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Abstract
Tibetan pigs live between 2500 and 4300 m above sea level on the Tibetan Plateau, and

are better adapted to hypoxia than lowland pigs. MicroRNAs (miRNAs) are involved in a

wide variety of cellular processes; however, their regulatory role in hypoxia adaptation

remains unclear. In this study, miRNA-seq was used to identify differentially expressed miR-

NAs (DE miRNAs) in the cardiac muscle of Tibetan and Yorkshire pigs, which were both

raised in high elevation environments. We obtained 108 M clean reads and 372 unique miR-

NAs, which included 210 known porcine miRNAs, 136 conserved in other mammals, and

26 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 up-regulated and 10 down-

regulated miRNAs, were also found after comparison between Tibetan and Yorkshire pigs.

We predicted miRNA targets based on differential expression and abundance in the two

populations. Furthermore, the results of a Kyoto Encyclopedia of Genes and Genomes

pathway analysis suggested that DE miRNAs in Tibetan and Yorkshire pigs are involved in

hypoxia-related signaling pathways such as the mitogen-activated protein kinase, which is

the mechanistic target of rapamycin, and the vascular endothelial growth factor, as well as

cancer-related signaling pathways. Five DE miRNAs were randomly selected to validate

the results of miRNA-seq using real-time polymerase chain reaction, and the results corre-

sponded to those from the miRNA-seq, confirming that deep-sequencing methods are fea-

sible and efficient. In our study, we identified various previously unknown hypoxia-related

miRNAs in pigs, and the data obtained suggest that hypoxia-related miRNA expression pat-

terns are significantly altered in the Tibetan pig compared to other species. Therefore, DE

miRNAs may play an important role in organisms that have adapted to hypoxic

environments.
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Introduction
MicroRNAs (miRNAs) are small non-coding RNA molecules found in plants, animals, and
viruses, and are widely believed to repress gene expression by binding to specific mRNA
sequences [1–3]. Furthermore, miRNAs can be transferred to the nucleus [4] and guide the
remodeling of chromatin and silencing of gene transcription [5], resulting in de novo DNA
methylation [6]. Since miRNAs play different roles in multiple aspects of cellular function, it is
not surprising that they are involved in hypoxia-related gene regulation. Kulshreshtha et al. [7]
reported that experiencing hypoxia changes miRNA profiles in various cell types, and is affects
the hypoxia-inducible factor (HIF) signal pathway. Moreover, several hypoxia-regulated miR-
NAs play roles in cell survival in hypoxic environments and have been implicated in the regula-
tion of both upstream and downstream HIF signaling pathways, e.g., miR-20b and miR-17-92
clusters, while miR-199a regulates HIF-1α under hypoxic conditions [8–10], and miR-107,
miR-210, miR-373, miR-23, miR-24, and miR-26 are induced by HIFs [7, 11, 12].

The Tibetan pig inhabits high-altitude regions (2500–4300 m) on the Qinghai-Tibet Plateau
in southwestern China, and is well adapted to extreme elevations [13–15]. It is an ideal animal
model for investigating the molecular mechanisms of hypoxia adaptation. Hypoxia could
causes myocardial hypolasia, cardiomyopathy and reduced heart rate [16, 17]; therefore, identi-
fying the regulatory mechanism of miRNAs in Tibetan pig cardiac muscle would elucidate the
animals’ responses and molecular adaptation to hypoxic conditions, as well as enable us to
determine not only the genes involved but also understand the regulation of specific hypoxia-
related miRNAs. In this study, we conducted a comprehensive miRNA expression profile using
miRNA-seq in the cardiac muscle of Tibetan and Yorkshire pigs raised in upland environ-
ments, established an overview of differential miRNA expression, and identified key miRNAs
involved in hypoxia adaptation.

Materials and Methods

Sample preparation and RNA isolation
Sixteen 6-month-old castrated boars from populations of Tibetan pigs (TPs, n = 8) and York-
shire pigs (YPs, n = 8) that were raised at the experimental farm of the Tibet Agriculture and
Animal Husbandry College (Linzhi, 3000 m above sea level) were slaughtered and sampled.
Cardiac tissue samples were immediately frozen in liquid nitrogen and stored at -80°C until
RNA extraction. Total RNA for miRNA sequencing was extracted using TRIzol reagent (Invi-
trogen, San Diego, CA, USA) according to the manufacturer’s protocol. Extract quality was
checked using a NanoDrop™ Biophotometer 2000 (Thermo Fisher Scientific Inc., West Palm
Beach, FL, USA); a 260/280 nm absorbance ratio of 1.8–2.0 indicated a pure RNA sample.
Equal quantities of the RNA extracted from the cardiac tissue of four pigs in each population
were pooled into one. Thus, we had two duplicate samples in Tibetan pigs, two duplicate sam-
ples in Yorkshire pigs. Specific details are provided in S1 Table. The experiments were
approved by the animal welfare committee of the State Key Laboratory for Agro-Biotechnology
of the China Agricultural University (Approval number XK257). Pig farming at Linzhi was
permitted, and the field study did not involve endangered or protected species.

Library construction and sequencing
Three micrograms of total RNA per sample was used for the construction of a small RNA
library. Sequencing libraries were generated using NEBNext1 Multiplex Small RNA Library
Prep Set for Illumina1 (NEB Ltd., UK) following the manufacturer’s recommendations, and
index codes were added to attribute sequences to each sample. Polymerase chain reaction
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(PCR) products were purified on an 8% polyacrylamide gel (100 V, 80 min). DNA fragments
corresponding to 140–160 bp (the length of small noncoding RNA plus 30 and 50 adaptors)
were recovered and dissolved in 8 μL of elution buffer. The quality of the library was assessed
using an Agilent Bioanalyzer 2100 system with DNA high-sensitivity chips. Clustering of the
index-coded samples was performed on a cBot Cluster Generation System using a TruSeq SR
Cluster Kit v3-cBot-HS (Illumina Inc.), according to the manufacturer’s protocol. After cluster
generation, the library preparations were sequenced on a HiSeq™ 2000 platform and 50-bp
paired-end reads were generated. The microRNA sequencing profile data were deposited in the
Gene Expression Omnibus with the accession number GSE71550.

Data analysis
Clean reads were obtained from raw data after strictly eliminating low-quality reads, trimming
adaptor sequences, and mapping (allowing two end-nucleotide mismatches) to reference pig
genomic sequences (S scrofa10.2.72). The matched reads ranging from 15 to 35 bp were used
as a query against non-coding RNA data (rRNA, snoRNA, tRNA, etc.). After excluding reads
matching non-miRNA databases, the remaining sequences were regarded as potential miRNA
reads. Precursors of candidate miRNAs that had been assembled from the short-read library
were then searched against the pig genome to determine their location on the chromosome.
Known pig miRNAs were identified by mapping the matched mature miRNAs in miRBase20.0
to pig genome sequences. All of the unannotated reads that matched the pig genomic
sequences were analyzed using miRDeep2 to predict novel miRNAs. In addition, all candidate
novel miRNAs were classified as conserved or pig-specific, according to their sequence conser-
vation among the candidate species.

The microRNA read counts were normalized by the trimmed mean of TPM (transcript per
million) normalization method in the edgeR package [18, 19]. P-values to compare miRNA
expression levels were calculated using DEGseq software. Fold change = log2 (normalized read
counts in TP/normalized read counts in YP).

Bioinformatic analyses
For the primary analysis, the retained reads (clean reads) were mapped to the pig genome
using the custom mapping tools including the Bowtie 0.12.5 package [20] and miRDeep2 (ver-
sion mirdeep2_0_0_2) [21]. The pig genome sequence was obtained from ftp://ftp.ensembl.
org/pub/release-72/fasta/sus_scrofa/dna/Sus_scrofa.Sscrofa10.2.72.dna.toplevel.fa.gz. Clean
reads were initially mapped to miRBase20.0 (www.mirbase.org/) [22] to identify known miR-
NAs and miRNA hairpins previously characterized [23–25]. Unmappable reads were anno-
tated and classified by referencing noncoding RNAs in the NONCODE (version3.0) [26] and
Rfam 11.0 databases. Since there is no complete pig miRNA dataset in miRBase, we obtained
known mature miRNA for pigs, humans, mice, cows, and sheep (326, 257, 1908, 783, and 153,
respectively) from miRBase 20.0 for use in miRDeep (mirdeep2_0_0_2) [21] to predict novel
pig miRNA. Venn diagrams were prepared using the Venn diagram function in R, based on
lists of novel and known miRNAs identified in each group. DEGseq was used to identify DE
miRNAs in TPs and YPs. A volcano plot was generated based on log2 normalized read counts
and -log10 (P-value). The August 2010 release of the microRNA target detection software
miRanda [27] was used for target gene prediction. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [28] annotations of the miRNA targets were found using the DAVID (Data-
base for Annotation, Visualization, and Integrated Discovery) gene annotation tool[29].
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Stem-loop reverse-transcription quantitative PCR (RT-qPCR) to validate
miRNA expression
A stem-loop RT-qPCR assay was conducted to measure the quantity of specific mature
miRNA expression and validate the DE miRNAs [30]. Briefly, a miRcute miRNA First-Strand
cDNA Synthesis Kit (KR201, Tiangen Biotech Co. Ltd., Beijing, China) was used for reverse
transcription and real-time PCR according to the manufacturer’s instructions. Pig 5S and U6
snRNA was used as an internal control. All of the reactions were run in triplicate, and a mix-
ture of every cDNA sample was used for calibration. Primer sequences for miRNA amplifica-
tion are listed in S2 Table. A BioRad CFX96 (Bio-Rad, CA, USA) was used to perform the RT-
qPCR with a SYBR1 Green PCRMaster Mix (FP401, Tiangen Biotech Co. Ltd.). Eight biologi-
cal samples consisted of 8 single individuals for each group in the measurement. Relative
miRNA expression levels were calculated using the 2-ΔΔCT method [31].

Results

Overview of miRNA transcriptome profiles in pig cardiac muscle
We obtained 21.2 M to 32.0 M clean reads from each of the four small RNA libraries (S3
Table). The number of reads with 20–24 nt was greater than that of those with shorter or longer
sequences (S1 Fig). Approximately half of the sequences were 22 nt in length, which coincided
with the known specifity of Dicer processing and characteristics of mature miRNAs [32, 33].
Approximately 87% of the clean reads could be mapped to the pig genome (Sscrofa10.2.72, S3
Table).

Identification of pig miRNAs
The annotated sequences were analyzed according to the data from miRBase20.0 (containing
326 mature miRNAs and 280 hairpin precursors). According to the results, 192–202 mature
miRNAs and 230–234 hairpin precursors were identified (S3 Table). The remaining annotated
sequences were compared using the Rfam and ncRNA databases after removal of the cellular
structural RNAs, such as rRNAs, snoRNAs, snRNAs, scRNAs, and tRNAs. This revealed that
nearly all remaining sequences were known miRNAs (S2 Fig). After filtering these data, 372
unique miRNAs, comprising 210 known porcine miRNAs (S4 Table) and 162 predicted candi-
date pre-miRNAs (S5 Table), were identified. According to this program for miRDeep2 soft-
ware we identified the miRNAs that satisfy the requirements to be classified as novel, and the
secondary structure of potential precursor and the mature miRNA, star sequences and loops
were reliable. The TP and YP both expressed 201 miRNAs and in which 199 were known por-
cine miRNAs (Fig 1). In the 162 candidate miRNAs, 136 were conserved in other mammals
(human, mouse, cow, and sheep) while the other 26 were considered as novel pre-miRNAs (S5
Table). The chromosomal locations of known and novel pre-miRNAs were determined using
the pig reference genomic sequence. All miRNAs were aligned against autosomes or the X
chromosome (S4 and S5 Tables).

DEmiRNAs in TPs and YPs
Based on the criteria of a fold change either�2 or�0.5 and P� 0.05, 20 DE miRNAs were
identified when comparing 372 miRNAs between TP and YP (Fig 2 and S6 Table). Of these, 10
miRNAs (ssc-miR-210, ssc-miR-1343, 12_3058, ssc-miR-676-5p, GL894044.2_23796, 1_4279,
13_5125, ssc-miR-194b-5p, ssc-miR-142-5p, and ssc-miR-421-5p) were up-regulated and 10
(ssc-miR-101, 1_1126, 4_13655, GL892805.1_27591, ssc-miR-320, ssc-miR-7136-5p, ssc-miR-
214, ssc-miR-10b, 7_17790, and ssc-miR-206) were downregulated in the TP relative to the YP.
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Functional analysis of DE miRNAs
Using miRanda software and the Ensemble database, 2389 and 2295 target genes were pre-
dicted from the 10 up-regulated and 10 downregulated miRNAs, respectively (S7A and S7B
Table). The predicted target genes were classified in order to identify pathways that were
actively regulated by miRNAs, according to the KEGG functional annotations made using
DAVID (S8 Table, Tables 1 and 2). Thirteen putative target genes of up-regulated miRNAs
enriched the mammalian target of the rapamycin (mTOR) signaling pathway (S3 Fig), which
can be induced to enhance angiogenesis in response to hypoxia [34]. The mitogen-activated
protein kinase (MAPK) signaling pathway was enriched according to 47 putative target genes
of the up-regulated miRNAs and 53 putative target genes of the downregulated miRNAs (S4
Fig). The MAPK signaling pathway participates in the activation ofHIFs and is involved in var-
ious cellular functions, including cell proliferation, differentiation, and migration [35].

Interestingly, the renal cell carcinoma pathway was enriched by the identification of 15
putative target genes of the downregulated miRNAs (S8 Table and S5 Fig). In this case EPAS1
(Endothelial Per-Arnt-Sim (PAS) domain protein 1), EGLN3 (EGL-nine homolog-3), VEGFC
(vascular endothelial growth factor C), and EGLN1 (EGL-nine homolog-1) have been reported
to have strong high-altitude selective signatures in the TP [36, 37]. It was noteworthy that 63
target genes of the downregulated miRNAs in the TP belonged to cancer-related pathways (S6
Fig). These pathways are involved in sustained angiogenesis, proliferation, genomic damage,
and inhibition of differentiation, all of which are closely related to cancer growth and develop-
ment under hypoxic conditions [38].

Fig 1. Venn diagrams demonstrating relationships amongmiRNA in Tibetan and Yorkshire pigs. (A) Venn diagram for total miRNAs (contained novel
miRNAs and knownmiRNAs). (B) Venn diagram for known porcine miRNAs. TP and YPmiRNAs marked in blue and yellow cycle, respectively. Tibetan pigs
(TP) and Yorkshire pigs (YP).

doi:10.1371/journal.pone.0143260.g001

MicroRNA Expression Elucidates Hypoxia Adaptation in Tibetan Pig

PLOS ONE | DOI:10.1371/journal.pone.0143260 November 16, 2015 5 / 14



Validation of DE miRNAs
Expression levels of five miRNAs (ssc-miR-10b, ssc-miR-206, ssc-miR-214, ssc-miR-320, and
ssc-miR-7136-5p) in the cardiac tissues of TPs and YPs were assessed by stem-loop qPCR. The
results showed that four of the five miRNAs had significantly higher expression levels in TPs
than in YPs (Fig 3), which was consistent with the miRNA-seq data. The different expression
trends observed in the miRNA-seq data and from the RT-qPCR were uniform for five miRNAs
in the TPs and YPs (S9 Table).

Fig 2. Volcano plot displaying differentially expressedmiRNAs identified usingmiRNA-seq in Tibetan and Yorkshire pigs. The y-axis represents the
mean expression value of log10 (P-value) and the x-axis displays the log2-fold change value. Up-regulated and downregulated miRNAs are shown in red and
green, respectively. Black dots indicate genes with no significant change in expression.

doi:10.1371/journal.pone.0143260.g002
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Discussion
High-altitude populations of pigs have evolved genetic adaptations that allow for survival in
extremely hypoxic environments. Previous reports have demonstrated that TPs in particular
exhibit a distinct suite of phenotypic and physiological traits, including thin-walled pulmonary
vascular structures and high blood flow [13, 14, 39], which are shaped by natural and artificial
selection, allowing them to adapt to high-altitude environments [40]. The relatively recently
identified miRNAs constitute a novel class of master regulators that control gene expression,
and are responsible for a variety of normal and pathological cellular processes. High-through-
put sequencing has generated new insights into global gene expression, and provided evidence
for the complexity of the mammalian transcriptome and allowed for the development of miR-
NAomics [41].

In this study, miRNA profiles in the cardiac tissues of TPs and YPs, both adapted to a high-
altitude environment, were obtained using next-generation sequencing. We identified 20 DE
miRNAs in the two pig breeds, of which ssc-miR-214 downregulated expression in the TP. Pre-
vious studies have demonstrated that alcohol depresses glutathione reductase (GSR) and P450
oxidoreductase (POR) gene expression by the up-regulation of miR-214 that induces oxidative
stress, which plays an important role in responses to hypoxia [42, 43].

The most notably up-regulated miRNA in the TP (FC = 230), ssc-miR-210, is induced by
HIF1α under hypoxic conditions in mice [11, 12]. miR-210 is located on an intron of a non-
coding RNA, transcribed from AK123483 on the human chromosome 11p15.5, and its expres-
sion correlates with VEGF regulation and angiogenesis in breast cancer patients [44]. Using
bioinformatics analyses, miR-210-regulated factors have been found to be implicated in DNA
repair pathways [11], and has been found to play roles in modulating the expression of proteins
involved in the homology-dependent repair and nucleotide-excision repair pathways, and
reverses cellular DNA damage during hypoxia. Our results demonstrate that miR-210 is
expressed more in the TP than in the YP, which suggests that miR-210 could modulate key fac-
tors that are related to cellular or organic hypoxia adaptation pathways in the TP.

Based on these functional pathways, 100 putative target genes (including 47 up-regulated
miRNAs and 53 downregulated miRNAs) were enriched in the MAPK signaling pathway (S4

Table 1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for targets of the 10 up-regulated miRNAs in Tibetan pigs.

Signaling pathway term Count P-value Benjamini

Phosphatidylinositol signaling system 22 7.16E-04 0.128

Endocytosis 37 1.66E-02 0.799

Chondroitin sulfate biosynthesis 8 2.40E-02 0.787

Inositol phosphate metabolism 14 2.87E-02 0.751

O-Glycan biosynthesis 9 4.54E-02 0.831

mTOR signaling pathway 13 4.67E-02 0.782

Ubiquitin mediated proteolysis 27 5.27E-02 0.772

MAPK signaling pathway 47 5.95E-02 0.769

Pancreatic cancer 16 6.32E-02 0.750

RNA polymerase 8 8.04E-02 0.798

Apoptosis 18 8.31E-02 0.778

B cell receptor signaling pathway 16 8.47E-02 0.756

Cell cycle 24 8.67E-02 0.736

N-Glycan biosynthesis 11 9.24E-02 0.734

Renal cell carcinoma 15 9.36E-02 0.714

doi:10.1371/journal.pone.0143260.t001
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Fig). The MAPK pathway may up-regulate HIF activity, and plays an essential role in tumor
growth and transformation that depends on angiogenesis and changes in glucose metabolism
[35]. The expression of a gene that is involved in cancer and MAPK signaling pathways, FOS
(FBJ murine osteosarcoma viral oncogene homolog) (S7B Table), is increased by miR-101

Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for targets of the 10 downregulated miRNAs in Tibetan pigs.

Signaling pathway term Count P-value Benjamini

Long-term depression 23 6.11E-05 0.011

Endometrial cancer 16 2.76E-03 0.229

Pathways in cancer 63 2.86E-03 0.164

MAPK signaling pathway 53 3.27E-03 0.143

Vascular smooth muscle contraction 27 3.32E-03 0.117

Focal adhesion 42 3.71E-03 0.110

Non-small cell lung cancer 16 4.12E-03 0.105

ErbB signaling pathway 22 4.91E-03 0.109

Phosphatidylinositol signaling system 19 8.15E-03 0.157

VEGF signaling pathway 19 9.42E-03 0.163

Chronic myeloid leukemia 19 9.42E-03 0.163

B cell receptor signaling pathway 19 9.42E-03 0.163

GnRH signaling pathway 23 9.96E-03 0.157

Renal cell carcinoma 18 1.02E-02 0.148

Inositol phosphate metabolism 15 1.05E-02 0.142

Melanoma 18 1.17E-02 0.146

Insulin signaling pathway 29 1.21E-02 0.141

Pancreatic cancer 18 1.35E-02 0.147

Toll-like receptor signaling pathway 23 1.42E-02 0.146

Protein export 5 1.47E-02 0.144

Glioma 16 1.82E-02 0.166

Endocytosis 36 2.04E-02 0.176

Apoptosis 20 2.11E-02 0.174

Melanogenesis 22 2.17E-02 0.171

Chemokine signaling pathway 36 2.56E-02 0.191

Gap junction 20 2.64E-02 0.189

Fc epsilon RI signaling pathway 18 2.87E-02 0.197

Colorectal cancer 19 2.92E-02 0.193

Wnt signaling pathway 30 2.92E-02 0.187

Fc gamma R-mediated phagocytosis 20 4.84E-02 0.283

Prostate cancer 19 4.88E-02 0.277

Adherens junction 17 4.92E-02 0.271

T cell receptor signaling pathway 22 5.13E-02 0.274

Small cell lung cancer 18 5.42E-02 0.279

Basal cell carcinoma 13 5.98E-02 0.296

Progesterone-mediated oocyte maturation 18 6.54E-02 0.312

Vibrio cholerae infection 13 6.72E-02 0.312

Epithelial cell signaling in Helicobacter pylori infection 15 6.74E-02 0.305

Sphingolipid metabolism 10 7.13E-02 0.313

Notch signaling pathway 11 9.34E-02 0.384

Axon guidance 24 9.60E-02 0.385

doi:10.1371/journal.pone.0143260.t002

MicroRNA Expression Elucidates Hypoxia Adaptation in Tibetan Pig

PLOS ONE | DOI:10.1371/journal.pone.0143260 November 16, 2015 8 / 14



under hypoxic conditions [45, 46]. Furthermore, FOSmay be a potential target of ssc-miR-101,
which was downregulated in the TP in this study.

The VEGF signaling pathway regulates angiogenesis, endothelial cell growth, proliferation,
and migration, affects the permeability of blood vessels [47, 48], and plays important roles in
hypoxia adaptation. In our study, 19 putative target genes that are regulated by downregulated
miRNAs (ssc-miR-101, ssc-miR-7136-5p, ssc-miR-214, ssc-miR-10b, ssc-miR-206, and ssc-
miR-320) were found to be involved in the VEGF signaling pathway (Fig 4). VEGF up-regula-
tion by HIF is accompanied by the stability of its mRNA and an increase in translation, which
are essential for hypoxia-related angiogenesis. Another important pathway that was targeted
by downregulated miRNAs in cardiac tissue is involved in vascular smooth muscle contraction.
This pathway is associated with energy metabolism, including soluble guanylyl cyclase [49]

Fig 3. Five cardiac tissue differentially expressed (DE) miRNAs validated by reverse-transcription quantitative polymerase chain reaction.Relative
expression levels of DE miRNAs. Upper letters (a, b) on bars denote significantly different expression levels in the samemiRNA (P < 0.05).

doi:10.1371/journal.pone.0143260.g003
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and potassium and calcium channels (such as sarcoplasmic reticulum calcium ATPase) [50,
51].

Four DE miRNAs (ssc-miR-210, ssc-miR-1343, ssc-miR-142-5p, and ssc-miR-421-5p) that
are involved in the renal cell carcinoma pathway were upregulated in TPs, and the correspond-
ing target genes were EPAS1, EGLN3, EGLN1, and VEGFC. Both EPAS1 and EGLN1 are closely
associated with the high-altitude adaptation of Tibetan populations [37], and are involved in
hypoxia pathways as key regulators during chronic hypoxia [52]. Genetic variation in EPAS1
and EGLN1 is associated with Hb levels and high-altitude adaptation in Tibetan populations
[36, 53, 54]. MiRNA-pathway-enrichment analysis revealed that the miRNAs might contribute
to high-altitude adaptation by participating in signaling pathway in TPs. VEGFC is involved in
two signaling pathways: renal cell carcinoma and mTOR. Hypoxia signaling (in particular
HIF-1α) regulates the expression of VEGFC, which is one of the key lymphangiogenic factors
[55]. Liang et al. [56] reported an associative correlation between HIF-1α and VEGFC in can-
cer. Here, four DE miRNAs related to hypoxia were found to have high expression levels in
TPs, suggesting that miRNAs and target-gene regulation enabled the TP to adapt to a hypoxic
environment.

In conclusion, this study significantly increased the number of hypoxia-related miRNAs
known in the pig, and identified miRNAs with significantly altered in the TP. Using miRNA-
seq, 372 miRNAs were found in the cardiac tissues of pigs living at high altitudes. Twenty DE
miRNAs were identified and subjected to bioinformatics functional analyses. The results sug-
gest that 20 miRNAs involved in the mTOR signaling pathway, the MAPK signaling pathway,
the renal cell carcinoma pathway, various cancer pathways, the VEGF signaling pathway, and
the vascular smooth muscle contraction pathway play regulatory roles in hypoxia adaptation in

Fig 4. The VEGF signaling pathway enriched by 19 putative target genes of downregulated miRNAs.Red boxes represent the target genes of
miRNAs.

doi:10.1371/journal.pone.0143260.g004
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the TP. This study provides new insights that will advance the study adaptation to hypoxia in
humans and other mammals living at high altitude. The next step, the functional mechanism
of the DE miRNA regulating the hypoxia adaptation in the Tibetan pig was to be investigated.
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