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Despite the rapid development of computational methods, including density functional theory (DFT),

predicting the performance of a catalytic material merely based on its atomic arrangements remains

challenging. Although quantum mechanics-based methods can model ‘real’ materials with dopants, grain

boundaries, and interfaces with acceptable accuracy, the high demand for computational resources no

longer meets the needs of modern scientific research. On the other hand, Machine Learning (ML)

method can accelerate the screening of alloy-based catalytic materials. In this study, an ML model was

developed to predict the CO2 and CO adsorption affinity on single-atom doped binary alloys based on

the thermochemical properties of component metals. By using a greedy algorithm, the best combination

of features was determined, and the ML model was trained and verified based on a data set containing

78 alloys on which the adsorption energy values of CO2 and CO were calculated from DFT. Comparison

between predicted and DFT calculated adsorption energy values suggests that the extreme gradient

boosting (XGBoost) algorithm has excellent generalization performance, and the R-squared (R2) for CO2

and CO adsorption energy prediction are 0.96 and 0.91, respectively. The errors of predicted adsorption

energy are 0.138 eV and 0.075 eV for CO2 and CO, respectively. This model can be expected to advance

our understanding of structure–property relationships at the fundamental level and be used in large-

scale screening of alloy-based catalysts.
1 introduction

CO2 Reduction Reaction (CO2RR) refers to the rapid conversion
of CO2 into various high-value-added chemical products, such
as methane, methanol, formic acid, and syngas, using suitable
catalysts and specic technical means.1 It holds tremendous
potential in addressing the aggravating greenhouse effect.2–4 In
addition, the extraction of fossil fuels has endangered the
ecological balance in some areas. Also, coal mining has claimed
the lives of many miners.5 For these reasons, in recent years,
various countries have been paying increasing attention to
renewable energy, including solar, wind, geothermal, and
biomass, to diversify the sources of energy and reduce depen-
dence on a single energy carrier. Metal materials, especially
transition metals, are the most widely used catalysts for CO2RR
due to their excellent electrical conductivity and catalytic
activity.6 However, numerous studies have indicated that single-
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metal catalysts exhibit drawbacks such as high reduction over-
potential, low selectivity toward desired products, susceptibility
to deactivation, and high cost.7 Therefore, seeking catalytic
materials for efficient catalytic reduction of CO2 is meaningful.
Binary alloys, for instance, which span a vast set of materials
and have shown attractive promise for catalyzing many reac-
tions and the potential to substitute the noble metal catalysts8–10

and are frequently used as conventional catalysts, which
possess enhanced catalytic performance and improved cycling
stability in CO2RR.11

Compared with the traditional experimental “trial and error
method,” theoretical methods such as density functional theory
(DFT) calculations have apparent advantages in their ability to
rapidly screen materials. Nevertheless, predictions of adsorp-
tion energy on bimetallic surfaces are challenging due to the
exponentially large possibility of alloy compositions, which
makes the computational screening too time- and resource-
consuming even for methods like DFT.12–15 To this end, devel-
oping adsorption predictive models, for example, based on
machine learning (ML), is necessary to rapidly survey appro-
priate adsorption energies for reactions of interest.16 Although
there are theoretical models for predicting the chemisorption
energy of adsorbates on pure metal surfaces, for example, the d-
band center model estimates the adsorbate-metal interactions
based on the coupling of d-states of metal with adsorbates,17,18
RSC Adv., 2024, 14, 12235–12246 | 12235
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generalizing these simplied thermochemical models to
bimetallic materials is unpractical, which will be shown in this
study.

In recent years, ML methods have emerged as a powerful
approach for screening promising catalyst materials.19,20 Among
all the popular ML methods, decision trees, multilayer percep-
tron, extreme gradient boosting, and support vector regression
have emerged as the most well-known supervised learning
approach for data mining. They can use existing data to nd
regularity and map the correlation between the varieties of
properties with desired prediction targets.21 Moreover, they can
handle many irrelevant inputs because they incorporate
internal feature selection as an integral part of the algorithm.
Furthermore, ensemble learning can signicantly improve the
prediction accuracy of decision trees by aggregating multiple
weak learners.22,23

A series of studies have been carried out utilizing ML to
predict adsorption energy on the surface of materials.24–27 Shi
et al. investigated ML modeling of CO adsorption energy on
surface-layered alloys doped with 23 metals including Cr, Mn,
and Fe, and screened out CO2RR catalysts based on suitable CO
adsorption energy range (−1.68 to −1.64 eV), in their layered
alloy model, ve layers (2 × 2) of surface cells are used to
simulate the surface of the alloy, each consisting of only one
metal, and the bottom three layers are always composed of the
same elements, changing only the doping of the rst layer,
which consists of 20% or 40% of the doping atoms.28 Liu
investigated the adsorption energies on binary alloy surfaces of
PdnAu16−n alloyed surface with different Pd content (n = 1–16)
by ML prediction and concluded that the isolated Pd top sites
surrounded by Au atoms are stable adsorption sites.29 Nayak
et al. predicted adsorption energies of H, O, N, OH, NO, and CO
on fcc(111) surface top sites of 25 different transition metals
including Ir, Pt, and Au with an average root-mean-square error
(RMSE) of about 0.4 eV by random forest regression.30 Predic-
tion of adsorption energies on metal and alloy surfaces was also
reported using the XGBoost regression,31 articial neural
network algorithm,32,33 random forest,34 and other methods.35,36

However, the feature selectionmethod, which can quickly select
the most suitable features for prediction from dozens or even
hundreds of machine learning features, was seldom used in
previous studies. Moreover, ML models aiming to predict
adsorption energies on alloys oen focus on binary alloys with
only layered structures, i.e. the entire topmost layer of the metal
was replaced by another metal element, while the actual
conguration of alloys in real catalysts could be much more
complex.29

In this study, we directly exploit the adsorption energies of
CO2 and CO on surfaces of a wide range of binary alloys using
MLmethods without any assumptions of linearity, i.e.we do not
assume the adsorption energy on alloys to be a linear combi-
nation of adsorption affinity on its two component metal
surfaces.35 We have chosen a feature selection method called
the greedy algorithm,37 which traverses all combinations of
features and nally locates the optimal combination. From
these, we select the best feature combinations to be used in the
12236 | RSC Adv., 2024, 14, 12235–12246
subsequent algorithms for prediction. The results show that the
algorithm with XGBoost works best. As an extension to previous
literature,29 in this study, we focus on single-atom doped binary
alloys rather than alloys with layered structures. We admit that
this is still a signicantly simplied model for realist materials,
but the ML method and models that are developed and shown
to be valid in this study can be further extended for alloys with
more complex structures. This approach can be used to rapidly
predict adsorption energies with high accuracy. The root-mean-
square error (RMSE) for the entire dataset is 0.075 eV and
0.138 eV for the adsorption energy of CO and CO2, respectively,
which are comparable to the accuracy of Batchelor's ML models
for predicting *OH and *O adsorption energies,38 except that
this study covers a much wider range of materials. This model
goes beyond the traditional strategies and can be used to
facilitate the discovery of novel alloy catalytic materials.
2 Methods
2.1. Quantum mechanics calculations

All DFT calculations were performed using the Vienna ab initio
simulation package (VASP 5.4.4)39 with the generalized gradient
approximation (GGA-PBE)40 functional. The cutoff energy of the
plane-wave basis set was set to 400 eV. We used Monkhorst–
Pack k-point samplings of 2 × 2 × 1.41 The atomic positions
were relaxed until the force on all exible atoms and total
energy changes were no more than 1 × 10−2 eV Å−1 and 1 ×

10−6 eV, respectively. As explained in Section 1, in this study we
focus on alloys with a single dopant atom on the surface (Fig. 1).
It should be noted that, as our material system is periodic, the
doping ratio is 1 dopant atom for every 16 metal atoms on a (4×
4) material surface. The bottom two layers remained xed at
truncated optimized bulk positions corresponding to substrate
metals while other layers and CO2/CO/H/O adsorbate under-
went complete relaxation. It is important to note that by using
a thicker slab model, for example, four layers of metal with the
top two layers fully relaxed, the calculated adsorption energy
values could be more accurate. However, we assumed that the
errors of using the three-layer model are small compared to the
accuracy of the ML model itself and prioritized low computa-
tional cost over precision in the slab model choice. A vacuum
space of 20 Å was inserted to eliminate interactions between
neighboring slabs. The available choices for adsorption sites are
top, bridge, and hollow. However, we have only calculated the
adsorption energies on the top sites and used them to train the
ML model. There are two reasons for this choice. Firstly, we
assessed the impact of adsorption sites on the adsorption
energy of CO2 and CO on Cu/Cr alloy (ESI Fig. S1†) and found
that the most stable adsorption sites are always the on-top sites.
Secondly, requiring adsorption energies on all possible sites
would signicantly increase the burden on users of this ML
model. Although it cannot be guaranteed that top sites are
always the most stable sites for all adsorbates on all materials,
from the perspective of a predictive ML model, using the
adsorption energies only on top sites as inputs is a good tradeoff
between accuracy and usability.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Schematic diagram of the calculation model.
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2.2. Machine learning models

Four ML regression algorithms were implemented in the
Python language using Scikit-learn42 and Pytorch43 libraries.
Outlines of these four algorithms are sketched below. Since
these methods are well-established and widely used, imple-
mentation details can be found in the corresponding
references.

(i) Multi-layer perceptron (MLP32) is called a feedforward
neural network, the basis of a deep neural network. It can
optimize the objective function and improve the model accu-
racy. The hyperparameters that need to be optimized are the
learning rate (Lr), dropout (Dt), L2 regular term (L2), number of
hidden layer (Nl), number of hidden layer neurons (Nn), and
activation function.44 Commonly used activation functions
include the Sigmoid function,45 Tanh function,46 and ReLU
function,47 etc. A visual depiction of the MLPmodel's diagram is
shown in Fig. 2a. If only one layer is included, this model is
called a wide single-layer linear model and can be expressed as

y = WT
wide{x,B(x)} + b (1)

In this case, the parameters of the model are represented by W
and b; the raw data entered are represented by x; linear layers
of neural networks by the kernel function are designated as
B(x).

In cases where there is more than one layer, it is referred to
as a multi-layer neural network (MLP), and can be dened as

al+1 = f(Wl
deepa

l + bl) (2)

where ‘l’ represents the l-th layer; f() represents the activation
function; Wand bl are weight and bias parameters.

(ii) Decision Tree Regression (DTR48) shown in Fig. 2b is an
ML algorithm for predicting continuous numerical values. Its
details are specied by hyperparameters including max_depth
(Dm), min_samples_leaf (Sl), and min_samples_split (Ss). It can
be described mathematically by
© 2024 The Author(s). Published by the Royal Society of Chemistry
HðxÞ ¼
XM
m¼1

bm � hmðx; amÞ (3)

where hm represents the m-th base learner; bm the coefficient of
the hm base learner; am the parameters of the hmbase learner; x
the raw data entered, and M the number of base learners.

(iii) Support Vector Regression (SVR49) demonstrated in
Fig. 2c is a typical optimization problem; its mathematical
model is a convex quadratic programming model, which can be
used for pattern classication, regression estimation, and
density estimation problems. SVR regressor aims to nd
a unique linear model f(x) = w × x + b to approximate. The
tunable model hyperparameters are kernel type (kernel),
penalty factor (C), and precision (epsilon).

(iv) Extreme gradient boost (XGBoost50) illustrated in Fig. 2d
is an ensemble learning model with high efficiency, exibility,
and lightness. Assume that we are currently in the m-th itera-
tion, Ø is the dened loss function, the optimization step can be
represented by the minimization of eqn (4).

fm ¼ arg min
f˛H

Xn

i¼1

fðyi;Fm�1ðxiÞ þ fmðxiÞÞ (4)

2.3. Feature selection procedure

As a fundamental assumption, we assume that the adsorption
affinity of adsorbates on an alloy is related to the physico-
chemical properties of the component elements of the alloy.
Specically, we considered 12 physicochemical properties of the
component elements of an alloy as listed in Table 1. Property
values of all metal elements involved in this study were obtained
from the Nuclear Energy Agency (NEA) thermochemical
database.51

Contrary to previous studies, the values of these 12 proper-
ties were not directly used in ML trainings.52 On the other hand,
we dened ML features in a more general way. Here we dene
a ‘feature’ to be a numerical value associated with an alloy
material that can be used as an input to the MLmodel. Features
RSC Adv., 2024, 14, 12235–12246 | 12237



Fig. 2 Schematic diagram of the structure of different machine learning algorithms for (a) MLP, (b) DTR, (c) SVR, and (d) XGBoost.

Table 1 List of physicochemical properties of component elements of
an alloy that are to be used to construct the features of an alloy. Their
code names in our model are also provided

Physicochemical property Code name

Atomic number AN
Electronegativity EN
First ionization energy FE
Density G
Period of the element PN
Radius R
Specic heat capacity C
IUPAC group number GN
First electron affinity AE
Gas phase standard entropy of formation S
Gas phase standard enthalpy of formation H
Gas phase standard gibbs free energy of formation G
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of an alloy are constructed from the properties listed in Table 1
in the following way. Since we considered binary alloys, there
are 12 property values for each element and 24 property values
in total, giving the rst 24 features. Then we performed arith-
metic operations (addition, subtraction, multiplication, and
division) on each feature of two elements, given 48 (12 × 4)
additional features. Finally, we included the DFT-calculated
adsorption energy of O and H on the alloy surface, bringing
the nal number of features to 74 for each alloy material. A
complete list of these features and their code names in our
model is listed in ESI Table S1.†
12238 | RSC Adv., 2024, 14, 12235–12246
Contrary to intuition, an excessive number of features will
result in reduced training efficiency of machine learning and
adversely affect prediction accuracy.53 This means not all 74
features dened in ESI Table S1† are equally important for the
ML model. To nd which feature or which combination of
features is most effective in predicting the adsorption affinity of
alloys, a greedy algorithm (Fig. 3a) was utilized and described
below.54,55

Initially, a simple linear regression was used to predict the
correlation between the DFT adsorption energy values and
a single feature, and the feature with the lowest RMSE value out
of the 74 total features was selected as the optimal one.
Secondly, one of the remaining 73 features was selected so that
the prediction based on the two features-tuple can produce the
smallest RSME. This process was repeated iteratively until all
possible feature combinations were tested, resulting in optimal
features combinations.56 For example, in Fig. 3a the combina-
tion of features X1, X3, X73, X72, . was found to be the best.

This feature selection process is also accelerated usingmulti-
process concurrency, GPU acceleration, and multi-server oper-
ation methods, as shown in Fig. 3b. Initially, code 1 calls all
servers simultaneously, and then code 2 is commanded on the
active server for multi-process optimization, thus achieving
accelerated optimization. It is worth noting that the GPU
version shows a more pronounced acceleration effect. Gener-
ally, in any chemometrics-based approach, the performance of
the techniques is evaluated using different indices related to the
simulated and actual values. The current work explored the use
of three various statistical error measures, namely, Mean
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Schematic diagram of optimization algorithm flow, (a) the greedy algorithm of feature screening, (b) acceleration algorithm utilizing
parallel computing.
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absolute error (MAE), Root Mean Square Error (RMSE), and R-
squared (R2),57,58 coupled with one tness indices including the
Pearson correlation coefficient (P) (as shown in equation).
Before the simulation stage, an external validation process
based on k-1 fold (the 78 sets of alloys data are divided into 77
training sets and 1 test set, and all the combined prediction
learning is cycled, and nally, the individual prediction results
of 78 data are output) cross-validation was conducted to opti-
mize the models' performance, increase the model integrity,
and minimize errors.

The Pearson correlation coefficient (P) is primarily used to
examine the correlation between feature values and parameters.

P ¼
X�

yi � y0 i
t
��

yp � y0 i
p
��X�

yi � y0 i
t�2�

yp � y0 i
p�2 (5)

R-squared (R2) represents the degree to which a regression
line ts the observed data points.

R2 ¼ 1�
X

ðyit � yi
pÞ
��

yi
t � y0 i

t�2 (6)

Root Mean Square Error (RMSE) indicates the extent of the
differences between predicted values and actual values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

1

n
ðyit � yipÞ2

s
(7)

Mean Absolute Percentage Error (MAE) represents the
average of the absolute errors between predicted and observed
values, expressed as a percentage.

MAE ¼
Xn

i¼1

1

n

��yti � y
p
i

�� (8)

where yti and ypi represent the actual and predicted values, y0i
t

and y0i
p denote any two feature values.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3 Results and discussion
3.1. DFT calculation results

We constructed three-layer slabs with (4 × 4) surface unit cells
for all alloys. One atom on the surface layer of the slab was
replaced by another metal atom to create a single-atom doped
binary alloy. Specically, we considered 78 alloys for CO2/CO/H/
O adsorption energies (Fig. 4 and ESI Table S2†). Base elements
of the alloys (components M1) include Cu, Ni, Ag, Au, Pt, and
Co, and the doped single-atoms (M2) include Co, Cr, Fe, Ir, Mn,
Mo, Os, Re, Ru, Ta, Tc, V, W. We considered the effect of
increasing the thickness of the slab to four layers but found that
(ESI Fig. S2†) the difference in adsorption energy values is
around 0.08 eV at least on the Cu/Co and Pd/Co materials,
which falls well below the accuracy threshold of machine
learning prediction. This observation can be corroborated by
Tomacruz et al., who showed that three layers of metal atoms
are enough to describe a surface.25 In addition, we have partially
investigated aspects such as two-layer atom doping effects on
the adsorption site (ESI Fig. S3†). Results demonstrated an error
margin lower than 0.09 eV. In all cases, as explained in Section
2.1, only the top sites are considered. Adsorption energy (Eads) is
dened as Eads(M) = E[M*] − E[M(g)] − E[*], where M* repre-
sents adsorbed M and * refers to an empty site. According to
this denition, more negative Eads means stronger adsorption.

3.2. Preliminary statistical results

Following the greedy algorithm described in Section 2.2, the
optimal combination of features is identied. Shown in Fig. 5a
is how the overall RMSE changes as the greedy algorithm
proceeds from step 1 to step 2775 in search of the optimal
combination of features. Details of some typical data points
along the curves of Fig. 5a are further provided in ESI Tables S3
and S4.†

For example, as shown in Table S5,† at the earliest stage, the
greedy algorithm has located feature 2 (E_H: Eads of H on alloys)
to be the one most correlated to Eads of CO. At step 136, the
RSC Adv., 2024, 14, 12235–12246 | 12239



Fig. 4 DFT-calculated adsorption energy of (a) H, (b) O, (c) CO, and (d) CO2 on 78 single-atom doped binary alloys. The x-axis represents the
basal elements (M1), and the y-axis shows the doped elements (M2) of the alloys. Numbers are visualized by colors where red and blue represent
weak (larger Eads) and strong (smaller Eads) adsorption, respectively.
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algorithm nds that feature 2 together with 63 (EN_1: electro-
negativity of M1) is the best two-feature combination that can be
correlated to Eads of CO. The mechanism of the following steps
is similar.

The lowest RMSE values for Eads of CO2 are observed at step
number 1243, with a value of 0.11 eV. At this step, 24 features
(E_O, FE_1, GN_1, E_H, FE_differ, EN_1, GN_product, G_differ,
R_1, GN_2, C_1, R_2, GN_sum, g_differ, R_product, GN_divi-
sion, R_sum, AN_1, R_division, GN_differ, H_1, AE_1, G_1 and
g_1) are in the optimal combination. Aer this step, when more
features are added to this combination, there is a decline in
model performance, as indicated by an increase in RMSE. These
results suggest that an increasing number of features leads to
overtting with the error reaching 0.18 eV at step 2775. In other
words, if all 74 features were considered as the input of the ML
model, the performance would be worse than just using the 24
features subset.

For CO the optimal features searching process is similar. At
step 1456 the algorithm locates an optimal combination of 19
features (E_H, EN_1, C_1, GN_division, FE_1, E_O, AN_1, AE_1,
GN_1, H_division, H_1, GN_product, R_1, C_product, FE_sum,
G_1, g_1, GN_differ and S_1), with a minimal RMSE of 0.24 eV.

Fig. 5b and c show the correlation of feature screening
results through thermal maps. If the correlation between
features is too high, there will be redundant data and waste of
learning costs, so the relationship between data can be more
12240 | RSC Adv., 2024, 14, 12235–12246
intuitively understood. The analysis of the selected features
shows that the correlation between them is not dense and high,
so the data need not be cleaned.
3.3. Results of the learning algorithms

ML-based and other learning algorithms can provide a cost-
effective and efficient CO2/CO adsorption energy prediction.
The primary motivation behind CO2/CO adsorption energy
prediction modeling is using learning algorithms to accelerate
the efficiency and reduce computing costs of quantization
operations and ensure that results are readily available for the
experiment. Tables 2–4 describe the hyperparameters optimi-
zation based on different machine learning algorithms.59 For
MLP: Nl (1–5), Lr (0.00001–1), Nn (1–1000), Dt (0-1) and L2
(0.00001–1). For DTR: Dm (1–15), Sl (1–10), and Ss (0–1). For SVR:
kernel, C (1–32), and epsilon (0.0001–0.5) were optimized using
a mixture of exhaustive and dichotomous optimization algo-
rithms in addition to cross-validation and using multi-process
concurrency, GPU acceleration, and multi-server operation
acceleration methods.

It should be added that XGBoost does not require hyper-
parameter optimization due to its reinforcement learning
mechanism. All the learning algorithms performed well in both
the training and validation phases, which indicates the model's
ability to capture and explain the reasonable variability portion
of the dataset.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 The result of the greedy algorithm of feature selection. (a) RMSE of Eads of CO2 and CO as the greedy algorithm proceeds. (b) and (c),
correlation heatmap of optimal combinations of features for CO2 and CO, respectively. Red and blue indicate positive and negative correlations,
respectively. And the sizes of the circles represent the extent of correlation.

Table 2 MLP model hyperparameter optimization

Adsorption
model Nl Nn Lr Dt L2 R2

CO 1 70 0.02 0.01 0.001 0.950
2 70/25 0.007 0.01 0.0008 0.953
3 70/25/15 0.006 0.01 0.0007 0.961
4 70/25/15/375 0.005 0.01 0.0006 0.932
5 70/25/15/375/215 0.03 0.01 0.0002 0.914

CO2 1 150 0.05 0.01 0.002 0.883
2 150/175 0.05 0.01 0.001 0.886
3 150/175/125 0.006 0.01 0.0008 0.908
4 150/175/125/230 0.0008 0.01 0.00001 0.910
5 150/175/125/230/400 0.006 0.01 0.00063 0.891

Table 3 DTR model hyperparameter optimization

Adsorption
model Dm Sl Ss R2

CO 1 6 1 0.522
4 1 0.3 0.854
8 1 0.3 0.864

11 1 0.1 0.867
14 1 0.2 0.861

CO2 1 4 0.6 0.621
4 1 0.2 0.814
8 1 0.2 0.796

11 1 0.3 0.790
14 1 0.3 0.785
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The intelligent learning algorithms equally depict higher R2

values, ranging from 0.867 to 0.968 in the CO modeling and
0.814 to 0.945 in the CO2 modeling, respectively, representing
a higher relation between the experimental and simulated
values for the optimized parameter model. Fig. 6 shows that the
techniques indicate MAE for a single material value ranging
from 0.01 eV to 0.50 eV in the CO2 modeling and 0.01 eV to
0.75 eV in the COmodeling, respectively, demonstrating a slight
deviation between the experimental and simulated values,
except DTR model. Generally, according to the objective indices
(R2, MAE, and RMSE) used in the current study, we can deduce
© 2024 The Author(s). Published by the Royal Society of Chemistry
that all the models have performed well in modeling, with some
performing better than others. However, the SVR model,
composed of all the input variables, performed better than
others in most instances in both the training and validation
stages. It is worth mentioning that even the XGBoost and MLP
techniques equally depict exceptional prediction skills in both
the training and validation steps. Furthermore, the perfor-
mance of the best intelligent combination can be illustrated
graphically using different visualizations. The diagrammakes it
easier to judge how well other datasets or models represent the
variation and patterns in the reference dataset. Moreover, the
RSC Adv., 2024, 14, 12235–12246 | 12241



Table 4 SVR model hyperparameter optimization

Adsorption
model Kernel C Epsilon R2

CO Linear 32 0.5 0.651
Poly 8 0.1 0.968
Rbf 16 0.001 0.951
Sigmoid 2 0.1 0.215

CO2 Linear 3 0.2 0.762
Poly 5 0.01 0.944
Rbf 1 0.0001 0.945
Sigmoid 5 0.02 0.275
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prediction skills of the learning algorithms can also be visual-
ized using the scatter plot, a popular data visualization style, as
demonstrated in Fig. 6. A complete picture of how well several
models or datasets compare to a reference dataset in terms of
correlation is provided by scatter plot. A better agreement with
the reference dataset is indicated by points nearer the reference
point regarding these criteria. A two-dimensional graph
consists of points plotted with one variable on the x-axis and the
other on the y-axis. The positions of the two variables being
compared indicate where each point in the dataset, represent-
ing an observation or data point, is located. Hence, the scatter
plot performance depicts the graphical illustration of the table's
optimal result. Therefore, the performance of the models
should be ordered by SVR > MLP > XGBoost > DTR.
Fig. 6 The predicted CO2/CO adsorption energies by ML algorithms ve

12242 | RSC Adv., 2024, 14, 12235–12246
3.4. Validation of the learning algorithms

The machine learning model proposed in this study can accu-
rately predict the adsorption energy of alloys with given physical
and chemical characteristics, and the verication is divided into
two parts. Firstly, the validity of this prediction model has been
tested against all alloys included in the training set as shown in
Fig. 6. Secondly, the model was applied to predict the adsorp-
tion energy on unknown alloys as verication. During the veri-
cation stage, we selected only Pd and Rh to test the predictive
ability of the model. Although only Pd and Rh were considered
in this study, our model is applicable to all binary alloy mate-
rials. Once we veried the stability of the model, the next step
can be a large-scale material screening. The main reason to
select Pd at this stage is that Pd alloys have been shown to be
able to achieve high selectivity for CO2 reduction to CO. For
example, Li et al. prepared CuPd alloys and used DFT calcula-
tions to show that Pd atoms in CuPd alloys act as reaction
centers and possess strong adsorption affinity with COOH.60

Adjacent Cu atoms enhance their catalytic performance by
changing the electronic structure and atomic arrangement of
Pd. Ma et aldiscovered that the selectivity of CO2RR products is
affected by the atom mixing state of CuPd bimetallic catalysts.61

The selection of doping atoms is consistent with the previous
sections (Co, Cr, Fe, Ir, Mn, Mo, Os, Re, Ru, Ta, Tc, V, and W).

Since Pd base data did not participate in the learning
training, we adopted two prediction modes: prediction 1:
rsus DFT results for (a) SVR, (b) MLP, (c) DTR, and (d) XGBoost.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Including only the 78 alloy data into the XGBoost model for
prediction. Prediction 2: supplement with adsorption data on
two additional Pd-doped alloys to the training set of data 1, and
reform the learning process before making predictions. In
prediction 2, extra information about the Pd base materials was
provided to train the ML model to improve the prediction
accuracy. The reason to use this method in this study is that if
unknown base data learning is not provided, direct prediction
(prediction 1) may have an explosion of dimensions. For
example, one of the features is the atomic number of the dopant
atom. When the previously learned model is applied to a new
alloy, the atomic number of the new model may be out of range
of the previously learned data set. If the values of a signicant
number of features are outside the range, there will be
a considerable error. Results of these two predictions on the Pd
alloys are listed in Tables 5 and 6 and visualized in Fig. 7 and 8.
Similar results for Rh alloys are provided in ESI Tables S5, S6,
Fig. S4 and S5.†

According to the data analysis of CO2 adsorption energy in
Table 5, prediction 1 shows that the MLP model has the most
signicant deviation with a maximum error of −0.67 eV for
a single material, a minimum error of −0.03 eV for a single
material, and an MAE of 0.272 eV for all materials. The XGBoost
model has the least deviation with amaximum error of−0.52 eV
for a single material, a minimum error of 0 eV for a single
material, and an MAE of 0.223 eV for all materials. This result is
mainly due to machine learning being derived from learned
data. If feature laws do not conform to the learned set outside
this range, it may lead to prediction bias. Unlearned Pd data can
affect prediction accuracy if there is a signicant deviation
between primary Pd data and learning sets.

Aer learning and training from CO2 adsorption energy
characteristic data on Pd/Mn and Pd/V alloys, prediction 2
results show signicantly improved accuracy across all four
machine learning models compared to prediction 1 results
alone. Among them, XGBoost has the best prediction accuracy
Table 5 Results of four machine learning algorithms for predicting CO2

Algorithms and results Co Cr Fe Ir Mn Mo

DFT (eV) 0.20 −0.46 0.31 0.05 0.41 −0.4
MLP Prediction 1 (eV) 0.13 0.13 0.13 0.13 0.13 0.1

Error (eV)b 0.07 −0.59 0.18 −0.08 0.28 −0.5
Prediction 2 (eV) 0.40 0.03 0.39 0.38 0.40 −0.2
Error (eV)b −0.20 −0.49 −0.08 −0.33 −0.01a −0.1

DTR Prediction 1 (eV) 0.14 0.14 0.14 0.14 0.14 −0.0
Error (eV)b 0.06 −0.60 0.17 −0.09 0.27 −0.4
Prediction 2 (eV) 0.17 −0.01 0.17 0.17 0.41 −0.0
Error (eV)b 0.03 −0.45 0.14 −0.12 0.00a −0.4

XG Prediction 1 (eV) 0.12 0.02 0.12 0.07 0.14 −0.0
Error (eV)b 0.08 −0.48 0.19 −0.02 0.27 −0.4
Prediction 2 (eV) 0.34 −0.13 0.35 0.09 0.41 −0.3
Error (eV)b −0.14 −0.33 −0.04 −0.04 0.00a −0.1

SVR Prediction 1 (eV) 1.58 1.14 1.39 1.68 1.21 1.1
Error (eV)b −1.38 −1.60 −1.08 −1.63 −0.80 −1.5
Prediction 2 (eV) 0.96 0.02 0.64 0.83 0.31 −0.3
Error (eV)b −0.76 −0.48 −0.33 −0.78 0.10a −0.1

a These cases are part of the training set; therefore, small errors are expe

© 2024 The Author(s). Published by the Royal Society of Chemistry
on CO2 adsorption energy, with its the MAE decreased from
0.223 eV to 0.138 eV.

As visualized in Fig. 7, With the ve Eads lowest energy
calculated by DFT are Pd/W, Pd/V, Pd/Cr, Pd/Mo, and Pd/Ta.
The predicted results of XGBoost are Pd/Ta, Pd/W, Pd/Mo, Pd/
V and Pd/Cr. Although the expected adsorption energy values
were somewhat skewed, the lowest ve energy combinations
were 100% accurate.

According to the CO adsorption energy data analysis in Table
6 and Fig. 8, MLP and XGBoost have excellent performance
regardless of prediction 1 or 2, while DTR and SVR have average
performance. The main reason for the difference in predicted
results between CO and CO2 is that the adsorption energy of the
vital feature H is positively correlated with the adsorption
energy value of CO, therefore even the prediction of the
unknown base data also conforms to this law with a small error.
The XGBoost model has the best prediction effect on CO
adsorption energy. As shown in Fig. 8, the ve alloy combina-
tions with the lowest energy calculated by DFT are Pd/Ir, Pd/Os,
Pd/Ru, Pd/Fe, and Pd/Co. The prediction 1 results of XGBoost
are Pd/Ir, Pd/Ru, Pd/Os, Pd/Co, and Pd/Fe.

To sum up, the result of prediction 1 is XGBoost > MLP =

SVR = DTR, and the result of prediction 2 is XGBoost = MLP >
SVR = DTR. Although the MLP and SVR models have strong
learning abilities, their generalization of data processing is
poor. Therefore, the XGBoost model is still the most stable
machine learning model for the prediction of adsorption
energy.

3.5. Screening potential catalysts for CO2 generation to CO

Developing cheap, active, and stable catalysts is the goal of
catalyst researchers. CO2, COOH, and CO adsorption energy are
suggested as the best descriptors for CO2 hydrogenation to CO;
Based on the results of Wang's study,62 the limiting potential of
binary alloys CO2 reduction to CO by considering reaction
pathways R1, R2, and R3 as following:
adsorption energy based on Pd alloys

Os Re Ru Ta Tc V W MAE (eV)

5 0.17 0.20 0.03 −0.08 0.10 −0.51 −0.54
3 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.27
8 0.04 0.07 −0.10 −0.21 −0.03 −0.64 −0.67
8 0.34 0.12 0.37 −0.17 0.15 −0.51 −0.30 0.22
7 −0.17 0.08 −0.34 0.09 −0.05 0.00a −0.24
2 0.14 0.14 0.14 −0.02 0.14 0.14 −0.02 0.24
3 0.03 0.06 −0.11 −0.06 −0.04 −0.65 −0.52
1 0.17 0.17 0.17 0.00 0.17 −0.51 −0.01 0.16
4 0.00 0.03 −0.14 −0.08 −0.07 0.00a −0.53
2 0.03 0.03 0.03 −0.11 0.03 0.01 −0.05 0.22
3 0.14 0.17 0.00 0.03 0.07 −0.52 −0.49
4 0.09 −0.14 0.05 −0.27 −0.13 −0.51 −0.26 0.14
1 0.08 0.34 −0.02 0.19 0.23 0.00a −0.28
4 1.37 1.19 1.42 1.09 1.21 1.18 1.11 1.33
9 −1.20 −0.99 −1.39 −1.17 −1.11 −1.69 −1.65
1 0.42 0.04 0.49 −0.90 0.08 −0.41 −0.32 0.36
4 −0.25 0.16 −0.46 0.82 0.02 −0.10a −0.22

cted. b Error between DFT and predicted value.
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Table 6 Results of four machine learning algorithms for predicting CO adsorption energy based on Pd alloys

Algorithms and results Co Cr Fe Ir Mn Mo Os Re Ru Ta Tc V W MAE (eV)

DFT (eV) −2.13 −1.63 −2.14 −2.47 −1.94 −1.43 −2.37 −1.87 −2.28 −1.04 −1.88 −1.26 −1.45
MLP Prediction 1 (eV) −1.97 −1.69 −2.03 −1.99 −1.88 −1.55 −2.12 −1.93 −1.98 −1.08 −1.85 −1.16 −1.61 0.15

Error (eV)b −0.16 0.05 −0.11 −0.48 −0.06 0.12 −0.25 0.06 −0.30 0.04 −0.03 0.10 0.16
Prediction 2 (eV) −2.05 −1.72 −2.06 −2.06 −1.92 −1.63 −2.21 −1.97 −2.02 −1.20 1.92 −1.24 −1.74 0.14
Error (eV)b −0.08 0.09 −0.08 −0.41 −0.02a 0.20 −0.16 0.10 −0.26 0.16 −0.04 −0.02a 0.29

DTR Prediction 1 (eV) −2.19 −2.19 −2.19 −2.36 −1.88 −1.63 −2.69 −2.69 −2.36 −0.66 −1.88 −1.29 −1.63 0.22
Error (eV)b 0.06 0.56 0.05 −0.11 −0.06 0.20 0.32 0.82 0.08 −0.38 0.00 0.03 0.18
Prediction 2 (eV) −2.13 −2.13 −2.13 −2.41 −1.88 −1.63 −2.41 −2.41 −2.41 −0.66 −1.90 −1.29 −1.63 0.18
Error (eV)b 0.00 0.50 −0.01 −0.06 −0.06a 0.20 0.04 0.54 0.13 −0.38 0.02 0.03a 0.18

XG Prediction 1 (eV) −2.11 −1.65 −2.10 −2.25 −1.90 −1.63 −2.18 −1.88 −2.21 −1.00 −1.85 −1.28 −1.53 0.08
Error (eV)b −0.02 0.02 −0.04 −0.22 −0.04 0.20 −0.19 0.01 −0.07 −0.04 −0.03 0.02 0.08
Prediction 2 (eV) −2.14 −1.67 −2.12 −2.26 −1.94 −1.64 −2.19 −2.00 −2.23 −1.04 −1.85 −1.26 −1.53 0.07
Error (eV)b 0.01 0.04 −0.02 −0.21 0.00a 0.21 −0.18 0.13 −0.05 0.00 −0.03 0.00a 0.08

SVR Prediction 1 (eV) −2.29 −2.19 −2.39 −2.48 −2.33 −2.07 −2.75 −2.50 −2.38 −1.83 −2.34 −1.74 −2.29 0.44
Error (eV)b 0.16 0.56 0.25 0.01 0.39 0.64 0.38 0.63 0.10 0.79 0.46 0.48 0.84
Prediction 2 (eV) −2.06 −1.90 −2.13 −2.22 −1.94 −1.74 −2.44 −2.2 −2.13 −1.4 −2.09 −1.26 −1.94 0.19
Error (eV)b −0.07 0.27 −0.01 −0.25 0.00a 0.31 0.07 0.33 −0.15 0.36 0.21 0.00a 0.49

a These cases are part of the training set; therefore, small errors are expected. b Error between DFT and predicted value.

RSC Advances Paper
CO2 þ */CO*
2 (R1)

CO*
2 þ ðHþ þ e�Þ/COOH* (R2)

COOH* + (H+ + e−) / CO* + H2O (R3)

where * represents an empty site on the metal or alloy surface.
The ML model can predict the adsorption energy values of

CO2, and CO on all alloy surfaces, and based on the stability of
reaction intermediates, a potential energy diagram along the CO2

reduction reaction pathway can be constructed and shown in
Fig. 9. It should be noted that our model predicts only the Eads of
CO and CO2, there Eads of the intermediate COOH on Fig. 9 were
directly from DFT calculations. In the future, our model can be
extended to predict Eads of all intermediates along the CO2RR
pathway. Meanwhile, our model lacks the ability to estimate
kinetic barriers, and the energies shown in Fig. 9 are only elec-
tronic energies without entropy or zero-point corrections.
Fig. 7 Comparison of CO Eads between four ML predictions and DFT M
mark the alloys with the five lowest Eads calculated by DFT.

12244 | RSC Adv., 2024, 14, 12235–12246
Despite these limitations, this model provides useful informa-
tion in the screening of materials. Specically, our model
predicts that Pd/Mo may provide a fast CO2 to COOH conversion
because of its strong binding to both CO2 and COOH. Although
Pd/Os also has a strong binding with COOH, its weak binding of
CO may lead to the conversion to CO slower than Pd/Os.

To our knowledge, there are no reports about Pd/Mo alloy
catalysts for CO2RR. But the Pd/Mo alloy, a highly curved and
sub-nanometer thick metal nanosheet, is an efficient and stable
electrocatalyst for ORR and OER in alkaline electrolytes and has
shown good performance in zinc-air and lithium-air batteries,63

Dawid Ciesielski et al. studied the diffusion of Pd adatoms on
faceted Pd/Mo (111) surfaces with hill and valley structures is
studied using the kinetic Monte Carlo method.64 Cao65 et al. also
describe an efficient method for preparing highly dispersed
carbon-supported Pd/Mo bimetallic nanoparticles. In other
words, as a preliminary screening result, the selected alloy
catalysts need to be further veried. Nevertheless, if the CO and
L models and DFT: prediction 1 (left); prediction 2 (right). Vertical lines

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Comparison of CO2 Eads between four ML predictions and DFT: prediction 1 (left); prediction 2 (right).

Fig. 9 Potential energy diagram along CO2 reduction pathway pre-
dicted by XGBoost.

Paper RSC Advances
CO2 adsorption energies and stability of layered alloys play
a vital role in a process like CO2 hydrogenation to CO provided
in this paper, it will be very informative and valuable.

4 Conclusion

In this paper, CO2, CO, H, and O adsorption energies on 78
single-atom doped alloys were calculated using PBE functional
and slab models. Based on these DFT calculated adsorption
energies, XGBoost machine learning models were established
using non-quantum and quantum chemistry features. To over-
come overtting and reduce feature dimension, we performed
a modied feature selection process by using the greedy algo-
rithm. With this algorithm, we examined the performance of
ML models at different feature subsets. The features selected
were used in the modied XGBoost algorithm. The MAE is
0.075 eV for the CO model of the adsorption energies and
0.138 eV for the CO2 model of the adsorption energies.

In the future, the ML model will be further improved by
expanding the optimization of descriptors, adding ensemble
learning methods, and expanding the data set. At the same
time, this method can also be applied to the screening of elec-
trocatalytic materials by predicting the adsorption energy of all
intermediate products in the alloy catalytic electroreduction
pathway of carbon dioxide reduction.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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