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Abstract
Background  As a result of improvements in the early 
resuscitation phase of trauma, mortality is largely driven 
by later mortality due to multiple organ dysfunction 
syndrome (MODS), which may be mediated by an early 
overdrive in the host immune response. If patients at risk 
for MODS could be identified early, preventive treatment 
measures could be taken. The aim of this study is to 
investigate whether specific biomarkers are associated 
with MODS.
Methods  Multiple trauma patients presenting to 
the Amsterdam University Medical Centers, location 
Academic Medical Center, between 2012 and 2018 
with an Injury Severity Score of 16 or higher were 
sampled on arrival at the emergency department. A 
wide variety of inflammatory cytokines, endothelial and 
lung-specific markers were determined. Comparisons 
were made between patients with and without MODS. 
Univariate and multivariate logistic regression was used 
to determine associations between specific biomarkers 
and MODS. A p value of 0.05 was considered to be 
statistically significant.
Results  In total, 147 multiple trauma patients were 
included. Of these, 32 patients developed MODS 
(21.7%). Patients who developed MODS were more 
severely injured, had more traumatic brain injury and 
showed more deranged markers of coagulation when 
compared with patients without MODS. Overall, both 
proinflammatory and anti-inflammatory cytokines 
were higher in patients with MODS, indicative of a 
host immune reaction. In the multivariate analysis, the 
combination of anti-inflammatory proteins interleukin 
1 receptor antagonist (IL-1RA) (OR 1.27 (1.07–1.51), 
p=0.002) and Clara cell protein 16 (CC-16) (1.06 
(1.01–1.05), p=0.031) was most strongly associated 
with the development MODS.
Conclusions  In trauma, anti-inflammatory proteins 
IL-1RA and CC-16 have the potential to early identify 
patients at risk for development of MODS. Further 
research is warranted to prospectively validate these 
results.
Level of evidence  Prognostic study, level III.

Background
Improvements in the management of major bleeding 
have led to shifts in morbidity and mortality 
towards later stages in the course of trauma.1 2 These 

improvements in early trauma survival result in an 
increase in patients prone to develop inflammatory 
complications later in time, such as acute respira-
tory distress syndrome (ARDS), acute kidney injury 
(AKI) and multiple organ dysfunction syndrome 
(MODS).1 3–7 These complications all contribute 
to late mortality, which is around 20% to 30% in 
multiple trauma patients.1 2 It is hypothesized that 
the development of organ failure is mediated by 
an augmented immune response to damage-asso-
ciated molecular patterns, which are released from 
tissues in large amounts after trauma, leading to 
MODS.8–12 Multiple different pathways, including 
inflammation, coagulation and endothelial activa-
tion, are involved in the progression of MODS.13 14 
Previous studies using biomarkers to predict ARDS 
in trauma have shown that both epithelial and 
endothelial markers are involved.15 16 For example, 
Clara cell protein 16 (CC-16), which is an anti-in-
flammatory pulmonary secretory protein,17 18 and 
angiopoietin-2, a marker of endothelial activation, 
were increased in patients with ARDS compared 
with patients without ARDS.16 Other markers of 
endothelial activation include thrombomodulin-1 
and syndecan-1, which are increased in patients 
developing MODS already prior to hospital 
arrival.14 Moreover, a study evaluating biomarkers 
in the progression of AKI after trauma showed an 
early increase in interleukin 1 receptor antagonist 
(IL-1RA), indicating an upregulation in blocking of 
interleukin 1 pathways.19 Another study evaluating 
the prehospital immune response showed potential 
relationships between both immune activation and 
suppression in patients with MODS, underlining 
the multifactorial process.20 Additionally, evalua-
tion of immune cell genes revealed a specific upreg-
ulation of pathways associated with cell death and a 
hyperacute innate immune response.13

Currently, however, it is unclear which markers 
from these different inflammatory pathways, 
endothelial activation pathways and/or lung-spe-
cific damage markers are most strongly correlated 
with the development of organ failure.21–23 If 
early measured biomarkers are associated with 
MODS, early targeted treatment strategies could 
be initiated.

The aim of this study was to identify biomarkers 
of inflammation, endothelial activation and markers 
related to lung-specific damage early in the course 
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of trauma and investigate which of these biomarkers were most 
strongly associated with the development of MODS.

Methods
Study participants
This cross-sectional study was conducted as a substudy of the 
observational prospective cohort study ‘Activation of Coagula-
tion and Inflammation in Trauma-3 (ACIT-3)’.24

Patients from 2012 to 2018 admitted to the level 1 trauma 
unit were eligible for inclusion. Inclusion criteria were adult 
(18 years or older) patients suffering from blunt or penetrating 
trauma with vital signs indicative of shock (e.g. heart rate of 
120 bpm or more, systolic blood pressure of 90 mmHg or less, 
or estimated blood loss >500 mL) or suspicion of one of the 
following clinical diagnoses: femur fracture, multiple rib frac-
tures, pneumothorax, severe abdominal injury or pelvic frac-
tures. Exclusion criteria were transferal from another hospital, 
presentation longer than 120 minutes after trauma, receipt of 
more than 2000 mL of crystalloids infusion prior to admission, 
burn injury of more than 5% of their body surface, use of anti-
coagulant medication, known bleeding diathesis or known liver 
disease (Child-Pugh classification B or C).

Baseline hemodynamic vital variables were recorded. Trau-
matic brain injury (TBI) was scored as a head abbreviated Injury 
Severity Score (ISS) of 3 or more. Blood gas analysis and labora-
tory tests were assessed.

In this substudy, patients who had an injury severity (ISS) of 
16 or higher were selected. Patients were further subdivided into 
patients with and without MODS.

Outcome parameters
ARDS was diagnosed according to the Berlin criteria.25–27 
Patients with AKI stage I, II or III, as determined using the RIFLE 
criteria (acronym for Risk of renal dysfunction, Injury to the 
kidney, Failure of kidney function, Loss of kidney function and 
End-stage kidney disease), were scored.28 29 MODS was defined 
by sequential organ failure assessment score of 3 or higher in 
two or more organ systems, scored from 48 hours after trauma 
onwards. Furthermore, ventilator-days, intensive care stay, total 
length of stay in hospital and early (24 hours) and late mortality 
(30 days) were recorded.

Laboratory analysis of biomarkers
Whole blood was collected in EDTA tubes at trauma presentation 
in the emergency department (ED). Plasma was prepared with a 
single centrifugation step (1750G, 10 minutes, 18°C, Eppendorf 
5804R). The upper two-thirds of the plasma was collected and 
stored at −80°C for later analysis. Plasma samples were assessed 
using a multianalyte luminex kit (R&D Systems, Minneapolis, 
USA), consisting of the following biomarkers: myeloperoxidase 
(MPO), tumor necrosis factor-α (TNF-α), TNF-α receptor 1 
and 2 (TNF-R1 and TNF-R2), interleukin 6 (IL-6), interleukin 
8 (IL-8), receptor for advanced glycation end-products (RAGE), 
first apoptosis signal (FAS) ligand, surfactant protein D (SP-D), 
Krebs von den Lungen-6 (KL-6), IL-1RA, interleukin 10 (IL-10), 
macrophage migration inhibitory factor-1α (MIF-1α), CC-16, 
E-selectin, tissue factor (TF), intercellular adhesion molecule 1 
(ICAM-1), vascular cellular adhesion molecule 1 (VCAM-1) and 
plasminogen antigen inhibitor 1 (PAI-1). This panel was chosen 
based on previous literature on inflammation,19 30 31 endotheliop-
athy14 and lung-specific complications16 in trauma.

Statistical analysis
Statistical analysis was done using SPSS Statistics V.25 (IBM), 
graphs were made employing PRISM V.8 (GraphPad, California, 

USA). Values of biomarkers below the detection value were rated 
as half of the lowest detectable value.32

Normality was checked using Kolmogorov-Smirnov test and 
visual assessment of histograms. For normal distributed data, 
Student’s t-test was used, and a Mann-Whitney U test was used 
for non-parametric data. χ2 test or Fisher’s exact test was used to 
detect differences between proportions.

After assessing the association between potential biomarkers 
and MODS, a univariate logistic regression was made using each 
biomarker independently. Biomarkers with p value <0.10 were 
further evaluated in the multivariate regression analysis using 
forward selection. A maximum of three association measures 
was used in the final multivariate regression analysis.33

Receiver operating curves were made to visualize the potential 
sensitivity and specificity of biomarkers. The combined estimate 
was calculated using the estimate calculation from the multivar-
iate regression analysis. A p value <0.05 was considered to be 
statistically significant.

Results
Baseline characteristics
In total, 189 patients with an ISS of 16 or higher were included in 
ACIT trial between 2012 and 2018. Of the 189 patients, 42 were 
retrospectively excluded in this substudy based on: no informed 
consent obtained (n=33), anticoagulant medication use (n=4), 
time from hospital to admission longer than 2 hours (n=3), and 
burn injury of more than 5% of body surface (n=2). The base-
line characteristics of the included patients (n=147) are shown 
in table 1. 21.7% of patients developed MODS, with a median 
time to development of 3 days. The most prevalent complica-
tion was AKI (13.6%) followed by ARDS (6.8%). Patients with 
MODS had significantly higher ISS compared with patients 
without MODS, more often had brain injury, had a higher base 
deficit on arrival and had more deranged coagulation parame-
ters. As expected, patients with MODS had longer intensive care 
unit and hospital stay than patients without MODS. As patients 
need to survive the initial hit of trauma, early mortality occurred 
only in patients without MODS and was related either to TBI 
(80.0%) or exsanguination (20.0%). Reasons for late mortality 
included severe TBI (58.3%), severe organ failure (25.0%), 
circulatory collapse (8.3%) and psychiatric condition leading to 
suicide (8.3%). In patients who survived the first 24 hours but 
died within 30 days, mortality occurred after a median of 7.5 
days.

Biomarkers are associated with multiple organ failure
Patients who developed MODS had significantly higher base-
line levels of proinflammatory cytokines (IL-6, IL-8, TNF-R1, 
FAS ligand, RAGE and MPO) than patients without MODS. 
Also, higher levels of baseline IL-1RA were seen in patients with 
MODS compared with patients without MODS (table 2), indic-
ative of an elevated anti-inflammatory response.

Baseline endothelial markers such as TF, ICAM-1, VCAM-1 
and E-selectin did not differ between groups (table 2). CC-16, 
but not other lung-specific markers, was significantly higher in 
patients developing MODS compared with patients without 
MODS. In the univariate analysis IL-1RA and CC-16 were most 
strongly associated with the development of MODS (table 3). 
This association remained after correcting for injury severity. 
Receiver operating characteristic curve revealed fairly good 
prediction of MODS using CC-16 (area under the curve (AUC) 
0.70), IL-1RA (AUC 0.73) and a two-biomarker model (AUC 
0.76) (figure 1).
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Table 1  Baseline characteristics

Parameter
All patients
(n=147)

No MODS
(n=115)

MODS
(n=32) P value

Demographics

 � Age (years) 53 (31–64) 53 (35–64) 50 (28–68) 0.959

 � Female sex, n (%) 40 (27.2) 25 (21.7) 15 (46.9) 0.005

 � Blunt injury, n (%) 141 (95.9) 110 (95.7) 31 (96.9) 0.757

 � Injury Severity Score 22 (17–29) 20 (17–27) 25 (22–30) 0.010

 � TBI, n (%) 88 (59.9) 64 (55.7) 24 (75.0) 0.048

Laboratory parameters

 � pH 7.37 (7.32–7.41) 7.38 (7.33–7.41) 7.34 (7.26–7.38) 0.002

 � PaCO2 (mm Hg) 42.8 (26.8–48.0) 42.8 (36.0–48.0) 45.4 (39.6–49.9) 0.094

 � P/F ratio (mm Hg) 315.0 (172.5–442.9) 333.8 (173.1–461.1) 220.5 (147.5–351.0) 0.069

 � Lactate (mmol/L) 2.1 (1.3–3.0) 2.0 (1.3–3.0) 2.2 (1.4–3.1) 0.917

 � BE −1.5 (−3.6 to 0.5) −1.2 (−3.1 to 0.8) −2.7 (−6.1 to −0.6) 0.005

 � Leukocytes (×109/L) 10.8 (7.9–15.1) 11.1 (8.1–15.0) 10.2 (7.2–15.7) 0.555

 � Hb (g/dL) 12.5 (8.9–13.8) 12.8 (9.8–14.0) 9.6 (7.0–12.5) <0.001

 � Creatinine (µmol/L) 73.0 (62.0–90.3) 73.0 (62.0–90.3) 70 (61.3–92.0) 0.913

 � ALT (U/L) 31.0 (21.0–64.0) 31.5 (22.0–63.3) 28.0 (18.0–71.0) 0.733

Coagulation

 � Platelet count (×109/L) 217.5 (58.3) 220.6 (57.6) 203.0 (60.7) 0.690

 � PT (s) 11.8 (11.3–12.6) 11.7 (11.3–12.4) 12.7 (11.7–14.7) 0.001

 � aPTT (s) 24.0 (22.0–26.0) 24.0 (22.0–26.0) 25.0 (23.0–28.0) 0.008

 � Fibrinogen (g/L) 2.2 (0.7) 2.3 (0.7) 1.8 (0.6) 0.003

 � D-dimer (mg/L) 10.3 (3.5–32.0) 9.4 (3.3–32.0) 14.3 (5.1–30.0) 0.515

Outcomes

 � Ventilation (days) 1 (0–4) 0 (0–1) 10 (4–16) <0.001

 � ARDS, n (%) 10 (6.8) 1 (0.9) 9 (28.1) <0.001

 � AKI, n (%) 20 (13.6) 4 (3.5) 16 (50.0) <0.001

 � MODS, n (%) 32 (21.8) 0 (0) 32 (100) ND

  �  With ARDS 9/32 0 9/32 ND

  �  With AKI 16/32 0 16/32 ND

  �  With ARDS and AKI 6/32 0 6/32 ND

 � Length of ICU stay (days) 2 (1–5) 1 (0–3) 13 (6–19) <0.001

 � Total length of stay (days) 8 (5–19) 7 (4–15) 24 (13–35) <0.001

 � 24-hour mortality, n (%) 10 (6.8) 10 (8.7) 0 (0) 0.119

 � 24-hour to 28-day mortality, n (%) 12 (8.2) 3 (2.6) 9 (28.1) <0.001

Data are represented as number (percentage), median (IQR) or mean (SD). MODS was defined as a sequential organ failure assessment (SOFA) score of 3 or more in two or more 
organ systems. TBI was defined as an abbreviated head injury score of 3 or higher.
Comparisons were made between patients with and without MODS.
AKI, acute kidney injury; ALT, alanine amino transferase; aPTT, activated partial thromboplastin time; ARDS, acute respiratory distress syndrome; BE, base excess; FiO2, fractional 
inspired oxygen; Hb, hemoglobin;ICU, intensive care unit; MODS, multiple organ dysfunction syndrome;ND, not determined; PaCO2, partial pressure of carbon dioxide; PaO2, 
partial arterial oxygen pressure;P/F, PaO2/FiO2; PT, prothrombin time;TBI, traumatic brain injury.

Discussion
The aim of this study was to examine the potential prognostic 
properties of plasma biomarkers to identify patients at risk for 
development of MODS after trauma. In this cohort of severely 
injured patients, 21.7% developed MODS. An early increase in 
anti-inflammatory proteins IL-1RA and CC-16 at presentation 
to the ED was associated with the development of MODS after 
3 days, which was independent of the ISS.

In this study, proinflammatory cytokines were higher in 
patients with MODS compared with patients without MODS, 
but these were not independently associated with development 
of MODS. The strongest association was found with the anti-in-
flammatory biomarker IL-1RA. Previous studies have shown a 
profound immune cell activation in trauma with components of 

activation and suppression, occurring already at ED presenta-
tion.20 This suppression of immune cells after trauma, depicted 
by lower cytokine production, was also present in this cohort. 
Previously, we showed that the ex vivo ability of these trauma 
patients to generate an immune response to lipopolysaccha-
ride stimulation was impaired when compared with healthy 
volunteers.34 Also, trauma patients have lower expressions of 
monocyte toll-like receptors compared to healthy volunteers.35 
Furthermore, underlining these results, a study performed in 
166 polytrauma patients revealed a similar pattern of early IL-10 
release and a decrease in human leukocyte antigen—DR isotype 
expression, potentially reducing macrophage functions.36 Addi-
tionally, although based on a small number of patients (n=44), 
major trauma was associated with an impairment of neutrophil 
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Table 2  Panel of systemic and lung proinflammatory and anti-inflammatory, endothelial and coagulation biomarkers

Biomarkers
All patients
(n=147)

No MODS
(n=115)

MODS
(n=32)

MPO (ng/mL) 29.3 (20.2–44.7) 25.8 (18.2–41.7) 35.7 (26.2–58.8)**

TNF-α (pg/mL) 6.9 (1.7–13.4) 7.9 (1.7–13.2) 1.7 (1.7–14.6)

TNF-RI (pg/mL) 1766.4 (1292.4–2460.4) 1627.1 (1218.0–2288.7) 2280.1 (1631.9–3427.1)**

TNF-RII (pg/mL) 1665.0 (1226.8–2340.3) 1628.3 (1203.4–2309.7) 1841.1 (1314.4–3058.9)

IL-6 (pg/mL) 23.2 (13.6–60.4) 21.8 (11.2–45.5) 39.8 (21.4–108.2)**

IL-8 (pg/mL) 8.9 (5.8–15.6) 8.5 (5.4–13.0) 11.6 (8.0–24.8)**

RAGE (pg/mL) 1844.4 (1242.5–3423.0) 1670.3 (1151.3–3408.9) 2302.2 (1677.8–3439.9)*

FAS ligand (pg/mL) 54.7 (36.0–68.9) 51.5 (31.6–67.3) 58.1 (48.5–83.3)*

SP-D (ng/mL) 9.1 (5.8–13.4) 9.3 (6.5–13.1) 7.2 (5.2–14.0)

KL-6 (pg/mL) 18.9 (10.7–26.6) 19.3 (11.0–27.0) 17.2 (10.4–25.6)

IL-1RA (pg/mL) 861.8 (603.3–1394.4) 774.6 (569.9–1277.7) 1284.6 (777.2–2911.2)***

IL-10 (pg/mL) 19.4 (0.8–48.7) 18.9 (0.8–46.6) 32.7 (0.8–50.3)

MIF-1α (pg/mL) 228.5 (143.7–266.4) 228.5 (141.8–264.4) 233.2 (158.0–288.9)

CC-16 (ng/mL) 14.0 (8.0–25.7) 12.3 (7.4–21.4) 25.0 (14.1–44.1)***

E-selectin (ng/mL) 16.6 (12.9–22.2) 17.5 (13.0–22.8) 16.2 (11.1–19.5)

TF (pg/mL) 30.7 (24.1–37.8) 30.5 (24.1–37.8) 31.3 (23.9–38.2)

ICAM-1 (ng/mL) 225.1 (162.4–324.8) 233.4 (162.4–324.8) 206.9 (159.5–336.1)

VCAM-1 (ng/mL) 769.1 (571.9–984.6) 769.1 (578.0–992.3) 776.8 (558.9–939.0)

PAI-1 (ng/mL) 3.8 (0.8–26.4) 3.7 (0.8–25.0) 9.5 (0.7–31.7)

Data are represented as median with IQR. Comparisons are made between patients with and without MODS.
*p<0.05; **p<0.01; ***p<0.001.
CC-16, Clara cell protein 16; FAS, first apoptosis signal; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; IL-1RA, interleukin 1 receptor antagonist; KL-6, Krebs von 
den Lungen-6; MIF-1α, macrophage migration inhibitory factor-1α; MODS, multiple organ dysfunction syndrome; MPO, myeloperoxidase; PAI-1, plasminogen antigen inhibitor 
1; RAGE, receptor for advanced glycation end-products; SP-D, surfactant protein D; TF, tissue factor; TNF-α, tumor necrosis factor-α; TNF RI (CD120a), tumor necrosis factor-α 
receptor I; TNF RII (CD120b), tumor necrosis factor-α receptor II; VCAM-1, vascular cell adhesion molecule 1.

Table 3  Increased levels of IL-1RA and CC-16 are associated with MODS

Parameter
Univariate model
OR (95% CI) P value

Multivariate model
OR (95% CI) P value

ISS 1.04 (1.00 to 1.08) 0.040 ND 0.482

IL-1RA (ng/mL) 1.27 (1.07 to 1.51) 0.001 1.22 (1.02 to 1.47) 0.002

CC-16 (ng/mL) 1.03 (1.01 to 1.05) 0.001 1.03 (1.01 to 1.05) 0.031

Multivariate logistic regression model with forward selection to a maximum of three variables.
MODS was defined as a sequential organ failure assessment (SOFA) score of 3 or more in two or more organ systems.
CC-16, Clara cell protein 16; IL-1RA, interleukin 1 receptor antagonist;ISS, Injury Severity Score; MODS, multiple organ dysfunction syndrome; ND, not determined.

function.37 Interestingly, in mice with TBI and tibia fracture 
receiving IL-1RA treatment, a decrease in neutrophil activation 
markers and cerebral edema was seen.38 The exact mechanism 
of immune paralysis directly after trauma is poorly understood. 
Our results suggest that IL-1RA might play a role in the progres-
sion of MODS.

In line with this, we found that CC-16 levels in patients with 
MODS were higher compared with patients without MODS. 
CC-16 is also an anti-inflammatory protein and suggested 
as biomarker for the development of pneumonia in trauma 
patients.17 In a study of 101 polytrauma patients with severe chest 
trauma, higher levels of CC-16 were found at admission and day 
2 in patients who developed pneumonia compared with patients 
without pneumonia.17 Furthermore, patients with ARDS from 
multiple causes including trauma showed higher levels of CC-16 
compared with patients without ARDS.39 In this study, 28.1% 
of patients with MODS also fulfilled the ARDS criteria, which 
could partly explain the association of CC-16 with the develop-
ment of MODS in this study. The anti-inflammatory effects of 
CC-16 have been studied in a murine model of thoracic trauma. 

In this study, mice were treated with anti-CC-16 antibodies or 
IgG directly after trauma. Early anti-CC-16 treatment was asso-
ciated with more neutrophil infiltration and more damaged lung 
tissue compared with IgG vehicle-treated mice.40 Taken together, 
in the present study MODS seemed more related to anti-inflam-
matory proteins than to proinflammatory proteins. It remains to 
be determined how these cytokines contribute to organ failure 
after trauma, as their function is thought to be inhibition of the 
inflammatory response to prevent further tissue damage. We 
speculate that an overshoot in inflammation causes an overshoot 
in anti-inflammatory proteins. Alternatively, IL-1RA in trauma 
may exert more functions than inhibition of IL-1, in a fashion 
which is as yet undetermined.

Remarkably, markers of endothelial dysfunction did not differ 
between patients with and without MODS. Both groups had 
elevated VCAM-1 and ICAM-1 levels at presentation, indicative 
of endothelial barrier dysfunction, which is in line with previous 
literature.41 However, the finding that patients with MODS did 
not exhibit more endothelial dysfunction at presentation is in 
contrast with previous findings. These studies showed persistent 
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Figure 1  Receiver operating characteristic (ROC) curve of a single and 
two-biomarker model. Receiver-operator curve with CC-16, IL-1RA and 
a logistic estimate of these two biomarkers combined. AUC, area under 
the curve; CC-16, Clara cell protein 16; IL-1RA, interleukin 1 receptor 
antagonist.

higher syndecan-1 and thrombomodulin levels in patients who 
developed MODS.14 An explanation for this result could be 
that endothelial barrier function was measured with different 
biomarkers in this study (e.g. TF, ICAM-1, VCAM-1), which 
might increase later in the course of trauma42 than markers of 
glycocalyx degradation (eg, syndecan-1 and thrombomodulin). 
Alternatively, differences between the timing of measurement of 
biomarkers may have played a role.

This study has several limitations. Patients with MODS 
differed from patients not developing MODS. They were more 
often female and more often had TBI compared with patients 
without MODS. Also, these patients had higher base deficits 
and had more deranged coagulation parameters. Many factors 
contribute to the development of MODS including trauma 
mechanism, shock, coagulopathy and resuscitation strategies.43 44 
Due to the limited number of MODS in this cohort, correction 
in the association model was limited. However, we did correct 
for injury severity, which is associated with many of these param-
eters, including shock, coagulopathy and TBI.45

In conclusion, in this study, increased levels of anti-inflamma-
tory proteins CC-16 and IL-1RA were associated with the devel-
opment of MODS in trauma patients. Future research should 
validate these results in other trauma cohorts. Furthermore, the 
mechanisms by which anti-inflammatory pathways contribute to 
trauma-related MODS should be further studied.
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