
RESEARCH ARTICLE

Expression Profile of Human Fc Receptors in
Mucosal Tissue: Implications for Antibody-
Dependent Cellular Effector Functions
Targeting HIV-1 Transmission
Hannah M. Cheeseman1, Ann M. Carias2, Abbey B. Evans1, Natalia J. Olejniczak1,
Paul Ziprin3, Deborah F. L. King1, Thomas J. Hope2, Robin J. Shattock1*

1 Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and
Immunity, London, United Kingdom, 2 Northwestern University, Feinberg School of Medicine, Cell and
Molecular Biology Department, Chicago, Illinois, United States of America, 3 Imperial College London,
Department of Surgery, St. Mary’s Hospital, London, United Kingdom

* r.shattock@imperial.ac.uk

Abstract
The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sex-

ual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vac-

cine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC)

mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope.

This has led to speculation that ADCC and other antibody-dependent cellular effector func-

tions might provide an important defense against mucosal acquisition of HIV-1 infection.

However, the ability of antibody-dependent cellular effector mechanisms to impact on early

mucosal transmission events will depend on a variety of parameters including effector cell

type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and

the glycoslyation pattern of the induced antibodies. In this study, we characterize and com-

pare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64

[FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and

female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The

frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural

killer cells were similar across the three mucosal tissue compartments, but significantly

lower when compared to the FcR expression profile of effector cells isolated from whole

blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had

the highest percentage of FcR positive effector cells. Immunofluorescent staining was used

to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tis-

sues. We show that the majority of effector cells across the different mucosal locations

reside within the subepithelial lamina propria. The potential implication of the observed FcR

expression patterns on the effectiveness of FcR-dependent cellular effector functions to

impact on the initial events in mucosal transmission and dissemination warrants further

mechanistic studies.
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Introduction
The majority of new Human Immunodeficiency Virus (HIV-1) infections occur via sexual
transmission at the mucosal portals of entry, specifically the male and female genital tracts and
the rectal mucosa [1]. While it has been suggested that antibody-dependent cellular effector
functions might have important defensive roles against pathogenic infections at mucosal sur-
faces, little is known about the phenotype and density of antibody effector cells found within
these tissues.

The partial protective efficacy (31.2%) of the RV144 HIV-1 vaccine trial in Thailand [2] has
driven an enhanced interest in the role of non-neutralizing antibodies in mucosal protection.
Extensive correlates analysis of the RV144 trial identified that a reduced risk of HIV-1 acquisi-
tion was positively associated with the development of serum IgG antibodies (particularly
IgG3) to the V1V2 region of the Env trimer able to mediate antibody-dependent cellular cyto-
toxicity (ADCC) [3–5]. This positive association was negated in the presence of high levels of
IgA antibodies able to block Fc-gamma receptor (FcγR) mediated ADCC through competitive
binding to V1V2 [4]. These observations have led to the suggestion that ADCC activity might
be an important component of prophylactic vaccines against HIV-1 and potentially a mecha-
nistic correlate of protection in the RV144 trial [3, 6–11].

Antibody-dependent cellular effector functions are triggered by the localized clustering of
cell membrane Fc receptors (FcR) through binding to the Fc portion of complexed antibodies:
in the case of HIV-1, opsonized (or antibody coated) infected cells and/or cells coated with
opsonized viral particles [12]. ADCC is most efficiently triggered through antibody Fc engage-
ment of CD16 (FcγRIII), predominantly found on the surface of natural killer (NK) cells, neu-
trophils, and subpopulations of monocytes, macrophages and dendritic cells (DC) [13–15].
Engagement of CD16 triggers the directional release across the lytic synapse of the content of
cytotoxic granules and, in the case of NK cells, the expression of cell death-inducing molecules,
resulting in death of the opsonized cells. ADCC can also be triggered by crosslinking of FcγRI
(CD64) and FcγRII (CD32) on myeloid cells (monocytes, macrophages and dendritic cells),
although the mechanism and efficiency of cell-mediated extracellular lysis remains controver-
sial. However, other antibody-dependent effector functions, specifically antibody-dependent
cellular phagocytosis (ADCP) and antibody-dependent cellular viral inhibition (ADCVI) may
also impact on initial events in mucosal HIV-1 infection [16]. In contrast to ADCC, which for
myeloid cells requires incubation times of up to 24h, ADCP is reported to occur rapidly and
efficiently within 1–4h [14]. ADCP predominately acts through engagement of CD32 (FcγRII),
CD64 (FcγRI) and CD89 (FcαR) on monocytes, macrophages, and dendritic cells, leading to
phagocytosis of opsonized virus [17] and infected cells and their subsequent degradation [18].
ADCVI can be mediated by ADCC, ADCP, and the release of HIV inhibitory β-chemokines
blocking the onward infection of susceptible cells, and is a functional readout of the sum of
these antibody-mediated effector mechanisms [19–21].

In terms of vaccine design, it is important to determine the phenotype and frequency of
antibody effector cells present within the mucosal portals of HIV-1 transmission. Natural Killer
(NK) cells, Myeloid dendritic cells (mDC) and cells of a monocyte lineage (CD14+) are the pre-
dominant cells involved in Fc effector functions. Research conducted in the 1990s used RNA
and histological techniques to demonstrate expression of CD16 (FcγRIII) and CD32 (FcγRII)
on colorectal and cervical mucosa [22–25]. More recently, studies have used flow cytometry to
attempt to further characterize immune cells within cervical tissue [25, 26]. However, there
have been no comprehensive studies to characterize and directly compare immune cells from
different mucosal sites associated with the sexual transmission of HIV-1.
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The ability of antibody-dependent cellular effector mechanisms to impact on early mucosal
transmission events will depend on a variety of parameters including effector cell type fre-
quency, the class of FcR expressed, the number of FcR per cell, and the glycoslyation pattern of
the induced antibodies. Therefore, in this study we sought to determine the frequency and phe-
notype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR])
receptor expression on effector cells within penile glans, ectocervical and colorectal tissue using
tissue digestion and multicoloured flow cytometry techniques. The overall cellular profile of
immune cells within mucosal tissue was also assessed. The results from the characterization of
tissue cells were compared to those seen in red blood cell-lysed whole blood. In addition,
deconvolution immunofluorescent microscopy was used to identify the location of immune
effector cells and their associated FcR within the three types of mucosal tissue.

FcR expression on immune effector cells isolated from all three mucosal tissue types was
lower when compared to whole blood-derived immune effector cells. Where present, immune
effector cells tended to be located within the subepithelium or basale stratum of the tissue
(penile and ectocervical) or within the lamina propria (colorectal).

Materials and Methods

Tissue Samples
Ectocervical tissue (n = 5 CD14+ & CD11c FcR phentyping; n = 4 NK FcR phenotyping) was
acquired from women undergoing planned therapeutic hysterectomy at St Mary’s Hospital
(London, United Kingdom). Penile glans tissue (n = 9 CD14+ & CD11c FcR phentyping; n = 5
NK FcR phenotyping) was acquired from men undergoing elective gender reassignment sur-
gery at Charing Cross Hospital (London, United Kingdom). Surgically resected specimens of
colorectal tissue (n = 7 CD14+ & CD11c FcR phentyping; n = 3 NK FcR phenotyping) were
collected at St Mary’s Hospital (London, United Kingdom) from patients undergoing rectocele
repair and colectomy for colorectal cancer. Only healthy tissue obtained 10 to 15 cm away
from any tumour was employed.

Tissue Digestion
Tissue was cut into 3mm3 explant-sized pieces. A maximum of 5 of these pieces were further
diced using a scalpel blade and then placed into 1mL of Liberase enzyme digestion cocktail
(serum-free complete RPMI [1x penicillin/streptomycin solution (100 units, 0.1mg/mL,
respectively), 2mM L-glutamate], 12.5μg/mL Liberase DL (colorectal tissue) or Liberase TL
(penile or cervical tissue), 25μg/mL Hyaluronidase, 200μg/mL DNase) for either 1h (colorectal
tissue) or up to 3h (penile or cervical tissue) at 37°C with 1200rpm shaking. After enzymatic
digestion, the tissue was further mechanically disrupted and isolated cells were washed with
complete RPMI containing 10% foetal calf serum, collected and passed through a 50μm nylon
filter. Cells were stained with the flow cytometry panels immediately after isolation.

Whole Blood Isolation and RBC-lysis
Whole blood samples were obtained from six HIV-negative donors. The samples underwent a
red blood cell-lysis step before being stained with the flow cytometry panels. Briefly, 1x RBC-
lysis buffer (Biolegend, UK) was made up from the 10x stock using deionized water, as per
manufacturers’ instructions. 1mL of 1x RBC-lysis buffer was added to 10mL of freshly obtained
whole blood. The blood was incubated in the dark for 5 minutes before the addition of 30mL of
complete RPMI containing 10% foetal calf serum and subsequent centrifugation at 1500rpm
for 5 minutes. These steps were repeated 3 times to ensure a RBC-free pellet. To assess the
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potential impact of digestion enzymes on cells, a mock digestion was performed using Liberase
TL under the conditions for penile tissue, mentioned above.

Flow Cytometry Staining
Red blood cell-lysed whole blood or cells isolated from mucosal tissues were stained using a
combination of multicoloured flow cytometry panels designed to determine Fc-receptor
expression on CD14+ monocytic cells, mDC or NK cells. Briefly, for overall cellular phenotyp-
ing; CD3 V450 [UCHT1], CD4 PECy7 [SK3] (Biolegend), CD8 Pacific Orange [3B5] (Invitro-
gen), CD19 BV650 [SJ25C1]. For CD14 and mDC FcR Phenotyping; CD3 V450 [UCHT1],
CD14 Qdot 605 [TüK4] (Invitrogen), CD16 Pacific Orange [3G8] (Invitrogen), CD11c A700
[B-ly6], CD123 PECy5 [9F5], CD32 APC [FLI8.26], CD64 APC H7 [10.1], CD89 PE [A59],
CD19 FITC [HIB19]. For NK cell FcR phenotyping; CD15 BV650 [W6D3] (Biolegend), CD16
PECy7 [3G8] (Biolegend), CD66b FITC [G10F5] (Biolegend), CD64 APC H7 [10.1], CD56
PECy5 [HCD56] (Biolegend), CD45 A700 [HI30] (Biolegend), CD89 PE [A59], CD3 V450
[UCHT1], CD32 APC [FLI8.26]. Unless otherwise specified, all antibodies were sourced from
BD Biosciences. Anti-FcRs were able to detect antibody-occupied FcR as indicated by the man-
ufacture and in house controls. Dead cells were excluded from analysis through staining with
Aqua Viability Dye (Invitrogen).

Flow Cytometry Acquisition and Analysis
Samples were acquired using a FACS LSRIIFortessa (BD Biosciences) and analysed using
FlowJo (Tree Star, Ashland, OR, USA) and PESTLE and SPICE (National Institute of Allergy
& Infectious Diseases, USA).

Compensation matrices were created on FlowJo using single stained anti-mouse Ig, κ/nega-
tive control compensation beads (BD Biosciences).

Immunofluorescence and Imaging
Shortly after removal, all tissue samples were embedded in optimal cutting temperature (OCT)
for longitudinal sectioning of epithelium and stored at -80°C until processing. Following, tis-
sues were sectioned (12μm) and fixed in 3.7% formaldehyde in PIPES buffer and blocked with
normal donkey serum prior to staining. To identify target cells, tissues were stained with a
CD56 (BD Biosciences), CD11c (Invitrogen), or CD14 (Biolegend) antibody. Additionally, for
Fc receptor identification, CD16 (AbD Serotec), CD32 (Abcam), CD64 (Abcam), or CD89
(LifeSpan Biosciences) antibodies were utilized. Secondary antibodies, Rhodamine RedX (Jack-
son ImmunoResearch) and Cy5 (Jackson ImmunoResearch), were also used. Antibody speci-
ficity was determined by negative results with respective isotype control antibodies. Hoechst
DAPI (Invitrogen) was used for DNA staining. After staining, mounting medium (DakoCyto-
mation) and coverslips were applied and sealed with nail polish. All images were obtained by
deconvolution microscopy on a DeltaVision RT system collected on a digital camera (Cool-
SNAP HQ; Photometrics) using a 40x oil objective

Statistical Analysis
Graphs show mean values with standard deviation error bars. Kruskal-Wallis test with Dunn’s
multiple comparison test was used to compare the different tissues and WB samples. All statis-
tical analyses were performed using Prism 6 (GraphPad Software, Inc. La Jolla, CA, USA).
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Ethics Statement
Written informed consent was obtained from all donors. All tissues were collected under pro-
tocols approved by the Imperial College NHS Trust Tissue Bank and the National Research
Ethics Committee in accordance with the Human Tissue Act 2004. Approval for this project
was granted by the Imperial College Healthcare Tissue Bank, under their HTA research licence,
and ethics thus conveyed through this process by the Multi Research Ethics Committee
(MREC), Wales.

Results

Characterization of immune cell phenotypes within mucosal tissue
Flow cytometry panels were designed to characterize CD3+ T-cells, CD14+ monocytic cells,
CD19+ B-cells, myeloid dendritic cells (mDC), NK cells, NKT cells and neutrophil populations
across different mucosal portals of infection, as well as RBC-lysed whole blood.

Cells were isolated from tissue using enzymatic digestion with Liberase DL (colorectal tis-
sue) or TL (penile and cervical tissue). Enzyme concentrations were optimized and tested on
whole blood under the same digestion conditions to ensure no degradation/loss of markers of
interest (S1 Fig).

Similar percentages of NKT cells (CD3+CD56+), mDC and CD3+ T-cells were observed
across the three mucosal tissue types and whole blood, although a trend towards higher expres-
sion of CD3+ T-cells was observed for cells isolated penile tissue.

CD14+ monocytic cell percentages were statistically higher for cells isolated from whole
blood when compared to penile (P = 0.046) and cervical tissue (P = 0.037). A greater percent-
age of CD19+ B-cells were isolated from colorectal tissue when compared to penile tissue
(P = 0.037) and whole blood (P = 0.029) (Fig 1A).

NK cells (CD3-CD56+) were noted at similar percentages in viable cells isolated from whole
blood and cervical and penile tissue. There was a trend for higher percentages of NK cells iso-
lated from penile tissue when compared to all other compartments, although this difference
only reached statistical significance when compared to cells isolated from colorectal tissue
(P = 0.011) (Fig 1A).

Neutrophils (CD3-CD15+CD66b+) were the most abundant cell subset isolated from whole
blood, representing approximately 80% of all viable cells. When compared to the three tissue
compartments, there were significantly higher percentages of neutrophils isolated from whole
blood when compared to penile (P = 0.035) and cervical tissue (P = 0.011) (Fig 1A). It is impor-
tant to note that neutrophils were found infrequently within all three mucosal tissues, with too
few cell numbers acquired to perform meaningful Fc receptor expression analysis.

CD14+ Fc Receptor (FcR) expression in whole blood and mucosal
tissue compartments
CD14 is expressed on the surface of monocytic cells, mainly macrophages and dendritic cells,
which are capable of phagocytosis of invading pathogens. To understand the FcR expression
(CD16 [FcγRIII], CD32 [FcγRII], CD64 [FcγRI] and CD89 [FcαR]) on monocytic cell popula-
tions, CD14+ cells were defined using the gating strategy outlined in Fig 2A.

CD16 was detected at higher levels on CD14+ cells isolated from whole blood when com-
pared to cells isolated from all mucosal tissues, although this difference only reached signifi-
cance when compared to penile tissue (P = 0.005) (Fig 3A). CD32 was found at higher levels on
CD14+ monocytic cells isolated from whole blood when compared to penile (P = 0.005) and
colorectal (P = 0.007) tissue, whereas the lower levels of expression noted on cells isolated from
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cervical tissue did not reach significance. Higher levels of CD64 and CD89 were detected on
the surface of CD14+ cells isolated from whole blood when compared to penile (P = 0.007 &
P = 0.014, respectively), cervical (P = 0.022 & P = 0.038, respectively) and colorectal tissue
(P = 0.028 & P = 0.008, respectively) (Fig 3A).

Boolean gating was applied to investigate the combinatorial nature of the FcR expression.
Approximately half of the viable CD14+ monocytic cells isolated from the three mucosal tis-
sues were negative for all FcR when compared to whole blood, which showed co-expression of
CD32, CD64 and CD89 in approximately 65% of CD14+ cells (Fig 3B & 3C). This phenotypic
difference could be due to downregulation of FcR at the mucosal sites to prevent over-stimula-
tion of the effector cells within the mucosal environment and/or reflect terminal
differentiation.

Of the cells that were positive for FcR in all mucosal tissues, higher expression levels of
receptors associated with ADCP and ADCVI (CD32, CD64 and CD89) were observed when
compared to ADCC (CD16). Whilst it is important to note that there is no significant differ-
ence in the level of FcR expression between the three mucosal tissues, there were approximately
6-fold more CD14+ monocytic cells found in colorectal tissue when compared to penile and
cervical tissue (Fig 1B). This observation potentially means that, while the percentage of CD14
+ FcR+ cells do not differ between tissue types, there could be differences in the absolute num-
ber of cells capable of effector functions.

Fc Receptor Expression on Myeloid Dendritic Cells
Myeloid dendritic cells (mDC) are involved in antigen presentation and phagocytosis of infec-
tious pathogens. To study the frequency of FcR on the surface of these cells the mDC popula-
tion was defined as any viable cells that were CD14-, CD19- and CD11c+ (Fig 2A).

CD32 was the most predominant FcR detected on mDC isolated from mucosal cells and
whole blood. mDC isolated from whole blood expressed low levels of all FcR, with the excep-
tion of CD32, where it was detected on approximately 90% of cells (Fig 4A) and at significantly
higher levels when compared to colorectal (P = 0.036) and penile (P = 0.012) tissue. CD16 was
found at higher levels on mDC isolated from whole blood when compared to all mucosal tissue
types, reaching significance when compared to cervical (P = 0.004) and penile (P = 0.002)

Fig 1. Characterization of immune cell phenotypes within mucosal tissue and RBC-lysed whole blood. The
percentage of CD3+ T-Cells, CD14+ monocytic cells, CD19+ B cells, myeloid dendritic cells (mDC), NK cells, NKT cells
and neutrophils in total viable cells isolated from (A) penile glans (n = 9), ectocervical (n = 5) and colorectal (n = 6) tissue
andWhole Blood (n = 6). (B) Relative proportions of CD14+monocytic cells, mDC and NK cells in penile, cervical and
colorectal tissue andWhole Blood (mean and SD values shown).

doi:10.1371/journal.pone.0154656.g001
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Fig 2. Flow cytometry analysis gating strategies in FlowJo. A time gate was initially applied to exclude
any electronic noise followed by a singlet gate excluded any doublets, then a gate was applied to include the
cells of interest, followed by a viability gate to exclude any dead cells. (A) FcR analysis for both CD14+ and
mDC; CD3-negative cells were included and split into CD14+ or CD14-CD19- cells. CD14-CD19- were
further categorized based on their CD11c expression. Finally, CD14+ cells and mDC were assessed for their
FcR expression (only CD32 shown here). (B) NK FcR phenotypic analysis was assess by investigating the
CD56+ cells for their FcR expression (only CD16 shown here). Representative plots for cells isolated from
penile glans tissue.

doi:10.1371/journal.pone.0154656.g002
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tissue. There was a trend for greater levels of CD64 on the surface of mDC isolated from all
three mucosal tissues when compared to whole blood. However, the difference did not reach
significance. Similar levels of CD89 were noted across all compartments (Fig 4A).

The proportionality of mDC FcR expression across different tissue showed a greater diver-
sity of receptor expression within mucosal tissue when compared to whole blood, which almost
exclusively expressed CD32 (Fig 4B & 4C). Boolean gating, used to determine the complexity
of FcR combinatorial expression within mDC, indicated that, while a greater proportion of
mDC isolated from mucosal tissue did not express any FcR when compared to the whole
blood, the mDC that did were more diverse in their expression (Fig 4B & 4C). Although there

Fig 3. CD14+ Fc Receptor (FcR) expression in RBC-lysed whole blood andmucosal tissue
compartments. Percentage expression of CD16, CD32, CD64 and CD89 on viable CD14+ cells (A) isolated
from penile glans (n = 9); ectocervical (n = 4) and colorectal (n = 6) tissue and whole blood (n = 6) [Mean/SD
values shown; comparisons of the FcR in the different tissue were made using Kruskal-Wallis with Dunn’s
multiple comparison test]. (B) and (C) Boolean gating of FcR-positive cells to demonstrate the combinatorial
nature of FcR expression in viable CD14+ cells across the three tissues and RBC-lysed whole blood (mean
values shown).

doi:10.1371/journal.pone.0154656.g003
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was no significant difference between the percentage of mDC found in the three mucosal tis-
sues, there was a trend for increased percentages in penile and colorectal tissue (Fig 1B). This
observation could potentially impact on the absolute numbers of cells available for Fc-mediated
effector functions.

NK Cell Fc Receptor (FcR) expression in whole blood and mucosal
tissue compartments
Natural Killer cells (NK) are cytotoxic cells involved in the killing of virally infected cells
through release of cytokines. FcR play an important role in bridging the gap between these

Fig 4. Myeloid Dendritic Cell Fc Receptor (FcR) expression in RBC-lysed whole blood andmucosal
tissue compartments. Percentage expression of CD16, CD32, CD64 and CD89 on viable mDC (A) isolated
from penile glans (n = 9); ectocervical (n = 4) and colorectal (n = 4) tissue and RBC-lysed whole blood (n = 6)
[Mean/SD values shown; comparisons of the FcR in the different tissue were made using Kruskal-Wallis with
Dunn’s multiple comparison test]. (B) and (C) Boolean gating of FcR-positive cells to demonstrate the
combinatorial nature of FcR expression in viable mDC across the three tissues and RBC-lysed whole blood
(mean values shown).

doi:10.1371/journal.pone.0154656.g004
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innate cells and antibodies. To study the frequency of FcR on the surface of these cells the NK
cell population was defined as any viable cells that were CD3-, CD56+ (Fig 2B).

CD16 was the predominant FcR detected on NK cells isolated from cervical and penile tis-
sue and whole blood. Whilst there were fewer CD16+ NK cells isolated from colorectal tissue
when compared to the other compartments, this difference only reached significance when
compared to NK cells isolated from whole blood (P = 0.033). CD32, CD64 and CD89 were
seen at similar levels on NK cells isolated from cervical and colorectal tissue and whole blood,
with lower levels noted on penile tissue. However, this difference did not reach significance
(Fig 5A).

Boolean gating analysis to assess the combinatorial expression of FcR on NK cells demon-
strated that there were more FcR negative NK cells isolated from mucosal tissue when com-
pared to whole blood. This phenotypic difference was most evident for NK cells isolated from
colorectal tissue, which included approximately 65% FcR negative cells. Cells isolated from cer-
vical tissue were the most diverse in their FcR phenotype expression (Fig 5B & 5C).

A trend for a higher percentage of NK cells was noted in the penile tissue, reaching signifi-
cance when compared to the colorectal tissue (Fig 1B). Whilst this increased percentage does
not give details as to absolute numbers of NK cells present, it is important to remember that it
could impact on the number of FcR and effector cells available for further downstream
functions.

Location of immune effector cells and Fc Receptors within mucosal
tissue
To better understand the availability of immune effector cells within mucosal tissue, we used
deconvolution microscopy to determine the location of CD14+, CD11c+ or CD56+ cells within
all three mucosal tissue types. Secondary staining was used to further assess the FcR expression
within the tissues.

Within the squamous epithelium of the penile glans, CD14+ cells were almost exclusively
located in the subepithelial lamina propria. In one, rare instance, a CD14+ cell was noted
within the stratum basale (Fig 6A). Within the ectocervical tissue, CD14+ cells were found to
reside within the subepithelium and stratum basale (Fig 6B) whereas within the colorectal tis-
sue, CD14+ cells were exclusively found within the lamina propria (Fig 6C).

CD11c+ cells were exclusively found within the subepithelial lamina propria of the penile
tissue (Fig 7A), whilst they were more diffusely located throughout the squamous epithelium
of the cervical tissue, from the stratum spinosum into the stratum basale and deeper into the
subepithelium (Fig 7B). CD11c+ cells of the colorectal tissue were found to reside within the
lamina propria only (Fig 7C).

CD56+ cells of the penile tissue were the most diffusely located effector cell type that we
stained for within this tissue. Whilst the majority resided within the subepithelial lamina pro-
pria, we also observed CD56+ cells within the stratum basale and, on one occasion, a CD56
+ cell was noted near the luminal border (Fig 8A). Within cervical tissue, CD56+ cells were pri-
marily observed within the subepithelium or stratum basale (Fig 8B), whereas CD56+ cells of
the colorectal tissue were, once again, found to be exclusively located within the lamina propria
(Fig 8C). Across all mucosal tissues, co-localization of the effector cells and FcR were in line
with the flow cytometry data (Figs 6–8 & S2–S4 Figs).

Discussion
To better understand the potential of antibody-dependent cellular effector functions to impact
on initial events in mucosal HIV-1 transmission, we characterized the relative FcR expression
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levels and composition of FcR positive cells within male and female genital mucosal tissue,
colorectal tissue and RBC-lysed whole blood.

We observed similar percentages of CD3+ T-cells, NKT cells and mDC across the three tis-
sue types and whole blood. However, there were significant differences between the percent-
ages of CD14+ cells, CD19+ cells and neutrophils between tissues and whole blood.

Colorectal tissue is known to contain large numbers of B cells and is in keeping with the
observed higher numbers of CD19+ cells isolated from the colorectal tissue compared to cervi-
cal and penile glans tissue [27, 28]. Previously, it has been shown that macrophages within
intestinal and, more specifically, colonic tissue have low levels of CD14 [25, 29]. Nevertheless,

Fig 5. NK Cell Fc Receptor (FcR) expression in RBC-lysed whole blood andmucosal tissue
compartments. Percentage expression of CD16, CD32, CD64 and CD89 on viable NK (A) cells isolated
from penile glans (n = 5); ectocervical (n = 4) and colorectal (n = 3) tissue and RBC-lysed whole blood (n = 6)
[Mean/SD values shown; comparisons of the FcR in the different tissue were made using Kruskal-Wallis with
Dunn’s multiple comparison test]. (B) and (C) Boolean gating of FcR-positive cells to demonstrate the
combinatorial nature of FcR expression in viable NK cells across the three tissues and RBC-lysed whole
blood (mean values shown).

doi:10.1371/journal.pone.0154656.g005
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we show that the frequency of CD14+ cells was higher in cells isolated from colorectal tissue
when compared to penile and cervical cells, albeit at lower levels when compared to those
found in isolated RBC-lysed whole blood. It is important to note that these previous studies
focused on pure macrophage populations isolated from intestinal tissue, whereas we have per-
formed analyses on all CD14+ cells from a total viable cell population isolated from mucosal
tissue, with no further markers to absolutely confirm that these cells are of a macrophage phe-
notype. More recently, another study used confocal microscopy to show levels of CD14+ cells
in sigmoid colon and rectal mucosa are more in line with the results presented here [30]. Gut
tissue-resident macrophages are almost exclusively derived from the recruitment of blood
monocytes [31, 32] and it is therefore possible that the higher frequency of CD14+ cells
observed in colorectal tissue when compared to the two other mucosal tissues (cervical and
penile glans) investigated is linked to a higher influx of these cells from the circulation.

Fig 6. Localization of CD14+ cells within three different mucosal tissue types.Deconvolution microscopy images showing location of CD14+ cells
within Penile Glans (A), Ectocervical (B) and Colorectal tissue (C) and relative co-expression of FcR CD16 (i), CD32 (ii), CD64 (iii) and CD89 (iv). CD14 is
shown in green, the FcR are shown in red and DAPI is shown in blue. Images taken at 40x; Scale bar set to 40 microns.

doi:10.1371/journal.pone.0154656.g006
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In line with previous studies, our data show that neutrophils are the major leucocytes found
within whole blood [33], yet a minor cell subset within skin (penile glans) [34], ectocervical
[35] and colorectal tissue [36]. Indeed, we isolated so few neutrophils from mucosal tissues that
it was not possible to accurately determine the FcR expression on the surface of these cells.
Neutrophils isolated from whole blood have been shown to constitutively express CD16b and
CD89 at high levels and CD16a and CD32 at low levels [37]. CD64 can be induced to express
on the surface of neutrophils leading to increased ADCC activity [38]. Given that neutrophils
are commonly recruited during inflammation, it is possible that this cell subset could still play
an important role in vaccine-induced immunity to HIV-1.

As previously determined, where immune effector cells were found, they tended to be
located in the sub-epithelial and basal layers of the mucosal tissue [26, 28, 39, 40]. This could
be of relevance when considering the accessibility of these cells to interact with vaccine-induced
HIV-1 antibodies and prevent early viral transmission events.

Fig 7. Localization of CD11c+ cells within three different mucosal tissue types. Deconvolution microscopy images showing location of CD11c+ cells
within Penile Glans (A), Ectocervical (B) and Colorectal tissue (C) and relative co-expression of FcR CD16 (i), CD32 (ii), CD64 (iii) and CD89 (iv). CD11c
is shown in green, the FcR are shown in red and DAPI is shown in blue. Images taken at 40x; Scale bar set to 40 microns.

doi:10.1371/journal.pone.0154656.g007
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Downstream effector functions during Fc-FcR activation are dependent upon the FcR acti-
vated and effector cell phenotype. The CD16 receptor, FcγRIII, is the intermediate affinity
receptor for monomeric IgG and is most commonly associated with NK cell-mediated ADCC
activity including release of lytic vesicles containing perforin and granzyme, but also with the
induction of phagocytosis of immune complexes and cytokine release. CD32, FcγRII, is a low
affinity IgG Fc-receptor that requires antibodies to have formed immune complexes with the
antigen to trigger further downstream effects such as target cell lysis and/or phagocytosis.
CD64, FcγRI, is the high affinity IgG Fc-receptor, which has particular affinity for IgG1 and
IgG3 [41]. Lastly CD89, FcαR, is the IgA receptor, binding aggregated immunoglobulin A com-
plexed with antigen leading to phagocytosis and ADCC [42]. FcγR have been implicated in the
regulation of DC activity and are thought to play an integral role in determining whether
inflammatory or tolerogenic responses are initiated during DC antigen presentation to T cell
subsets [43].

Fig 8. Localization of CD56+ cells within three different mucosal tissue types.Deconvolution microscopy images showing location of CD56+ cells
within Penile Glans (A), Ectocervical (B) and Colorectal tissue (C) and relative co-expression of FcR CD16 (i), CD32 (ii), CD64 (iii) and CD89 (iv). CD56 is
shown in green, the FcR are shown in red and DAPI is shown in blue. Images taken at 40x; Scale bar set to 40 microns.

doi:10.1371/journal.pone.0154656.g008
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CD16, commonly associated with ADCC, was observed at high levels on NK cells isolated
from penile and cervical tissue and whole blood, but was low in colorectal tissue, in line with a
previous study, which identified NK cells within normal colorectal tissue to be of a CD56
+ CD16lo/- phenotype [44]. Low levels of CD16 expression were detected within CD14+ cells,
whereas the receptors more closely associated with the induction of ADCP and ADCVI
(CD32, CD64 and CD89) were seen at comparatively higher levels. These data suggest ADCP
and ADVCI might have increased potential over ADCC for impacting on HIV-1 transmission
events.

CD32 is thought to be the most broadly expressed FcγR on immune effector cells found in
the blood [45]. Results here support this statement and indicate that it is also the most prolific
FcγR expressed across all three mucosal tissue types investigated, with data showing high
expression levels on both CD14+ cells and mDC. CD32 is expressed as both inhibitory
(CD32B) or activating (CD32A or CD32C) forms. These are capable of modulating the
immune response depending on the presence or absence of co-stimulatory signals, such as
engagement of CD40 or Toll-like receptors, which will promote an inflammatory response in
DC [41]. Although this study was not designed to distinguish between these CD32 receptor
phenotypes, their expression across different mucosal tissue types would be important to clas-
sify in future studies. Interestingly, recent studies have shown that antibodies from HIV-1 con-
trollers and untreated progressors exhibit increased phagocytic activity, altered Fc domain
glycosylation, and skewed interactions with CD32a and CD32b in both bulk plasma and HIV-
specific IgG [18]. These data suggest specificity of vaccine-induced antibodies for CD32a over
CD32b may be important for harnessing mucosal antibody-dependent effector function.

We show significantly lower levels of CD64 on the surface of CD14+ monocytic cells iso-
lated from all three mucosal tissues when compared with freshly isolated whole blood. It is
known that loss of CD64 on cell surfaces is an early indicator of myeloid cell maturation [46].
This observation likely reflects that the CD14+ cell population found within mucosal tissue is
of a more mature phenotype than that found within whole blood and could be important when
considering the ease of inducing CD64-specific effector immune responses at mucosal surfaces
through vaccination.

CD89 expression was found at low levels on the surface on all NK cells, irrespective of their
origin. On the surface of CD14+ monocytic cells and mDC, CD89 was found at comparatively
similar levels in all three mucosal tissue types investigated but, for CD14+ monocytic cells, at
significantly lower levels when compared to the same cell types isolated from whole blood.
This observation is similar to previous studies looking at CD89 expression in tissues, including
gastrointestinal and skin [47].

FcR expression on monocytes, mDC, NK cells and neutrophils are regulated by numerous
factors. Cytokines such as IL-4 and IFN-γ have been shown to upregulate the expression of
FcγR on monocytes and PMN [48, 49] and TNF-α expression can upregulate FcγR and CD89
expression on NK cells [50, 51]. Conversely, it has been demonstrated that IL-10 downregu-
lates FcγR expression on monocytes [52]. Cytokine production in a mucosal environment, par-
ticularly within the gastrointestinal tract, can be influenced by factors such as diet, pre/
probiotics and antibiotics [53, 54]. Cyclical hormonal changes within the female reproductive
tract also alter the cytokine milieu [55, 56]. For penile tissue, differences in cytokine production
have been noted between inner & outer foreskin and the penile glans [57] and additional stud-
ies have investigated cytokine profiles in penile foreskin in healthy and HIV-1 infected individ-
uals [58–60]. Furthermore, other sexually transmitted infections are highly likely to influence
cytokine profiles and FcR expression. In broader terms, studies performed in skin also indicate
that cytokine profiles differ within this tissue when compared to the periphery [61]. It should
therefore be considered that the lower basal expression levels, but higher diversity of FcR seen
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in the three mucosal tissue tested in this study are likely as a result of differences in the local
environment when compared to effector cells isolated from whole blood.

Additionally, it is important to note that the mucosal tissues sampled in this study were all
obtained from patients attending clinics in London, UK. It is possible that FcR expression pro-
files could differ in individuals living in other parts of the world where there are additional
external influences. For example, studies have demonstrated that Plasmodium falciparum
infection induces upregulation of FcγR on monocytes and subsets of DC [62, 63]. These envi-
ronmental factors could be relevant when considering potential mucosal FcR-dependent
responses to HIV-1 vaccine trials initiated in malaria endemic areas. The data presented here
serve to provide an important baseline that will facilitate the broader study of mucosal FcR
expression in populations at high risk for HIV-1 infection.

Together, the results show that immune cells of mucosal tissue are phenotypically different
when compared to those found in the periphery, which may have important implications for
the potential of antibody-dependent cellular effector mechanisms to impact on HIV-1 trans-
mission events. To date, most in vitro ADCC assays use blood-derived NK cells, neutrophil,
monocytes or macrophages. While blood-derived monocytes mediate similar levels of ADCC
to NK cells [64], it is unclear as to the relative potency of their mucosal counterparts. Indeed,
our studies demonstrate that a large proportion of mucosal myeloid cells are negative for all
FcR. Furthermore, mucosal myeloid cells positive for FcR displayed a greater diversity of FcR
expression than those in the periphery, which presented more uniform levels of expression
within any one population. Such diversity adds additional complexity to potential tailoring of
vaccine-induced humoral responses to promote enhanced antibody-dependent effector cell
function.

In summary, we have characterized the pattern of Fc-receptor expression on CD14+ mono-
cytic cells, mDC and NK cells across three different mucosal tissues associated with HIV-1
transmission. Overall, FcR expression levels were significantly lower in effector cells isolated
from mucosal tissues than whole blood. The potential implication of the observed FcR expres-
sion patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the
initial events in mucosal transmission and dissemination warrants further mechanistic studies.
To address these issues, inhibition of virus replication by antibody-dependent effector mecha-
nisms in mucosal tissues ex vivo is currently being explored.
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