. Macrophages

Macrophages can be recruited into the CNS by CCL2/CCR2 signals [89]. Many of
these macrophages reside in the perivascular area and express glutamate transporters
and both metabotropic and ionotropic receptors. Macrophages can secrete glutamate,
thus increasing the excitotoxicity of the inflammatory environment [90]. In patients with
neurodegenerative diseases such as AD, β-Amyloid protein can enhance the macrophage’s
ability to produce more oxygen free radicals and glutamate [91]. In addition, it can induce
NMDAR-mediated neurotoxicity by secreting glutamate [90]. The activated macrophage
can contribute to spine loss in multiple sclerosis (MS) and EAE by secreting glutamate,
inflammatory cytokines, free radicals, and MMPs [92].

5.2. T cells

T cells can balance glutamatergic and GABAergic neurotransmission in the CNS to
decrease excitotoxicity and can attenuate astrocyte activity [93]. They express AMPA
GluR3 subunits and NMDARs and respond to glutamate in a dose-dependent manner [94].
Low concentrations of glutamate can promote T cell adhesion and migration, whereas
higher concentrations can act on AMPARs and NMDARs to stimulate proliferation and
metabotropic glutamate (mGluRs) receptors to reduce cell apoptosis [95].
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6. The Effects of Pro-Inflammatory Cytokines on Glutamatergic Function
6.1. Interleukin IL-1β

IL-1β is a pro-inflammatory cytokine that can act on NMDARs to increase NMDA
receptor-induced intracellular calcium increase, an action that can be abolished by IL-1
antagonists [96]. This cytokine can also inhibit NMDAR-mediated synaptic transmission
by depressing the isolated NMDA-EPSP amplitude in the dentate gyrus [97]. IL-1β can
also inhibit the uptake of glutamate by astrocytes [98].

6.2. IFN-γ

IFN-γ is produced by T lymphocytes [93] and can change the phenotype of astro-
cytes [11] to stimulate glutamate clearance [98]. It can also stimulate macrophages to
secrete glutamate compounds, such as QUIN, and alter glutamatergic neurotransmis-
sion [99]. IFN-γ has been shown to enhance glutamate neurotoxicity through AMPARs; the
IFN-γ receptor forms a CP-AMPA receptor complex and phosphorylates GluRl at serine
845 via the JAKT2/STAT1 pathway [100].

6.3. Interleukin 6 (IL-6)

IL-6 is a crucial component of the inflammatory response and has important roles in
the immune and hematopoietic systems [101]. Experimentally, it has been shown to protect
cultured hippocampal neurons from glutamate-induced cell death [102]. However, chronic
IL-6 exposure disrupts neuronal function and may contribute to the pathophysiology
associated with many neurological diseases [103]. IL-6 inhibits glutamate neurotrans-
mitter release in the cerebral cortex accompanied by the stimulation of STAT3 tyrosine
phosphorylation [104].

6.4. TNFα

Pro-inflammatory cytokines can regulate synaptic strength, and AMPARs play an
important role in synaptic plasticity in this regard. TNFα can change the AMPAR subunits
to have a significant effect on neurotransmission. [105]. Under physiological conditions,
GluR2-containing AMPARs are not permeable to Ca2+ and are resistant to the phospho-
rylation of the GluR1 Ser831 site. In contrast, GluR2-lacking AMPARs participate in
Ca2+-mediated excitotoxicity [106]. When TNFα is applied to hippocampal cell cultures,
it can significantly increase the expression of GluR1 and the number of GluR2-lacking
AMPARs (Figure 2); this effect can be reduced by sequestering TNFα [107]. TNFα can sig-
nificantly increase presynaptic glutamate release in cultured neurons [105]. When applied
to brain slices from neonatal mice, TNFα can cause dose-dependent neuronal excitotoxicity
through increased calpains activity in the Purkinje neurons [108]. TNFα can also inhibit
the activity of glutamate transporters and thereby increase neurotoxicity [109].
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Figure 2. GluA2-lacking CP-AMPARs in neuroinflammation. GluA2-lacking receptors (CP-AMPARs)
are relatively rare in most excitatory neurons in baseline conditions. However, GluA1/2 heteromers
are replaced with GluA1 homomers after induction by pro-inflammatory cytokines, such as TNFα.
The GluA2 heteromers are Ca2+ impermeable, whereas the GluA1 homomers (i.e., GluA2-lacking
AMPARs) permit the passage of both Na+ and Ca2+. Figure created with Biorender.com (accessed on
2 March 2022).

7. Anesthesia, Surgical Trauma, Glutamatergic Transmission, and
Cognitive Dysfunction

Perioperative neurocognitive disorders are common in the elderly after surgery, es-
pecially in those with pre-existing diseases or frailty [110,111]. It can present as delirium
with inattention and changes in the level of consciousness or a more delayed and sub-
tle neurocognitive impairment, previously termed postoperative cognitive dysfunction
(POCD) [58]. POCD can manifest as memory impairment, a decline in executive function,
changes in mood and personality, or a combination of such [58]. The incidence of POCD
in patients older than 60 years is 25.8% at 7 days postoperatively. Three months later, this
value is still around 10% [112]. Although the pathogenesis of POCD is not yet clear, it may
be related to the central cholinergic system, the excitatory amino acid system, and other
neurotransmitters [113]. Animal and human studies suggest that neuroinflammation from
surgery and anesthesia is important in its development [114,115].

Neuroinflammation, glutamatergic dysfunction, and cognitive dysfunction are intri-
cately linked. Surgical trauma can incite a series of peripheral immune and inflammatory
responses that result in profound peripheral inflammation [116,117], which can trigger
neuroinflammation [118]. Among other factors, neuroinflammation contributes to the
development of perioperative neurocognitive disorders, manifesting as acute delirium or
more subtle delayed postoperative neurocognitive dysfunction. The latter has similar fea-
tures to neurodegenerative diseases such as AD and may share similar pathophysiological
mechanisms. Indeed, those with mild cognitive impairment or of advanced age are at
particular risk of developing PNDs, and those who develop PNDs may later manifest more
overt elements similar to AD.

Glutamate plays a vital role in long-term potentiation (LTP), a process that is consid-
ered to underpin learning and memory. Peripheral inflammation increases the expression
of the NMDAR subunit 2B (NR2B) and NR2B receptor-mediated synaptic currents in the
anterior cingulate cortex and contributes to pain sensitization [119]. Peripheral inflamma-
tion can affect the function of glutamate receptors and transporters and impair cognition.
AMPARs are involved in excitotoxicity through the activation of NMDARs. The excessive
stimulation of NMDARs or AMPARs can induce neuronal apoptosis [120,121].

Biorender.com
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In addition to the presence of peripheral and neuroinflammation, the perioperative
picture is further complicated as most forms of surgery are usually performed under anes-
thesia. Volatile anesthetics have a significant impact on the levels of pro-inflammatory
cytokines that, in turn, can affect glutamatergic transmission. Different anesthesia agents,
anesthesia exposure times, ages, and surgical models have been evaluated and each com-
bination can produce slightly different effects. The two most commonly clinically used
volatile anesthetic agents, and hence evaluated in the most detail experimentally, are
isoflurane and sevoflurane. The former has been in clinical use for a longer period but is
increasingly being replaced by sevoflurane.

7.1. Isoflurane

Volatile agents have intrinsic effects on neurotransmission, especially on the glu-
tamatergic system, either directly or via their effects on inflammatory cytokines. Brief
exposure to isoflurane can significantly increase pro-inflammatory TNF-α, IL-6, and IL-1β
levels [122]. Isoflurane can abate excitatory transmission by reducing the release and
increasing the uptake of glutamate into the presynaptic terminal [123] and can reduce
glutamate release in the hippocampus after ischemia [124].

Excitatory amino acid transporters have a significant role in glutamate reuptake at the
synapses and, consequently, in cognition. Isoflurane can enhance the expression of EAAT3
on the plasma membrane via a protein kinase C (PKC)-dependent pathway [125,126]
and imparts neuroprotective effects by preserving the function of EAAT3 for L-glutamate
and L-cysteine uptake [127]. EAAT3 knockout mice have an obvious baseline cognitive
impairment, and isoflurane anesthetic does not additionally affect the cognition of the
mice [128]. Cao et al. also demonstrated that isoflurane inhibits context-related fear
conditioning in EAAT3 knockout mice. In addition, increased GluR1 can be trafficked to
the plasma membrane via EAAT3 [126]. The expression of EAAT1 can also be influenced
by isoflurane; EAAT1 was shown to be increased in the neonatal rats after exposure to
isoflurane anesthetic [129]. Isoflurane inhalation does not affect the activity of wild-type
EAAT2 [130].

The effect of isoflurane on the brain is in part affected by the age at which the exposure
takes place. During the development period of the brain, anesthetic exposure can interfere
with the normal patterns of synaptogenesis and thus may impair the assembly of neural
circuits, which in turn could affect cognition [131]. Calpain-2 is a neutral cysteine protease
that is highly expressed in the CNS and can be activated by NMDARs [132]. In one study
using neonatal mice, isoflurane exposure significantly increased the expression of the NR2B
subunit compared with the NR2A subunit and the calpain-2 protease [133]. However,
Wang et al. found that the expression of NR2A increased while NR2B decreased in the
hippocampus of neonatal rats after the isoflurane exposure [129].

The effect of isoflurane exposure in adult rodents can also be quite variable. In 4 to
5-month-old mice, two hours of isoflurane inhalation can significantly improve cognitive
performance and the expression of NR1 and NR2B subunits on the following day; however,
this upregulation was only maintained for a relatively short period [134]. Lin et al. and Cao
et al. both demonstrated that isoflurane could impair cognitive performance, as assessed
by a Barnes maze and fear conditioning tests, in adult rodents after exposure [135,136]. The
effect of isoflurane on cognition may be dependent on the dose and the duration of exposure.
A shorter duration or lower concentrations of isoflurane induce some improvement in
cognitive performance associated with increased NR2B expression. In contrast, a longer
duration of exposure decreases NR2B expression and impaired cognition in adult mice [137].
In aged mice, isoflurane anesthesia can also impair cognitive function [135]. Isoflurane
has also been shown to diminish learning and memory in older rats, accompanied by
increased glutamate levels in the cerebrospinal fluid as well as GLAST expression in the
hippocampus [138].
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7.2. Sevoflurane

In a similar fashion to isoflurane, sevoflurane can also significantly increase the levels
of cytokines that, in turn, can affect glutamatergic transmission. Sevoflurane can increase IL-
6, IL-8, and TNFα by decreasing the activation of the PI3K/Akt/mTOR pathway in young
rats [139]. Exposure to this drug can also directly reduce calcium-dependent glutamate
release in the human brain [140]. In neonatal rats, sevoflurane exposure was shown to
change LTP and long-term depression (LTD) by increasing the expression of GluR2-lacking
AMPA receptors [141]. Exposure in utero increases the expression of NR2B, decreases
the number of pyramidal neurons in the entorhinal cortex (ECT), and leads to abnormal
development in the newborn [142]. Exposure during gestation also increases the expression
of NR1 and NR2A in neonatal mice; however, in contrast, NR2B is decreased in the
hippocampus [143]. Neonatal mice exposed to sevoflurane can have reduced activity of
glutamatergic neurons in the amygdala. This leads to a learning deficit in fear conditioning
after mature adulthood [144]. Sevoflurane can also induce glial dysfunction in neonatal rats
and inhibit the glutamate-aspartate transporter (GLAST) through the Janus kinase/signal
transducer and activator of transcription (JAK/STAT) pathway [145].

There appears to be age differences in the glutamatergic and cognitive responses
to sevoflurane. A 2 h exposure to sevoflurane at a minimum alveolar concentration can
improve cognitive performance and increase the expression of NMDA receptors 1 and 2B
in 4–5-month-old mice [146]. On the other hand, two hours of sevoflurane exposure in
24-month-old rats was shown to result in impaired learning and memory [147]. Peng et al.
also found that sevoflurane inhalation for 4 h caused cognitive impairment in 24-month-old
but not in 3-month-old Sprague Dawley (SD) rats by inhibiting the PPAR-γ pathway. This
impairment can be reversed by traditional Chinese medicine cistanches [147]. Sevoflurane
exposure can also inhibit mGluRs and impair cognition. The mGluR-LTD in aged mice can
increase the expression of small conductance calcium-activated potassium type 2 channels.
The memory deficit can be reversed by a potassium channel blocker [148].

7.3. Surgical Trauma

The impact of general anesthesia on the immune system of healthy patients appears
to be comparatively less substantial than that from surgical trauma, especially after major
surgery [149,150]. Systemic inflammation, including that following trauma, is an evolu-
tionary response to defend the body against infection or trauma [151], and the increased
circulating cytokines have an effect on the glial cells and the glutamatergic system. The
expression of TNF-α, IL-1β, IL-6, and IFN-γ fluctuates during the perioperative pe-
riod [152]; for example, the expression of IL-6 is increased after surgery under isoflurane
anesthesia [153].

The glutamatergic system also undergoes substantial changes in response to surgery.
Both plasma and CSF glutamate levels are significantly increased in neurosurgical patients.
Under physiological conditions, the free passage of plasma glutamate is inhibited by the
intact blood–brain barrier; however, under pathological conditions, plasma glutamate
levels have been shown to passively follow their gradient, traversing the damaged BBB to
the cerebral extracellular space [154]. In 24 to 25-month-old rats, the increased expression
of NR2 seen after abdominal surgery under isoflurane anesthesia correlated with cognitive
impairment that could be attenuated by local or systemic analgesia. These results suggest
that postoperative pain may have a role in cognitive impairment. However, this study did
not distinguish the NR2 receptors’ subtype, which is a limitation [155].

As it appears that NR2 subunits participate in both pain perception and cognition,
Zhang et al. showed that pain can significantly increase the levels of the pro-inflammatory
cytokine TNF-α, increase the brain levels of cyclin-dependent kinase 5 (CDK5), and de-
crease the expression of NR2B in the medial prefrontal cortex without any changes in the
hippocampus. In this study using a surgical incision on the paw of 9-month-old mice un-
der isoflurane anesthesia, there was also hippocampus-independent learning impairment;
however, all these changes in NR2B were attenuated by a CDK5 inhibitor or a local anes-
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thetic agent. These results indicated that the surgical incision-induced nociception reduced
the expression of NR2B by increasing the expression of CDK5 [156]. Riazi et al. used a
model of colonic inflammation in SD rats—induced by the intracolonic injection of 2,4,6-
trunitrobenzenesulfonic acid under isoflurane anesthesia—to show that the amplitudes of
miniature excitatory postsynaptic currents increased without changing the frequencies and
paired-pulse ratios, indicating changes in the postsynaptic effect. Furthermore, enhanced
AMPA and NMDA mediated currents in the evoked excitatory postsynaptic currents (eEP-
SCs) in the Schaffer collateral pathway and the rectification index indicated an increased
contribution from GluR2-lacking AMPA receptors [157].

Surgery can also alter the composition of AMPAR subunits, which is accompanied
by impaired cognition. AMPAR GluR2 subunits were shown to be significantly decreased
in the hippocampus after partial hepatic lobectomy under sevoflurane anesthesia in D-
galactose-induced aging mice [158]. In addition, the internalization of GluR2 and cognitive
impairment can be found after exposure to a high concentration of sevoflurane or propofol
in a tibial fracture animal model; the mechanism underlying this effect may be related to a
decrease in the activity of the PI3K-GluA2 pathway [159]. However, there exist different
results obtained using various techniques. Electrophysiological recording in the CA1
hippocampus revealed a decrease in the AMPA/NMDA receptor ratio without a change in
the rectification index in a tibial fracture model under sevoflurane anesthesia, indicating no
internalization of the GluR2. This impairment could be reversed by the acetylcholinesterase
inhibitor galantamine [160].

8. Potential Therapeutics

The perioperative period associated with major surgery can have profound impacts
on the function of glutamate in the CNS. The relationship is particularly complex due to
the multiple approaches by which surgery-induced inflammation can affect glutamatergic
function, beginning with the assault on the blood–brain barrier. Once an array of peripheral
cytokines and immune cells can gain entry to the CNS through the dysfunctional BBB, the
ensuing neuroinflammatory response can affect glutamate release and reuptake, glutamate
receptor phenotypes, and EAAT functions. Aberrant synaptic function and excitotoxicity
in vulnerable regions contribute to cognitive dysfunction. The net effect may be further
complicated by the intrinsic effects of volatile anesthetic agents on glutamatergic function
that may be age- or duration-dependent.

It is perhaps this complicated interplay between such diverse factors peculiar to the
perioperative period that has limited the translational potential of therapies targeting the
glutamatergic system. However, there are a few promising experimental examples of
agents improving cognitive function by suppressing inflammation that eventually alleviate
the adverse changes related to glutamate handling and receptors. Dexmedetomidine is a
sedative hypnotic drug that can decrease the level of pro-inflammatory cytokines and de-
crease the expression of NR2A and NR2B to protect against neuronal injury after exposure
to sevoflurane [129,139]. Several herbal compounds have also shown experimental benefits.
Senegenin is a component of the root Polygala tenuifolia that can improve cognition and
the hippocampal expression of NR2B in sevoflurane-induced cognitive dysfunction [161].
Fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator, can improve learning
and memory and increase the expression of GluR2 after a partial hepatic lobectomy [158]. It
can reduce T cell- and macrophage/microglia-mediated inflammation and attenuate astro-
cyte activation [162]. Vitexin is a bioactive compound extracted from hawthorn leaves that
has a neuroprotective effect through the TRPV1 and NR2B pathways [163]. Interestingly,
the β-lactam antibiotic ceftriaxone used to treat CNS infections can improve cognition by
increasing GLT1 expression, thereby reducing neuroinflammation and apoptosis [164].

9. Conclusions

In summary, alterations to glutamate handling and glutamatergic transmission by
neuroinflammation play a major role in the manifestation of perioperative neurocognitive
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disorders. We must build a more comprehensive picture of the differential effects of
how each perioperative variable affects this system in order to develop more strategic
therapeutic options.
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