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Abstract

The spontaneous dynamics of the brain modulate its function from moment to moment, shaping 

neural computation and cognition. Functional MRI (fMRI), while classically used as a tool for 

spatial localization, is increasingly being used to identify the temporal dynamics of brain activity. 

fMRI analyses focused on the temporal domain have revealed important new information about 

the dynamics underlying states such as arousal, attention, and sleep. Dense temporal sampling – 

either by using fast fMRI acquisition, or multiple repeated scan sessions within individuals – can 

further enrich the information present in these studies. This review focuses on recent developments 

in using fMRI to identify dynamics across brain states, particularly vigilance and sleep states, and 

the potential for highly temporally sampled fMRI to answer these questions.

Brain states fluctuate across seconds, minutes, hours and days, dynamically shaping neural 

computation. This state-dependence of brain function allows flexible behaviors across 

behavioral contexts. One striking example is how our responses to the environment are 

dramatically altered when we fall asleep; however, the effects of brain states are evident 

within the awake brain as well, due to fluctuations in attention, mood, arousal, and 

circadian and seasonal rhythms. Approaches that can identify brain states are thus critical 

for understanding variability in behavior and cognition, and determining how ongoing brain 

dynamics modulate neural computation.

Tools for assessing brain states are rapidly evolving. Large-scale coupled activity across 

distributed brain regions was discovered through temporal correlations in fMRI signals, 

termed ‘functional connectivity’ [1]. Although the origins and nature of spontaneous activity 

are still incompletely understood, studies using direct neural recordings have confirmed that 

brainwide, large-scale dynamics are strongly coupled to ongoing sensory processing and 
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behavior [2–9], and can reflect offline cognitive processing such as replay and memory 

consolidation during sleep [10–14]. In humans, many questions about dynamic brain states 

have been primarily studied using EEG, which provides high temporal resolution to resolve 

rapid activity and oscillatory markers of distinct brain states such as sleep, but lacks spatial 

resolution and is not sensitive to deep brain structures. In recent years, fMRI has once again 

provided a new avenue for assessing brain states with whole-brain resolution, in particular 

through approaches that focus on its temporal dynamics.

fMRI is an indirect measure of brain function, sampling blood-oxygenation-level-dependent 

(BOLD) signals linked to neural activity [15,16]. Task-driven BOLD changes are related 

to induced neural activity [17], and human and animal studies have also confirmed links 

between spontaneous neural dynamics and hemodynamic signals within the resting state 

[18–24]. Because of the relatively slow sampling rates of conventional fMRI protocols 

(~2−3 s), and the presumed sluggishness of the hemodynamic response, BOLD fMRI 

has been extensively used to investigate activity at slow timescales. Major applications 

have included spatially mapping responses to cognitive tasks on long timescales (>2 s), 

or tracking spontaneous signals at very low frequencies (<0.1 Hz). However, two recent 

lines of research have developed highly temporally sampled approaches that support fMRI 

investigations of changes in brain state. First, repeated scanning of single individuals, in 

sessions across multiple days or months, has been used to identify how neural states and 

dynamics shift over time. Second, advances in acquisition technology such as simultaneous 

multislice imaging [25–28] have enabled researchers to acquire whole-brain images with 

sampling rates of hundreds of milliseconds. These fast fMRI approaches offer the potential 

to capture rapidly varying neural activity and fast dynamics within single scan sessions, 

while simultaneously providing the spatial coverage of fMRI to assess interactions between 

multiple areas across the whole brain.

These advances have now enabled neuroscientists to investigate multiple aspects of brain 

states, such as the functional properties of spontaneous BOLD signals observed in the 

temporal domain, and altered brain function within individuals across minutes, days and 

months. In particular, high temporal sampling within individuals – whether rapid sampling 

within a scan session, or repeated sampling across many sessions – has revealed significant 

new information about the temporal dynamics of brain states. This review will focus on 

recent advancements in highly temporally sampled fMRI and its potential for understanding 

the dynamics of human brain states.

The temporal sampling of fMRI studies has advanced

The original whole-brain fMRI studies used repetition times (TRs) of around 2 3 s, 

limiting imaging to slow timescales. This slow imaging was originally not thought to be 

a major constraint, as the fMRI signal temporal resolution is ultimately determined by 

the timescale of the hemodynamic response. The hemodynamic response unfolds relatively 

slowly, peaking several seconds after neural activation, and conventional models, therefore, 

originally predicted that fMRI signals would only contain slow dynamics, with little added 

benefit from faster sampling. However, even early studies showed signs of potentially faster 

dynamics [29], scanning rapidly by acquiring just a few slices rather than whole-brain 
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images. New fMRI acquisition strategies based on simultaneous multislice imaging – also 

termed multiband imaging – have matured in the last decade [30], enabling whole-brain data 

to be acquired in just a few hundred milliseconds. These multiband techniques were adopted 

by large-scale consortia such as the Human Connectome Project [114], which scanned 1200 

individuals using a TR of 720 ms, setting a new standard for fMRI temporal resolution.

Taking advantage of this increased temporal resolution, multiple resting-state fMRI studies 

demonstrated that higher-frequency signals are present in the BOLD fMRI signal than were 

originally predicted, well above 0.1 Hz [31–35]. To elucidate the neural basis of fast fMRI 

signals, a task-based study then used visual stimuli test the temporal resolution of fMRI 

signals in a controlled manner, by inducing neural oscillations of known frequency, and 

determined that signals of up to 0.75 Hz, that is, subsecond dynamics, could be detected 

[36]. Subsequent task studies have used this fast sampling to detect even faster signals in 

rodents [37], and to identify fast fMRI dynamics linked to language and autonomic function 

[38,39]. High temporal sampling thus does not just provide more data, but can also enable 

detection of faster dynamics in the fMRI signal.

In addition to faster imaging, recent studies have used long-term, repeated imaging of 

individual participants to track changes in brain state over time. The Midnight Scan Club is 

one such project, in which individuals were imaged 10 times each [40]. Many Midnight 

Scan Club papers have now been published and demonstrate the insights that can be 

achieved with repeated measures within individuals – in particular, measuring dynamics 

across multiple days allows investigation of which brain state dynamics are stable or 

evolving on long timescales [41,42].

High temporal sampling provides three key advantages when imaging the dynamics of 

brain states. The first is simple: higher temporal sampling means more data (Figure 1a,b). 

fMRI datapoints are correlated over time, so doubling the sampling rate or number of 

sessions does not double the amount of information present, but does increase it. Multiband 

imaging can provide higher statistical power and better estimation of physiological noise 

[43–45]. Second, when examining dynamics underlying distinct brain states, the brain states 

themselves can fluctuate; imaging more rapidly or for longer periods enables capturing 

these fluctuations over time. Third, increasing evidence demonstrates that complex temporal 

features of the fMRI signal carry information about brain function, and these temporal 

features can often be better identified with higher temporal resolution data (Figure 1c,d).

Many aspects of spontaneous temporal dynamics carry information about 

brain function

These high-temporal-sampling approaches for fMRI provide a substantial advantage for 

assessing neural dynamics across brain states. Many of the first investigations of dynamic 

changes in brain states focused on dynamic functional connectivity: using sliding time 

windows to test how functional connectivity measures change over time [46,47]; see 

Ref. [48] for a review. Simultaneous EEG–fMRI recordings demonstrated that dynamic 

functional connectivity is coupled to neurophysiological state [49,50]. Increased temporal 

sampling can substantially improve measures of dynamic connectivity (Figure 1), by 
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allowing smaller time windows to be used for connectivity calculations (effectively 

increasing the temporal resolution) and by enhancing separation of physiological signals and 

detection of faster fMRI dynamics. Because of autocorrelation of the fMRI signal, window 

sizes cannot be made arbitrarily small and caution is still needed in interpreting dynamic 

signals [51], but even when holding window length constant the increased sampling can 

enable more accurate estimation of correlations.

Beyond dynamic functional connectivity, increasing evidence demonstrates that other 

temporal properties of fMRI signals may carry essential information about brain states: 

for example, individual activation events, or faster components of the BOLD signal. An 

intriguing line of work is the development of techniques to identify individual events across 

networks in the BOLD signal, that may drive correlation metrics [52,53]. These events 

may be linked to specific sequences of neural activity, and rapidly sampled fMRI could 

improve event detection and enhance future studies aiming to understand the link between 

these dynamics and cognitive states. A related approach is to identify temporal sequences of 

brain states, as was done in a recent study using Hidden Markov models to identify distinct 

brain states and their corresponding temporal occupancy and transition probabilities [54]. 

Furthermore, while parcellations of specific cortical regions are often used to extract signals 

within each region, a recent study demonstrated that the parcellations themselves are state­

dependent [55•]. This observation further complicates the analysis of cortical dynamics, but 

also intriguingly suggests that functional parcellations may be temporally dynamic features 

of brain activity.

Further studies of temporal dynamics of the BOLD fMRI signal are a promising approach 

for understanding the underlying neural activity, as the interpretation of functional 

connectivity is quite complex. For example, a study in mice revealed that silencing of 

the prefrontal cortex led to paradoxical brain-wide resting state fMRI overconnectivity 

linked to increased interareal delta coherence [56]. By this logic, increased slow waves 

during sleep might also be expected to increase functional connectivity, despite representing 

decreased neuronal activity and perhaps corresponding to disrupted effective connectivity. 

Such findings bring up the challenges of using functional connectivity as a unidimensional 

indicator of brain-wide communication, and emphasize the importance of rhythmic activity 

to the establishment of apparent functional coupling. Incorporating distinct temporal features 

of the fMRI signal, such as spectral frequency content or event structures, may help shed 

light on these other aspects of neural coupling, and studies linking neural dynamics and 

synchrony to fMRI signals [23,53,57,58] will be important to aid with their interpretation.

fMRI dynamics across distinct arousal and cognitive states

Many of the investigations of brain arousal states with fMRI have focused on sleep, due 

to its profound modulation of behavior and cognition. Sleep studies typically use EEG to 

identify sleep stages, and then analyze the associated fMRI dynamics. Simultaneous EEG–

fMRI sleep studies demonstrated that functional connectivity is modulated across the stages 

of non-rapideye-movement (NREM) sleep [59–61,115–118] and connectivity and activity 

measures are further coupled to individual EEG events such as sleep spindles and slow 

waves [62–64]. These dynamics can in fact be used to predict sleep stage [65], and applying 
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this prediction to a larger public dataset led to the important observation that many resting 

state fMRI studies likely include some sleeping participants.

More recently, more detailed temporal properties of the fMRI signal have been identified 

in sleep. The amplitude of spontaneous fMRI fluctuations increases in low arousal and 

light sleep [66], and is modulated by arousal regulatory circuits [119••]. This property may 

confound the interpretation of functional connectivity measures, as higher amplitude signals 

will inflate correlation values, suggesting that should be taken into account when analyzing 

fMRI dynamics. Chang et al. [67] developed an ‘arousal template’ — a spatial map of 

fMRI signal amplitude that predicts arousal over time (Figure 2a). This study developed a 

new approach to fingerprinting brain state not just through slow correlations, but through 

brainwide activity patterns at a moment in time.

Moving to this time-varying, dynamic perspective, is an important shift for studying sleep. 

While classic studies have categorized sleep into stages using 30 s time windows, it has long 

been known that brain states in fact fluctuate dynamically and gradually [68,69], sometimes 

punctuated by individual neurophysiological events or arousal state changes (Figure 2b). 

Recent fMRI studies have in turn identified subcortical networks linked to specific arousal 

events [70,71] demonstrating that these event structures are rooted in brainwide network 

engagement that can be detected via fMRI. Higher temporal sampling in future studies will 

further enhance these measures by allowing detection of more rapid events and fluctuations 

in state.

While sleep represents a drastic shift in behavior and cognition, studies have also identified 

fMRI dynamics underlying more subtle behavioral states in the awake brain as well. 

For example, sustained attention and fluctuating cognitive performance can be predicted 

by connectivity dynamics [72,73••,74,75,76], as well as network topology dynamics [77]. 

Attentional impairments after sleep deprivation are also linked to altered fMRI dynamics 

[78], as well as spontaneous fluctuations in pupil diameter, which covaries with alertness 

[79]. Multiple techniques have recently been developed to examine these dynamic changes 

in network state on faster timescales [80,81], and have observed rapid network-scale shifts 

linked to cognitive state [82].

Taken together, these studies demonstrate major shifts in the temporal properties of fMRI 

signals across cognitive states, and identify large-scale fMRI network dynamics that can 

predict electrophysiology and behavior. Interpreting the neural origins of these fMRI 

dynamics is often challenging, and continued multimodal studies using electrophysiology 

to understand these signals will be of high importance.

Longer term modulation of brain states

Highly temporally sampled fMRI can also reveal brain state shifts at longer temporal 

scales. A remarkable study conducting 13 imaging sessions within a day demonstrated that 

task-driven responses are coupled to the circadian rhythm [83]. A recent study found that 

spontaneous fMRI amplitudes decrease throughout the day [84•], which is a paradoxical 

finding given that fMRI amplitude typically increases in low arousal states, and points 
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to rich circadian variation in brain physiology that could be investigated with densely 

temporally sampled fMRI. In addition, seasonal variation in cognition and behavior is well 

known [85] and a cross-sectional fMRI study has also demonstrated seasonal variation 

in responses [86]; future studies densely sampling across a year within individuals could 

potentially reveal more information about these dynamics.

Repeated imaging also enables protracted manipulation of brain states. A fascinating 

recent study used daily imaging over three months to study the effects of movement 

restriction on dynamics in motor cortex [87••]. They discovered spontaneous activity pulses 

occurring focally in motor cortex during temporary casting and disuse of an arm (Figure 

2c). This work demonstrates that focal brain states can be induced through sensorimotor 

manipulations, and identifies temporal dynamics that share some characteristics with low 

arousal states. Previous electrophysiology studies have demonstrated the phenomenon of 

‘local sleep’, in which individual cortical areas can exhibit sleeplike dynamics while the rest 

of the brain remains awake [88,89]; how focal arousal states such as these related to disuse 

phenomena remains an intriguing question in need of further study.

The role of systemic physiology and neurovascular coupling in imaging 

brain states

The interpretation of fMRI signals in the context of brain states is complicated by the 

fact that distinct neural states are also often marked by altered neurovascular coupling and 

systemic physiology. First, since fMRI relies on blood oxygenation signals, its dynamics 

will be altered by changes in neurovascular coupling. Low arousal states such as sleep 

are associated with altered cerebral blood flow [90], and these baseline changes could 

be expected to alter the BOLD signal. Intriguingly, a recent study in mice demonstrated 

that neurovascular coupling is strengthened in NREM sleep, as compared to wakefulness 

[91], suggesting that fMRI’s ability to track neural dynamics may be enhanced during low 

arousal. In addition, neuromodulatory substances such as noradrenaline, which modulate 

brain state and neuronal function, also modulate vascular tone and can directly induce 

vasodilation or vasoconstriction [92]. This vascular effect of neuromodulation suggests that 

attentional and emotional states may also modulate neurovascular coupling, but the degree to 

which this occurs is not yet clear.

In addition, systemic physiological dynamics, such as cardiac and respiratory signals, covary 

with brain state and modulate fMRI signals [93–96], both via motion (e.g. pulsation with the 

heartbeat) as well as via their effects on oxygenation and vascular tone. Accounting for these 

effects can be quite complex. For example, neural slow waves (including K-complexes) 

measured in the EEG during stage N2 sleep are associated with widespread cortical 

deactivation in the fMRI signal [97], consistent with the widespread neuronal suppression 

measured through invasive recordings [98,99]. However, systemic vasoconstriction also co­

occurs with neural slow wave events [100], and thus dissecting the respective contributions 

of neural versus systemic physiological factors on the measured fMRI signal is not 

straightforward; both factors likely contribute to some degree. While common practice is 

often to regress out physiological signals to attempt to account for this issue, this regression­
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based approach will also remove any signal of neural origin that is collinear with the 

physiological signals – which is often the signal of interest when studying brain states. 

Notably, systemic physiology alone can predict arousal state and even specific EEG features 

and cognitive correlates [101–105], and thus cannot simply be removed from fMRI signals. 

Even CSF flow is sometimes correlated with neural dynamics [97], suggesting that common 

preprocessing approaches such as regressing out the signal in the ventricles may sometimes 

have unintended effects. Similarly, an intriguing recent study demonstrated that motion is 

coupled to neural arousals [106••], suggesting that motion regression may remove some 

arousal-related neural dynamics as well.

An additional advantage of fast fMRI is that cardiac and respiratory signals no longer alias 

into low frequency bands — they can be separately resolved in their respective frequency 

bands and show distinctive spatiotemporal patterns [107,108]. This reduces direct noise 

contamination of fMRI signals from cardiac and respiratory cycles, although the influence 

of slow modulations in these signals, such as the 0.1 Hz envelope of the respiratory signal, 

nevertheless remain [93,109]. In addition, careful statistical analysis of fMRI signals will 

be important for resolving many of these questions. Statistical analyses are affected by the 

autocorrelation and physiological noise in fMRI signals, which is modulated by sampling 

rate [110]; techniques designed to account for this are being developed to enhance accuracy 

with highly sampled fMRI [111–113]. Analyzing physiological dynamics, in concert with 

experiments with interventions to modulate physiology directly, will be a key area for 

addressing these questions of how to account for systemic physiology in fMRI studies of 

brain dynamics.

Conclusions

Examining fMRI signals in the temporal domain has revealed new aspects of brain function, 

and is a promising approach for identifying how brain states modulate neural function. 

Recent work has identified multiple temporal features of fMRI signals that are relevant 

for brain function, as well hemodynamic and physiological factors that should be taken 

into account when analyzing these data. Sleep, attention, and other changes in brain state 

are associated with significant alterations in the temporal properties of fMRI signals, and 

these are coupled to electrophysiological and behavioral dynamics. Future studies taking 

full advantage of the increasing speed and sensitivity of fMRI, to obtain densely temporally 

sampled measures, hold major potential for understanding how these states support the 

flexibility of behavior and cognition in the human brain.
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Figure 1. 
Distinct temporal dynamics can be detected with higher temporal sampling.

This simple simulation illustrates the temporal properties of fMRI signals across sampling 

rates. (a) A simulated fMRI signal was generated with 0.3 Hz and 1 Hz oscillations 

representing the respiratory and cardiac cycles, and individual events representing large 

task-related hemodynamic responses. This simple simulation does not include the effects of 

sampling rate on SNR. (b) Example timeseries of the hemodynamic response as captured 

by different TRs (events beginning at 0 s and 60 s). Richer temporal information can be 

detected with short TRs. (c) The power spectrum at each TR value. Respiratory fluctuations 

are missed with the longest TR, and the cardiac fluctuation is detected only with the shortest 

TR. (d) The spectrogram of the simulated signal demonstrates the aliasing properties and 

detectability of high-frequency fluctuations.
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Figure 2. 
Identifying fMRI temporal dynamics across brain states.

An array of studies have identified specific temporal properties of the fMRI signal coupled 

to brain state. (a) Chang et al. developed a time-varying arousal index that can predict brain 

state from fMRI signals. Figure reprinted from Ref. [67]. (b) Liu et al. identified events 

in the fMRI signal associated with distinct electrophysiological sequences. Figure reprinted 

from Ref. [70]. (c) Newbold et al. observed spontaneous event pulses in cortical areas 

representing a limb undergoing a temporary cast manipulation. Figure reprinted from Ref. 

[87••].
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