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Abstract: Recently, increasing attention has been paid to quantum mechanical behavior in biology.
In this study, we investigated the involvement of quantum mechanical tunneling in the hydrogen-
transfer reaction from Trolox, a water-soluble analog of vitamin E (α-tocopherol), to 2,2-diphenyl-1-
picrylhydrazyl radical (DPPH•) in a phosphate buffer solution (0.05 M, pH 7.0). DPPH• was used as
a reactivity model of reactive oxygen species and solubilized in water using β-cyclodextrin (β-CD).
The second-order rate constants, kH and kD, in 0.05 M phosphate buffer solutions prepared with
H2O (pH 7.0) and D2O (pD 7.0), respectively, were determined for the reaction between Trolox and
DPPH•, using a stopped-flow technique at various temperatures (283–303 K). Large kinetic isotope
effects (KIE, kH/kD) were observed for the hydrogen-transfer reaction from Trolox to the β-CD-
solubilized DPPH• in the whole temperature range. The isotopic ratio of the Arrhenius prefactor
(AH/AD = 0.003), as well as the isotopic difference in the activation energies (19 kJ mol−1), indicated
that quantum mechanical tunneling plays a role in the reaction.

Keywords: antioxidant; hydrogen transfer; kinetic isotope effect; tunneling

1. Introduction

Hydrogen-transfer reactions are cornerstones of the radical-scavenging reactions of
antioxidants, such as vitamins C (ascorbic acid) and E (α-tocopherol), flavonoids, and
so on, where hydrogen atoms (or protons and electrons) are transferred from antioxi-
dants to oxygen radicals as an initial step. On the other hand, increasing attention has
been paid to quantum mechanical behavior in biology in recent years [1], such as hydro-
gen tunneling [2–5]. Mukai et al. reported a large kinetic isotope effect (KIE, kH/kD) of
22.5, observed in the hydrogen-transfer reaction from α-tocopherol to aroxyl radical in
ethanol, demonstrating that quantum mechanical tunneling plays a role in this reaction [6].
2,2-Diphenyl-1-picrylhydrazyl radical (DPPH•) is a stable radical and has been used as a re-
activity model of reactive oxygen species, to investigate the radical-scavenging reactivity
of antioxidants, as well as their mechanism, for more than 60 years [7–9]. However, to the
best of our knowledge, there has no reports about tunneling in a reaction involving DPPH•.
Furthermore, the insolubility of DPPH• in water has precluded its use in aqueous solutions,
especially in concentrated buffer solutions. We have recently succeeded in solubilizing
DPPH• in water by forming an inclusion complex with β-cyclodextrin (β-CD) [10,11]. This
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enables us to investigate DPPH•-scavenging reactivity and the mechanism of antioxidants
in aqueous buffer solutions [10–13]. We report herein the first observation of the tem-
perature dependence of large primary kinetic isotope effects for the reaction of Trolox,
a water-soluble analog of α-tocopherol, with β-CD-solubilized DPPH• (DPPH•/β-CD) in
a phosphate buffer (Figure 1), indicating that quantum mechanical tunneling plays a role
in this reaction.
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Figure 1. Hydrogen transfer from Trolx to DPPH•/β-CD.

2. Materials and Methods
2.1. Materials

Trolox and β-CD was commercially obtained from Tokyo Chemical Industry Co.,
Ltd., Japan. DPPH• and phosphate buffer solution (0.1 M, pH 7.0) were purchased from
Fujifilm Wako Pure Chemical Ind. Ltd., Osaka, Japan. D2O was commercially obtained
from Nacalai Tesque, Inc., Kyoto, Japan. A Milli-Q system (Millipore Direct-Q UV3) (Merck
Millipore, Burlington, MA, USA) was used to freshly prepare the water used in this study.
DPPH• was solubilized in water by β-CD, according to the procedure described in the
literature [10]. The deuterated phosphate buffer solution was prepared by dissolving
phosphate buffer powder (Fujifilm Wako Pure Chemical Ind. Ltd., Osaka, Japan) into D2O
and the pD was adjusted by adding 5 N hydrochloric acid (Fujifilm Wako Pure Chemical
Ind. Ltd., Osaka, Japan). The pD values were calculated by adding 0.4 to the corresponding
pH values measured using a HORIBA D-51 pH meter (Horiba, Ltd., Kyoto, Japan) [14].

2.2. Spectral and Kinetic Measurements

An Agilent 8453 photodiode array spectrophotometer (Agilent Technologies, Santa
Clara, CA, USA) was used to record the UV-vis spectra. The scavenging rates of DPPH•/β-
CD by Trolox in a phosphate buffer solution (0.05 M, pH 7.0) by Trolox were followed
by monitoring the absorbance change at 527 nm due to DPPH• (ε = 1.1 × 104 M−1 cm−1)
after the mixing of DPPH• in water (Milli-Q) with a phosphate buffer solution (0.1 M,
pH 7.0) containing Trolox at a volumetric ratio of 1:1 using a stopped-flow technique
on a UNISOKU RSP-1000-02NM spectrophotometer (UNISOKU Co., Ltd., Osaka, Japan),
which was thermostated with a Thermo Scientific NESLAB RTE-7 Circulating Bath (Thermo
Fisher Scientific, Inc., Waltham, MA, USA). Pseudo-first-order rate constants (kobs) were
obtained by a least-square curve fit, using an Apple MacBook Pro personal computer
(Apple Inc., Cupertino, CA, USA). The first-order plots of ln(Abs–Abs∞) vs. time (Abs and
Abs∞ are the absorbance at the reaction time and the final absorbance, respectively) were
linear until three or more half-lives, with a correlation coefficient ρ > 0.999. In each case, it
was confirmed that the kobs values derived from at least three independent measurements
agreed within an experimental error of ±5%.
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3. Results and Discussion

Upon mixing of a phosphate buffer solution (0.1 M, pH 7.0) of Trolox with DPPH•/β-
CD in water (Milli-Q) at a volumetric ratio of 1:1 on a stopped-flow spectrophotometer,
the absorption band at 537 nm due to DPPH• decreased immediately, with clear isosbestic
point at 424 nm, as shown in Figure 2. This spectral change indicates that Trolox efficiently
scavenged DPPH• in the phosphate buffer. Since the pKa value of the carboxylic group
of Trolox is known to be 3.89 [15], the carboxylic group was completely deprotonated at
pH 7.0 (Figure 1). Thus, the hydrogen transfer occurred from the phenolic OH group in
Trolox to DPPH•. The decay of the absorbance at 527 nm, which was monitored using
a stopped-flow technique, obeyed pseudo-first-order kinetics, when the concentration of
Trolox ([Trolox]) was maintained at more than a 10-fold excess of DPPH• concentration
(inset of Figure 2). The pseudo-first-order rate constants (kobs) increased linearly with
increasing [Trolox] (Figure 3). The second-order rate constant (kH) in Equation (1) was
obtained from the slope of the plot Equation (2) for the hydrogen transfer from Trolox to
DPPH• (Figure 1) in a phosphate buffer solution (0.05 M, pH 7.0) to 1.4 × 104 M−1 s−1.
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Figure 2. Spectral change (interval: 10 ms) observed during the reaction of Trolox (1.4 × 10−3 M)
with DPPH•/β-CD (1.9 × 10−5 M) in phosphate buffer (0.05 M, pH 7.0) at 298 K. Inset: the first-order
plot of the absorbance at 527 nm.
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Figure 3. Plots of pseudo-first-order rate constants (kobs) vs. concentrations of Trolox in phos-
phate buffer (H2O, 0.05 M, pH 7.0) (closed circles) and in phosphate buffer (D2O, 0.05 M, pD 7.0)
(open circles).

When D2O was used instead of H2O to prepare the phosphate buffer, the phenolic
O–H proton in Trolox was replaced by deuteron from D2O. The second-order rate con-
stant (kD) determined for the reaction of Trolox with DPPH•/β-CD was much smaller
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(2.0 × 103 M−1 s−1) than the kH value. Thus, the KIE (kH/kD) was calculated to be 7.4,
which is slightly smaller than the semi-classical isotope effect for O–H bonds (7.9) [16].

−d[DPPH•]/dt = kH[Trolox][DPPH•] (1)

kobs ([Trolox] > 10[DPPH•]) = kH[Trolox] (2)

The reaction of Trolox with DPPH•/β-CD was also carried out in temperature range
from 283 to 303 K. Table 1 lists the kH and kD values determined from the slopes of the
linear plots of the kobs vs. the Trolox concentrations.

Table 1. kH, kD, and kH/kD values for the reaction of Trolox with DPPH•/β-CD in phosphate buffer
solutions (0.05 M, pH 7.0, or pD 7.0).

T/K kH/M−1 s−1 kD/M−1 s−1 kH/kD

283 3.0 × 103 2.9 × 102 11
288 4.3 × 103 5.3 × 102 8.2
293 7.8 × 103 1.2 × 103 6.6
298 1.4 × 104 2.0 × 103 7.4
303 1.5 × 104 2.7 × 103 5.7

Furthermore, as seen in the Arrhenius plots based on the Arrhenius equation Equa-
tion (3) (Ea(H), Ea(D): activation energy, AH, AD: Arrhenius prefactor, R: gas constant and T:
temperature in K) shown in Figure 4, linear correlations of ln kH vs. T−1 and ln kD vs. T−1

were observed in the reaction of Trolox with DPPH•/β-CD in the whole temperature range.
From the intercepts and slopes of the linear plots in Figure 4, the Arrhenius prefactors and
activation energies were obtained as AH = 1.5 × 1015 M−1 s−1, AD = 5.2 × 1017 M−1 s−1,
Ea(H) = 63 kJ mol−1, and Ea(D) = 82 kJ mol−1, respectively. The isotopic ratio of ratio,
AH/AD, was obtained as 0.003, which is beyond the semiclassical limits of 0.4–1.4 [16]. The
isotopic difference, Ea(D)–Ea(H), (19 kJ mol−1) was significantly greater than the difference
in zero-point energies of 5.1 kJ mol−1 [16]. These results indicate that quantum mechanical
tunneling plays a role in the hydrogen-transfer reaction from Trolox to DPPH•/β-CD in
a phosphate buffer [17–20].

ln kH = −Ea(H)/(RT) + ln AH or ln kD = −Ea(D)/(RT) + ln AD (3)
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Figure 4. Arrhenius plots of ln kH vs. T−1 (closed circles) and ln kD vs. T−1 (open circles) in phosphate
buffer (H2O, 0.05 M, pH 7.0) and in phosphate buffer (D2O, 0.05 M, pD 7.0), respectively.

4. Conclusions

The solubilization of DPPH• in water by β-CD enabled us to investigate the kinetics of
hydrogen-transfer reactions involving DPPH• in aqueous media. The large KIE, as well as
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the temperature dependence of the KIE observed for the hydrogen-transfer reaction from
Trolox to β-CD-solubilized DPPH•, indicates that quantum mechanical tunneling played
a role in the reaction. To the best of our knowledge, this is the first report about quantum
mechanical tunneling in a reaction of DPPH• in aqueous media at ambient temperature.
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