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Abstract: Navigation in varied and dynamic indoor environments remains a complex task for
autonomous mobile platforms. Especially when conditions worsen, typical sensor modalities may
fail to operate optimally and subsequently provide inapt input for safe navigation control. In this
study, we present an approach for the navigation of a dynamic indoor environment with a mobile
platform with a single or several sonar sensors using a layered control system. These sensors can
operate in conditions such as rain, fog, dust, or dirt. The different control layers, such as collision
avoidance and corridor following behavior, are activated based on acoustic flow queues in the fusion
of the sonar images. The novelty of this work is allowing these sensors to be freely positioned on
the mobile platform and providing the framework for designing the optimal navigational outcome
based on a zoning system around the mobile platform. Presented in this paper is the acoustic flow
model used, as well as the design of the layered controller. Next to validation in simulation, an
implementation is presented and validated in a real office environment using a real mobile platform
with one, two, or three sonar sensors in real time with 2D navigation. Multiple sensor layouts were
validated in both the simulation and real experiments to demonstrate that the modular approach
for the controller and sensor fusion works optimally. The results of this work show stable and safe
navigation of indoor environments with dynamic objects.

Keywords: sonar; vehicle control; biologically-inspired; robotics; sensor fusion; indoor navigation

1. Introduction

This work is an extended version of [1], where this theoretical foundation was detailed
and validated in simulation. Autonomous navigation of complex and dynamic indoor
environments has continued being the subject of extensive research over the last few years.
When conditions deteriorate, common sensors such as laser-scanners (LiDAR) and cameras
may fail. Concretely, optical sensors could see their medium of structured light distorted
by smoke, dust, airborne particles, mist, dirt, or differences in lighting contingent on the
sun and cloud conditions. When these types of sensors are used as input for autonomous
navigation, object recognition, localization, or mapping systems under such conditions,
they may become vulnerabilities for the optimal performance of such systems [2]. On the
contrary, other types of sensors, such as radar or sonar, with their electromagnetic and
acoustic sensor modalities, respectively, continue to achieve precise and accurate results,
even in rough conditions.

Therefore, in-air acoustic sensing with sonar microphone arrays has become an active
research topic in the last decade [3–7]. This sensing modality can perform well in indoor
industrial environments with rough conditions, generate spatial information from that
environment, and be used for autonomous activities such as navigation or simultaneous
localisation and mapping (SLAM). This type of sonar has a wide field of view (FOV) thanks
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to the microphone array structure. It can cope with simultaneously arriving echos and
transform the recorded microphone signals containing the reflections to full 3D spatial
images or point-clouds of the environment. Such biologically inspired [8] sensors have
been developed by Jan Steckel et al. [6,9] and were implemented for several use-cases, such
as for autonomous local navigation [10] and SLAM [11,12].

Not only is the sensor modality inspired by nature, but so is the signal processing. Re-
search on insects that use optical flow clues [13,14] and bats using acoustic flow cues [15–18]
shows that they use these cues to extract the motion of the agent through the environment,
also called the ego-motion, and the spatial 3D structure of said environment through that
motion. Jan Steckel et al. [10] used acoustic flow cues, found in the images of a sonar sensor,
in a 2D navigation controller for a mobile platform with motion behaviors such as obstacle
avoidance, collision avoidance, and the following of corridors in indoor environments.
However, its theoretical foundation had the constraint that only a single sensor could be
used, which had to be placed in the center of rotation of the mobile platform. From a practi-
cal point of view, this is not ideal, as mobile platforms in real-world industrial applications
will often not suit this constraint of mounting a sensor in that exact position and avoiding
an obstructed FOV.

Another critical limitation is the limited spatial resolution that using a single sonar
sensor can yield compared to the entire environment surrounding the sensor. The main
reasons for this limitation are the leakage of the point-spread function (PSF) and that the
sensors have an FOV of 180° in the frontal hemisphere of the sensor, which leaves much of
the areas around the sides of a mobile platform undetected. The PSF leakage may cause
undetected reflections. To solve the described problems, the most straightforward solution
is to use several sonar sensors (multi-sonar) simultaneously and create a spatial resolution
that is greater than what the sampling resolution of a single sonar can yield [19].

However, digital signal processing of the in-air microphone array data to a 3D spatial
image or point-cloud of the environment is a computationally expensive operation. To deal
with this limitation and to support a system such as a mobile platform to use multiple in-air
3D sonar imaging sensors, recent work was published which allows for the synchronization
and simultaneous real-time signal processing of a set of sonar sensors on a system with
a GPU [20]. That software framework generates a data stream of all the synchronized
acoustic (3D) spatial images of the connected sonar sensors. This gives potential for both
novel applications, as well as improves existing ones, when compared to only using a
single sonar sensor. Specifically on mobile platforms with limited computational resources,
this provides new opportunities, as will become clear in this paper.

In this work, we will use this gain in spatial resolution and FOV by using a multi-sonar
in real time. The theoretical foundation created in [10] will be expanded to remove the
constraint of using one single sonar sensor and to allow a modular design of the mobile
platform and placement of sensors. The navigation controller is expanded to provide the
operator the opportunity to create adaptive zoning around the mobile platform where
certain motion behaviors should be executed. We expand upon this with a real-time
implementation of the navigation controller and additional real experiments in real-world
scenarios with sonar sensors. In these experiments, a real mobile platform navigates an
office environment by executing the primitive motion behaviors of the controller.

We will describe the 3D sonar sensor in Section 2. Subsequently, we will be detailing
the acoustic flow paradigm in Section 3 and its implementation in the 2D navigation
controller in Section 4. Afterwards, we will provide validation and discussion of the
layered controller with simulation and real-world experiments in Section 5. Finally, we will
conclude in Section 6 and briefly look at the future of this research.

2. Real-Time 3D Imaging Sonar

First, we will provide a synopsis of the 3D imaging sonar sensor used, the embedded
real-time imaging sonar (eRTIS) [9]. A much more detailed description can be found
in [6,12]. The sensor, drawn in Figure 1a and photographed in Figure 1b, contains a single
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emitter and uses a known, irregularly positioned array of 32 digital micro-electromechanical
systems (MEMS) microphones. A broadband FM-sweep is sent out by the the ultrasonic
emitter. The subsequent acoustic reflections will be captured by the microphone array when
this FM-sweep is reflected on objects in the environment. Using these specific chirps in the
FM-sweep, we can increase the spatial resolution [21] of a single sonar sensor. Thereupon,
the spatial images are created from digital signal processing of the microphone signals
recorded by the sensors. Such a spatial image, which we also call an energyscape, uses a
spherical coordinate system with (r, θ, ϕ). This coordinate system is shown in Figure 1a,
while an example of an energyscape is shown in Figure 1c. A brief overview of the
processing pipeline is shown in Figure 2. The current eRTIS sensors have an FOV of 180°
for the vertical and horizontal FOVs.
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Figure 1. (a) The location of a reflection expressed in the spherical coordinate system (r, θ, ϕ) associ-
ated with the sensor. The embedded real-time imaging sonar (eRTIS) sensor is drawn to show the
irregularly positioned array of 32 digital microphones and the emitter. (b) A photo taken from the
eRTIS sensor, as used in the real experiments. (c) An example of a 2D energyscape, a 2D sonar image
of an 180° horizontal scan. Subfigures (b,c) were added for better visualisation of the sensor and
energyscape concepts.
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Figure 2. Diagram of the digital signal processing steps to go from the raw microphone signals
to the energyscapes. The initial signals containing the reflections of the detected objects are first
demodulated to the full audio signals of the N channels. A matched filter is used for finding the
actual reflections of the emitted signal. Delay-and-sum beamforming creates a spacial filter for every
direction of interest. Subsequently, envelope detection is used to clean up the spatial image.

When multiple eRTIS sensors are simultaneously used with overlapping FOVs, their
emitters are synchronized up to 400 ns [12]. to avoid the unwanted artifacts by picking
up the FM-sweep of another eRTIS sensor that was sent out at an other position in space
and time. Furthermore, artifacts caused by multi-path reflections of other sensors do not
cause issues in the results of this paper, as these types of reflections would only cause
an inaccuracy in the resulting range and not angle. By using the sensor fusion model
detailed further in this paper, where only the closest reflections for each angle would
cause actuation of certain motion behavior, the resulting reflections would not cause any
unwanted behavior.
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Recently, a software framework was created that can handle multiple eRTIS sensors
and perform the signal processing in real time using GPU-acceleration [20]. Furthermore,
the latest generation of eRTIS sensors can incorporate an NVIDIA Jetson module embedded
into the casing such that the signal processing can be performed on board. A mobile
platform equipped with multiple eRTIS sensors with embedded NVIDIA Jetson TX2 NX
modules is able to process their sonar images in real time. A measurement frequency of
10 Hz is used in the experiments of this paper.

3. Acoustic Flow Model

Energyscapes of an eRTIS device contain the coordinates (r, θ, ϕ) of a reflection in
the seen environment. The theoretical acoustic flow model described here consists of a
differential equation of the spatial 3D location of the object represented by this reflection
with the rotation and linear ego-motions of the mobile platform. In other words, if the
mobile platform moves, the model describes how the static reflection will be moving within
the energyscape.

This model is based on the work in [10]. However, it only works for a singular sonar
sensor that faces forward. Therefore, the model is adjusted in this paper to allow multi-sonar,
where several sensors can be placed on the mobile platform with the only constraint being
that they must all be positioned on the same horizontal plane. Figure 3 shows a schematic of a
multi-sonar configuration. The model described here is the same as in the original paper [1],
but is detailed here once more to provide all necessary context to the reader.

x
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Figure 3. Drawing of a mobile platform seen from the top with three eRTIS sensors. Each is described
by the distance l from the platform’s rotation center point, the angle α around on the XY-plane relative
to the x-axis, and the angle β which describes the local rotation of the sensor around its own center.
The only constraint is that all sensors must be located roughly on the same horizontal XY-plane.

3.1. 2D-Velocity Field

A vector (r, θ, ϕ) is used for defining the location of a reflector in the sonar sensor
reference frame, as shown in Figure 1a. The same spherical coordinate system is used
within the energyscapes of the eRTIS devices. This spherical coordinate system is related to
the standard right-handed Cartesian coordinates by

~x(t) =

x(t)
y(t)
z(t)

 =

 r(t) cos(θ(t))
−r(t) sin(θ(t)) sin(ϕ(t))
r(t) sin(θ(t)) cos(ϕ(t))

 (1)
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Expressed in the reference frame of the sensor, the time derivatives of the stationary
reflector are given by

d~x
dt

= −~vs − ~ωs ×~x (2)

with symbols ~vs and ~ωs representing the sensor’s linear and rotational velocity vectors,
respectively, in the reference frame of the sensor.

The x-axis of the mobile platform’s frame, as shown in Figure 3, is defined as the
direction of the linear velocity vector. Furthermore, the mobile platform can only perform
rotations about its z-axis. With these constraints, the earlier-defined velocity vectors of the
sensor are

~vs =

V cos(α + β) + sin(β)lω
V sin(α + β) + cos(β)lω

0

, ~ωs =

 0
0
ω

 (3)

δ = α + β (4)

with V and ω representing the magnitudes of the linear and angular velocities of the mobile
platform, respectively, which are constant during a single measurement. To describe the
location of a sensor from the reference frame of the mobile platform, the parameters (l, α, β)
are used. α describes the rotation around the z-axis of the mobile-platform relative to the
x-axis, and β defines the rotation on the sensor around its own center point. Finally, l
describes the distance between the sensor and the center of rotation of the mobile platform.
These parameters are also shown in Figure 3. Taking the derivative of Equation, we
obtain (1)

d~x
dt

=

 cos(θ(t)) −r(t) sin(θ(t)) 0
− sin(θ(t)) sin(ϕ(t)) −r(t) cos(θ(t)) sin(ϕ(t)) −r(t) sin(θ(t)) cos(ϕ(t))
sin(θ(t)) cos(ϕ(t)) r(t) cos(θ(t)) cos(ϕ(t)) −r(t) sin(θ(t)) sin(ϕ(t))

dr/dt
dθ/dt
dϕ/dt

 (5)

Afterwards, Equations (1), (3) and (5) are placed in Equation (2). Furthermore, as we
use the earlier-described constraint of having all sensors on the same horizontal plane and
are performing only 2D planar navigation, the reflectors are restricted to lie in the horizontal
plane, i.e., ϕ = {−π/2, π/2}. With this simplification and applying trigonometric sum
and difference identities, the 2D-velocity field can be expressed as

[
dr/dt
dθ/dt

]
=

 −lω sin(β− θ(t))−V cos(θ(t) + δ)
lω cos(β− θ(t)) + V sin(θ(t) + δ)

r(t)
+ ω

 (6)

3.2. Only Linear Motion

If the linear motion of the mobile platform is limited, i.e., ω = 0 rad/sec, the vehicle can
only move forward or backwards. In this case, Equation (6) can be reduced to find the time
derivatives of the reflector coordinates to make a 2D acoustic flow model for linear motion:

dr/dt = −V cos(θ(t) + δ)

dθ/dt =
V

r(t)
sin(θ(t) + δ)

(7)

The solution to these differential equations has to comply with

ṙ(t)
r(t)

= −θ̇(t)
cos(θ(t) + δ)

sin(θ(t) + δ)
(8)

with θ0 describing the angle between the eRTIS sensor and the first sighting of the reflector
and not being equal to 0. Subsequently, integrating both sides of Equation (8), we can find
a constant C, defined as

C = |r(t)| sin(θ(t) + δ) (9)
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This defines the solutions of the differential Equation (7) for chosen starting conditions
(r0, θ0). These are the different flow-lines for all chosen ranges, as shown in Figure 4b.
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Figure 4. (a) A mobile platform seen from the top with three sonar sensors. The (α, β, l) parameter
values are shown as well. Next to it, two reflecting objects exist, defined as A and B with their
(r0, θ0) coordinates. The placement of these reflectors in the figure is not accurate or to scale. (b) The
(r(t), θ(t)) flow-lines of reflections A and B for a positive linear motion V are marked for sonar
sensors 1, 2, and 3 of Figure 4a. The arrow indicates the direction the reflection would move with such
a motion. The flow-lines for other distances falling in range (r ∈ [0; rmax]) are also shown, with rmax

being the maximum detected range of the eRTIS sensor.

3.3. Only Rotation Motion

If we limit the mobile platform to a pure rotation, i.e., V = 0 m/sec, the time derivatives
of the coordinates (r(t), θ(t)) of a reflection of Equation (6) reduce to

dr/dt = −lω sin(β− θ(t))

dθ/dt =
lω

r(t)
cos(β− θ(t)) + ω

(10)

These flow-lines are shown in Figure 5. A closed-form expression, similar to that for
linear motion, could not be found for the case of a rotation motion.



Sensors 2022, 22, 3109 7 of 18

−1.5−1−0.500.511.5
 (rad)

0

1

2

3

4

5

r (
m

)

−1.5−1−0.500.511.5
 (rad)

0

1

2

3

4

5

r (
m

)

−1.5−1−0.500.511.5
 (rad)

0

1

2

3

4

5

r (
m

)

B

A

A

B

A

Sonar 1 Sonar 2 Sonar 3

Figure 5. The (r(t), θ(t)) flow-lines for a positive rotation movement ω are marked for sonar sensors
1, 2, and 3 and reflections A and B of Figure 4a. The arrow indicates the direction the reflection would
move with such a motion. The flow-lines for other distances falling in range (r ∈ [0; rmax]) are also
shown, with rmax being the maximum detected range of the eRTIS sensor.

4. Layered Navigation Controller

With the acoustic flow model formulated in Section 3, we can know a priori how a
reflection will move through the energyscape based on the linear and rotational velocity
of the mobile platform, and subsequently execute motion commands based on this new a
priori knowledge. We suggest using acoustic regional zoning around the mobile platform
in such a way that when the reflection of an object or obstacle is perceived in one of these
predefined zones, certain primitive motion behaviors are activated. A layered control
system designed as a subsumption architecture, first introduced by R. A. Brooks [22], is
used. A diagram of the layered navigation controller is shown in Figure 6 combined with
its input and output variables. The inputs are the linear and rotational velocities [Vi, ωi].
These can originate from several other systems, such as, for example, a manual human
operator or a global path planner. The output velocities [Vo, ωo] of the layered controller is
the modulation of these input velocities by the behavior law of one of the layers. These
layers themselves also require input, which comes in the form of the sonar energyscapes of
each eRTIS sensor, as well as the mask for that sensor and layer, which will be explained
further in this section. The individual control behaviors are based on [10] but have been
adapted in this work to be stable and configurable for multi-sonar setups and to support
the new acoustic regional zoning system.

4.1. Acoustic Control Regions and Masks

A zone is defined around the mobile platform for each layer. An example of the zone
for each layer is shown in Figure 7. Such a zone can be defined by basic contours such
as straight lines, rectangles, circles, or trapezoids. These zones are constrained to these
primitive shapes according to the time-differential equations of Section 3. The flow-lines
these equations provide are used as the outer edges of these contours within the area that
can be perceived by the sensor in its 2D energyscape. A mask Mc,j with c the behavior
layer and the index j of the sonar sensor can be made for each layer and sensor pairing.
We created this mask as a matrix with the same resolution as the energyscape. Figure 8
illustrates some examples of such acoustic masks based on the acoustic flow model.

If we cover an energyscape Ej with a mask, and a certain amount of reflection energy
is located in the the remaining active area, i.e., not nullified by the mask, a behavior layer
can be excited if this abides by its control law with certain constraints, such as being above a
certain threshold. These constraints will be described further when each layer is separately
discussed later. A second feature of the masking system is to allow the controller to indicate
if a reflector is on either the left or right side of the mobile platform. This creates the
possibility for a behavior layer to decide on the correct steering direction for the output
velocity commands. We use ternary masks, which make a voxel of the mask 0 when it is
not within the active area of the mask, 1 if it is on the left side, and −1 if it is on the right
side of the mobile platform, respectively.
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Figure 6. Diagram of the subsumption architecture of the controller. The input of each layer is the
energyscape and acoustic mask where c stands for the active motion primitive layer and j defines
the index of the sensor. Note that the lower the layer is in the list, the higher its priority will be in a
subsumption architecture.

The design of the navigation controller described here is the same as in the original
paper [1] but is detailed here once more to provide all necessary context to the reader.
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Figure 7. A region is defined for every control layer around the mobile platform. They are described
by lines parallel to the mobile platform’s x-axis, a circular shape with a certain radius from the center
of the platform or limited by an angle θ from that same center point. The described shapes provide
the input for the acoustic flow models to generate masks within the eneryscapes of each sonar sensor.
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Figure 8. The generated masks for each eRTIS sensor in Figure 4a are drawn for the control zones of
Figure 7 for the four different motion behavior layers.

4.2. Collision Avoidance

The lowest layer is collision avoidance (CA), which has the highest priority due to the
subsumption architecture. This behavior layer is triggered if a certain amount of reflection
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energy above the threshold TCA is perceived within the CA region. This region, of which an
example is illustrated in Figure 7, is used to generate a mask for each eRTIS sensor MCA,j,
as shown in Figure 8. We use a half-circle near the front of the mobile platform so that
when steering along a path, collision can be avoided using this region.

The collision avoidance control law CCA is

CCA : ∃r, θ : ∑
r,θ,j

Ej(r, θ)MCA,j(r, θ) > TCA (11)

This results in an opposite motion of the nearest reflection. This motion is the rotational
output velocity ωo and is set as a constant for which we used 0.5 rad/s in our experiments.
To know the sign of the output rotational velocity, the ternary masking as described earlier
is used.

The linear output velocity Vo for the mobile platform is always 0 m/s until this layer
is triggered four times or more in succession. Once this occurs, a small reverse motion is
started, with, in our experiments, this linear velocity being set to −0.1 m/s. These output
velocities are sustained as long as there is reflection energy in the region of the CA layer
above the threshold TCA.

4.3. Obstacle Avoidance

Obstacle avoidance (OA) is the the subsequent layer in terms of priority. Its behavior
is triggered when the total amount of reflection energy in multiplication of the mask MOA,j
and the energyscape Ej is above the threshold TOA. An example of this region is shown in
Figure 7. It is designed in a way that as long as a forward linear velocity V is sustained
without a rotational component (ω = 0), a collision is likely to occur. Therefore, the control
law COA is designed to circumvent this imminent collision. It is defined as

COA : ∃r, θ : Ej(r, θ)MOA,j(r, θ) > TOA

ωOA = ωi + λOA
∑r,θ,j

1
r2 Ej(r, θ)MOA,j(r, θ)

∑r,θ,j Ej(r, θ)MOA,j(r, θ)

VOA = Vi

[
1− µOA ∑

r,θ,j
Ej(r, θ)MOA,j(r, θ)

] (12)

The outputs are Vo = VOA and ωo = ωOA. In practice, this will result in the mobile
platform moving farther away from the side with the largest total reflection within the
masked energyscape summation. This is possible thanks to the ternary masks. As can be
observed in Equation (12), the division of the masked energyscapes by the square of the
range of active voxels containing reflection energy, the further away this reflection energy
is, the more it will result in a smaller avoidance motion. Subsequently, the avoidance
behavior will slowly ramp up towards the obstacle to avoid unwanted drastic movement.
Additionally, the linear output velocity will be lowered based on the range of the total
energy in order to slow down the mobile platform as the obstacle moves closer. Gain factors
to further tweak the output velocities λOA and µOA were both set to 1 in simulation and 0.1
for the real experiments, but can be modified.

4.4. Reactive Corridor Following

We will now discuss the last layer of the subsumption architecture shown in Figure 6,
reactive corridor following (RCF), as it establishes the initial alignment with a detected
corridor quickly. By giving this layer the last position, acoustic flow following (AFF) will
be higher in priority and activate once this initial alignment is achieved. This alignment is
created by balancing the reflection energy in the summation of the masked energyscapes of
the left and right peripheral regions of the mobile platform. Simply put, the control law
will cause the platform to move away from the side with the most energy. These peripheral
regions are shown in the example illustrated in Figure 7. The masks generated from this
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region are shown in Figure 8. This layer will be triggered when the total reflection energy
is larger than the threshold TRCF. The law CRCF is expressed as

CRCF : ∃r, θ : Ej(r, θ)MRCF,j(r, θ) > TRCF

ωRCF = ωi + λRCF
∑r,θ,j

1
r2 Ej(r, θ)MRCF,j(r, θ)

∑r,θ,j Ej(r, θ)MRCF,j(r, θ)

VRCF = Vi

(13)

The output motion of this layer is the velocities Vo = VRCF = Vi and ωo = ωRCF
which are dependent on a gain factor λRCF. It is set to 1 in simulation and 0.1 for the
real experiments.

4.5. Acoustic Flow Following

If the RCF layer has achieved alignment with a corridor, or when the mobile platform
arrives near one or two parallel walls, the AFF layer is triggered. In such an event, the de-
tected reflections on the wall(s) can be found on the equivalent flow-line for the distance to
that wall, as described in Section 3 and on Figure 4b. This alignment for a sensor j can be
measured with

Γj(d) =
∑r,θ Ej(r, θ)MAFF,Fd,j(r, θ)

√
r

|Fd,j|
(14)

In principle, this formula is integrating all voxels on a flow-line at the lateral distance
d from the path of the mobile platform. Several lateral distances are shown in Figure 7, with
the associated flow-lines visualized in Figure 8. In Equation (14), Fd,j is representing the
flow-line at the lateral distance d, and |Fd,j| denotes its length, i.e., the amount of voxels that
lay on that flow-line. For every combination of sensor j and distance d, Fd,j is generated.
Fusing of all the Fd,j values gives the total alignment for that lateral distance Fd. When one
such value peaks and is greater than the threshold TAF,single, this layer becomes actuated.
If only one peak is detected, motion behavior will be started to continue to follow the wall
at lateral distance ds associated with that peak. This behavior is defined as

ωAFF =

{
ωi + λAFF(ds − dp) if dp is defined
ωi otherwise

VAFF = Vi

(15)

where dp represents the preceding distance at which a single peak was perceived in an
earlier time-step of the navigation controller. Hence, only when the layer is activated
consecutively will the single wall AFF behavior cause an output rotational velocity to align
the mobile platform with this wall.

If two peaks are detected, full-corridor-following behavior is triggered. These peaks at
lateral distances dl and dr, respectively, need to be larger than the threshold TAFF,corr and
should be on opposite sides of d = 0. The full-corridor-following behavior is calculated as

ωAFF = ωi + λAFF(dl − dr)

VAFF = Vi
(16)

Gain factor λAFF is the same single-wall and full-corridor-following behavior. It is set
to 1 in simulation and 0.1 for the real experiments.

5. Experimental Results

To validate the theoretical model for acoustic flow and the developed layered nav-
igation controller, experiments were performed in both simulation as well as on a real
mobile platform. This required both an offline and online version of the layered navigation
controller. We will discuss these two validation techniques separately.
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5.1. Simulation

A simulation framework was made that included simulation of the indoor environ-
ment, robot, and sonar sensors. This framework was developed in MATLAB. By using
simulation, the controller could be tested safely and support a numerical evaluation.
The simulation framework works offline and uses a fixed time-step of 0.1 s. The previous
version of this simulation framework used in [10] was heavily extended to support multi-
sonar, the updated acoustic flow model, and the updated layered navigation controller
using acoustic control regions. The simulation scenarios that were tested focused on navi-
gating indoor environments with the primary goals to have no collisions and reach the final
waypoint without any short period of being stuck. Furthermore, to validate the multi-sonar
paradigm, the numerical analysis needed to demonstrate stability in the motion behavior
regardless of the multi-sonar setup. The simulation scenarios were designed with several
corridors, doors, singular walls, and round obstacles. Additionally, two moving obstacles
were added that would move in front of the mobile platform which could represent humans
or other mobile platforms.

The layered navigation controller requires input velocities which, for the simulation
scenarios, were given by a waypoint guidance system inspired by P. Boucher [23]. This
waypoint navigation is intended for differential steering vehicles such as the ones we use
in the experiments. The waypoints were placed sporadically and sparsely to ensure that
the navigation controller was not unreasonably influenced by these input velocities, and
subsequently calculated the local path to the next waypoint.

The simulation of the eRTIS sensors required the simulation of the impulse responses
of the reflections on the objects in the environment. We designed these responses for
reflections such as corners, edges, and planar surfaces [24]. Furthermore, occlusion of
the sensors by objects is also simulated. Thereon, these impulse responses become the
input of the time-domain simulation of the eRTIS sensor. In this simulation, a virtualized
array is used. The same digital signal processing performs as a real eRTIS sensor does,
as described in Figure 2. The outcome is a 2D energyscape of the horizontal plane in the
frontal hemisphere of the eRTIS sensor. It has an FOV of 180° which is divided during
beamforming in steps of 1°. The maximum range is defined at 5 m. Furthermore, within
this post-processing pipeline, dead zones can be defined where the FOV of the sensor
would be obscured by, for example, structures of the vehicle or other sonar sensors. In the
simulation experiments, the sensors were defined as rectangular objects of 12 cm by 5 cm
for this FOV obstruction.

The mobile platform is a circular robot with a diameter of 20 cm. It drives using dif-
ferential steering up to a maximum velocity of 0.3 m/s. The modular design with support
for multi-sonar of the layered navigation controller was validated by using 10 different
multi-sonar configurations on this mobile platform. Each configuration has a single, two, or
three simulated eRTIS devices, which are shown in Table 1. Each setup was run through the
environment 15 times. The resulting distribution heat map is shown in Figure 9. As can be
observed in this heat map of the scenario, and from in the subsequent numerical evaluation,
not a single multi-sonar configuration tested caused a collision or other unwanted behavior.
Furthermore, the expected behavior of collision avoidance with both static and dynamic
obstacles, navigating junctions and corridor-following walls, could be seen. The main vari-
ations that could be noted between the multi-sonar configurations are in the selection of the
local navigation trajectory near junctions. This is due to the difference in the energyscapes,
which differed among the multi-sonar configurations based on their locations.
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Table 1. Simulation multi-sonar setups.

Setup
Simulated Sonar 1 Simulated Sonar 2 Simulated Sonar 3

α (◦) β (◦) l (cm) α (◦) β (◦) l (cm) α (◦) β (◦) l (cm)

1 0 0 18 unused unused
2 0 −20 14 90 −10 10 −90 −5 8
3 90 −20 10 −90 20 10 unused
4 0 0 12 90 0 12 −90 0 12
5 45 0 4 −135 0 4 unused
6 0 0 10 −180 0 0 unused
7 0 20 6 90 10 0 −90 20 14
8 0 0 0 120 −120 14 −120 120 14
9 180 −180 6 unused unused

10 45 −10 6 −45 10 6 −180 0 0
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Figure 9. (a) A heat map of the trajectory distribution of the simulated scenario. It was taken over
ten multi-sonar configurations. Each configuration was run 15 times for a total of 150 trajectories.
The start zone, indicated as a rectangle with dashed edges, was the location where the starting position
is chosen at random. Afterwards, the mobile platform would start moving between the sequential
waypoints (shown as the blue numbered circles 1 to 6) based on the local layered navigation controller
and global waypoint navigator. (b) A more detailed highlight of an area where a dynamic object
interfered with the mobile platform path. This shows the adjustment the navigation controller made
to avoid the dynamic object more clearly.
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5.2. Experimental Mobile Platform

The exact same layered controller was translated from MATLAB to a real-time Python
implementation for experiments using a real mobile platform. The controller was con-
nected to the software system described in [20]. This system allows for sensor discovery,
synchronized measurements, and real-time GPU-accelerated signal processing. The mo-
bile platform used was a Clearpath Husky UGV, as shown in Figure 10a. Equal to in the
simulation, structures of the UGV, such as the pillars or sensors, obscuring each other’s
FOVs can be defined in the software system during the processing of the energyscapes.
The eRTIS sensors are defined by their real-life rectangular shape of 11.6 cm by 5 cm. The 2D
energyscape of the real eRTIS sensors was the same as in the simulation, capturing the
horizontal plane in the frontal hemisphere of the eRTIS sensor. It has an FOV of 180 degrees
which is divided during beamforming in steps of 1 degree.

(a) (b)

Figure 10. (a) The experimental setup with a Clearpath Husky UGV as mobile platform used for
validating the controller behavior. This figure shows the setup with three mounted eRTIS sensors that
each have a built-in NVIDIA Jetson TX2 NX module. Furthermore, an Ouster OS0-128 LiDAR sensor
is mounted on the top and is used for 2D map generation during the validation experiments. (b) A
photo of the UGV taken during one of the experiments. More specifically, the avoidance of a direct
wall collision. Subfigure (a) was moved from Figure 1 to better fit the paper structure. Subfigure (b)
was added to show one of the setups.

The Python implementation of the controller during these experiments was running
on a i5-4570TE dual-core CPU in real time and could process the behavior layers for up
to three eRTIS sensors at 10 Hz. The average execution time of a single frame for the
controller was 40 ms with a maximum of 50.4 ms during all experiments. Matching with
the simulated experiments, one to three eRTIS sensors were used as they are described in
Section 2. We tested six different multi-sonar configurations in several scenarios to test the
behavior layers of the controller. These configurations are listed in Table 2. Three scenarios
were tested for each sensor configuration: avoiding an obstacle, avoiding a direct wall
collision, and navigating a T-shaped hallway.

Table 2. Experimental mobile platform multi-sonar setups.

Setup
Sensor 1 Sensor 2 Sensor 3

α (◦) β (◦) l (cm) α (◦) β (◦) l (cm) α (◦) β (◦) l (cm)

1 0 0 41 30 60 40 −30 −60 40
2 0 0 41 180 0 27 58 32 31
3 0 −12 41 180 35 27 58 2 31
4 0 0 41 unused unused
5 140 80 25 −20 −30 30 30 −30 39
6 140 11 25 −20 0 30 unused
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The motor velocity commands of the controller and resulting navigation trajectories
for these scenarios can be seen in Figures 11 and 12. For the real experiments, no waypoint
navigation was applied, and the input linear velocity to the controller was static at 0.3 m/s.
Figure 10b shows the UGV during the experiment to avoid a direct wall collision.

However, for two scenarios, a rotational input velocity was applied. Firstly, the case of
validating the obstacle avoidance layer seen in Figure 11, when the platform had steered
clear of the obstacle to go back to straight drive behavior afterwards. Similarly, when
navigating the hallway, as seen in Figure 12b,c, a small rotational velocity was applied to
steer the mobile platform to the right corridor instead of the left. The same outcome could
have been achieved by including a small bias in the behavior layer design for a specific
direction, but this was decided against for better observable validation of the controller.

An Ouster OS0-128 LiDAR was also mounted on the vehicle to create an occupancy-
grid map of the environment with an offline implementation of Cartographer [25]. The odom-
etry of the mobile platform was taken from the wheel odometry of the Clearpath Husky
UGV software. These occupancy maps were used to create a handmade recreation of the
environment, as seen in Figures 11 and 12.

The focus of these experiments was to validate if the adaptive nature of the new
behavior controller using the acoustic control regions would result in stable and safe
navigational behavior for all configurations tested. From these experiments, we could
observe that the correct layer was activated for each combination of scenario and sensor
layout configuration. No collisions could be observed. During the collision avoidance
experiment shown in Figure 12a, one can observe that for a single configuration the
controller decided to navigate to the opposite direction from the other five configurations.
However, at no point did the robot become stuck for even a short period. We find this to be
expected, and in simulation it was also observed that not all configurations would handle
each scenario in a similar way. Small differences in approach angle and resulting difference
in acoustic energy on both sides of the mobile platform can result in a different choice of
rotational velocity direction for all controller layers.
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Figure 11. Experimental results for a real mobile platform navigating a room with an obstacle that
needs to be dealt with safely. The room was empty except for the obstacle. The figure shows the
trajectories of the six different configurations that were used for validating the adaptability of the
layered controller. The trajectories were combined by using a single starting point. The map shown
here is a manually cleaned-up version of the occupancy grid results of a LiDAR SLAM algorithm that
was run offline. This figure shows avoiding a static obstacle, a chair in this instance. Although the
behavior layer focused on here is obstacle avoidance, all layers were active during the experiments.
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Figure 12. The maps shown are manually cleaned-up versions of the occupancy grid results of a LiDAR
SLAM algorithm that was run offline. Although the behavior layer focused on in each scenario is specific,
all layers were active during the experiments. (a) Results for a real mobile platform navigating a room
with an artificially added wall that needs to be dealt with safely. The figure shows the trajectories of
the six different configurations that were used for validating the adaptability of the layered controller.
The trajectories were combined by using a single starting point. (b) Experimental results for a real mobile
platform navigating a T-shaped corridor. The figure shows the trajectories of the six different configurations
that were used for validating the adaptability of the layered controller. The trajectories were combined by
using a single starting point. (c) This figure shows one of the individual trajectories of (b), indicating for
each point on the trajectory what layer of the controller was generating the output velocity.
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6. Conclusions and Future Work

The various experiments in both simulation and real-wold scenarios validate the
layered navigation controller for an autonomous mobile platform for safe 2D navigation
in spatially diverse environments featuring dynamic objects. The controller can do so
while supporting several sensors to be placed where possible or required. No collisions or
short periods of the mobile platform being stuck were observed during the experiments.
A significant benefit of this work is that spatial navigation is accomplished without the
necessity for explicit spatial segmentation. Furthermore, a user of this controller can choose
their acoustic control regions to achieve specific behavior. The implemented primitive
behavior layers are ample for safe motion between the waypoints in simulation or free-
roam navigation, as shown in the real-world experiments. However, one could insert new
layers for more specific motion behavior. For example, when moving through a corridor, to
always keep the mobile platform on the right side, or to perform specific actions in cases
where predefined objects such as for doors, charging stations, intersections, or elevators
are detected. However, most of these suggestions would require some form of semantic
knowledge about the environment to be known a priori or generated online. Nevertheless,
the simplicity of the subsumption layered architecture allows more layers to be added with
simple and complex navigation behaviors.

The real-time implementation on a real-experimental platform for both the signal
processing and the behavior controller itself allows this system to be implemented on
relatively low-end hardware with minimal computing power. This proves that it can be
practically implemented for real industrial use-cases already without any additional change.

In the future, a primary extension to the current implementation would be a compre-
hensive system for path planning and global navigation. Consequently, the work presented
here could provide the local navigation. Nevertheless, to accomplish a more global navi-
gation, more spatial knowledge of the environment is necessary. This knowledge can be
generated by SLAM [11,26] or landmark beacons [16].

7. Materials and Methods

The offline controller and the simulation were carried out in MATLAB 2021b using
the following toolboxes: Image Processing Toolbox, Instrument Control Toolbox, Parallel
Computing Toolbox, Phased Array System Toolbox, DSP System Toolbox, Signal Processing
Toolbox, and Statistics and Machine Learning Toolbox. The online implementation of the
controller was created in Python v3.7, combined with the back-end system developed
in [20]. The occupancy grids for validation of the experimental scenarios were made
with Cartographer v2.0 [25] based on the point-clouds of an Ouster OS0-128 LiDAR. ROS
middleware [27] was used for recording the data packages of the behavior controller, wheel
odometry, and LiDAR point-clouds.

Author Contributions: Conceptualization, W.J., D.L. and J.S.; methodology, W.J., D.L. and J.S.;
software, W.J. and J.S.; validation, W.J.; investigation, W.J. and J.S.; writing—original draft prepara-
tion, W.J.; writing—review and editing, J.S.; visualization, W.J.; supervision, D.L. and J.S.; project
administration, J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. Experimental recordings and metrics are
available upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 3109 17 of 18

References
1. Jansen, W.; Laurijssen, D.; Steckel, J. Adaptive Acoustic Flow-Based Navigation with 3D Sonar Sensor Fusion. In Proceedings of

the 2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021, Lloret de Mar, Spain, 29 November–2
December 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021.[CrossRef]

2. Vargas, J.; Alsweiss, S.; Toker, O.; Razdan, R.; Santos, J. An overview of autonomous vehicles sensors and their vulnerability to
weather conditions. Sensors 2021, 21, 5397. [CrossRef] [PubMed]

3. Kunin, V.; Turqueti, M.; Saniie, J.; Oruklu, E. Direction of Arrival Estimation and Localization Using Acoustic Sensor Arrays.
J. Sens. Technol. 2011, 1, 71–80. [CrossRef]

4. Verellen, T.; Kerstens, R.; Steckel, J. High-Resolution Ultrasound Sensing for Robotics Using Dense Microphone Arrays. IEEE
Access 2020, 8, 190083–190093. [CrossRef]

5. Allevato, G.; Rutsch, M.; Hinrichs, J.; Haugwitz, C.; Muller, R.; Pesavento, M.; Kupnik, M. Air-Coupled Ultrasonic Spiral Phased
Array for High-Precision Beamforming and Imaging. IEEE Open J. Ultrason. Ferroelectr. Freq. Control 2022, 2, 40–54. [CrossRef]

6. Kerstens, R.; Laurijssen, D.; Steckel, J. ERTIS: A fully embedded real time 3d imaging sonar sensor for robotic applications.
In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019;
pp. 1438–1443. [CrossRef]

7. Allevato, G.; Rutsch, M.; Hinrichs, J.; Pesavento, M.; Kupnik, M. Embedded Air-Coupled Ultrasonic 3D Sonar System with GPU
Acceleration. In Proceedings of the IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; Volume 2020. [CrossRef]

8. Griffin, D.R. Listening in the Dark; The Acoustic Orientation of Bats and Men; Dover Publications: Mineola, NY, USA, 1974; p. 413.
9. Steckel, J. Industrial 3D Imaging Sonar Research. Available online: https://3dsonar.eu (accessed on 12 January 2022).
10. Steckel, J.; Peremans, H. Acoustic Flow-Based Control of a Mobile Platform Using a 3D Sonar Sensor. IEEE Sens. J. 2017,

17, 3131–3141. [CrossRef]
11. Steckel, J.; Peremans, H. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar. PLoS ONE 2013, 8, e54076.

[CrossRef] [PubMed]
12. Kerstens, R.; Laurijssen, D.; Schouten, G.; Steckel, J. 3D Point Cloud Data Acquisition Using a Synchronized In-Air Imaging

Sonar Sensor Network. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Macau, China,
3–8 November 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 5855–5861. [CrossRef]

13. Franceschini, N.; Ruffier, F.; Serres, J. A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities. Curr. Biol. 2007,
17, 329–335. [CrossRef] [PubMed]

14. Srinivasan, M.V. Visual control of navigation in insects and its relevance for robotics. Curr. Opin. Neurobiol. 2011, 21, 535–543.
[CrossRef] [PubMed]

15. Corcoran, A.J.; Moss, C.F. Sensing in a noisy world: Lessons from auditory specialists, echolocating bats. J. Exp. Biol. 2017, 220,
4554–4566. [CrossRef] [PubMed]

16. Simon, R.; Rupitsch, S.; Baumann, M.; Wu, H.; Peremans, H.; Steckel, J. Bioinspired sonar reflectors as guiding beacons for
autonomous navigation. Proc. Natl. Acad. Sci. USA 2020, 117, 1367–1374. [CrossRef] [PubMed]

17. Greiter, W.; Firzlaff, U. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes. J. Neurophysiol. 2017,
117, 2113–2124. [CrossRef] [PubMed]

18. Warnecke, M.; Lee, W.J.; Krishnan, A.; Moss, C.F. Dynamic echo information guides flight in the big brown bat. Front. Behav.
Neurosci. 2016, 10, 81. [CrossRef] [PubMed]

19. Gazit, S.; Szameit, A.; Eldar, Y.C.; Segev, M. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express
2009, 17, 23920. [CrossRef] [PubMed]

20. Jansen, W.; Laurijssen, D.; Kerstens, R.; Daems, W.; Steckel, J. In-Air Imaging Sonar Sensor Network with Real-Time Processing
Using GPUs. In 3PGCIC 2019: Advances on P2P, Parallel, Grid, Cloud and Internet Computing; Springer: Berlin/Heidelberg, Germany,
2020; Volume 96, pp. 716–725. [CrossRef]

21. Steckel, J.; Boen, A.; Peremans, H. Broadband 3-D sonar system using a sparse array for indoor navigation. IEEE Trans. Robot.
2013, 29, 161–171. [CrossRef]

22. Brooks, R.A. A Robust Layered Control System For A Mobile Robot. IEEE J. Robot. Autom. 1986, 2, 14–23. 1087032. [CrossRef]
23. Boucher, P. Waypoints guidance of differential-drive mobile robots with kinematic and precision constraints. Robotica 2016,

34, 876–899. [CrossRef]
24. Kuc, R.; Siegel, M.W. Physically Based Simulation Model for Acoustic Sensor Robot Navigation. IEEE Trans. Pattern Anal. Mach.

Intell. 1987, PAMI-9, 766–778. [CrossRef]
25. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the IEEE International

Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 2016,
pp. 1271–1278. [CrossRef]

http://doi.org/10.1109/IPIN51156.2021.9662596
http://dx.doi.org/10.3390/s21165397
http://www.ncbi.nlm.nih.gov/pubmed/34450839
http://dx.doi.org/10.4236/jst.2011.13010
http://dx.doi.org/10.1109/ACCESS.2020.3032177
http://dx.doi.org/10.1109/OJUFFC.2022.3142710
http://dx.doi.org/10.1109/ICRA.2019.8794419
http://dx.doi.org/10.1109/SENSORS47125.2020.9278601
https://3dsonar.eu
http://dx.doi.org/10.1109/JSEN.2017.2688476
http://dx.doi.org/10.1371/journal.pone.0054076
http://www.ncbi.nlm.nih.gov/pubmed/23365647
http://dx.doi.org/10.1109/IROS40897.2019.8968469
http://dx.doi.org/10.1016/j.cub.2006.12.032
http://www.ncbi.nlm.nih.gov/pubmed/17291757
http://dx.doi.org/10.1016/j.conb.2011.05.020
http://www.ncbi.nlm.nih.gov/pubmed/21689925
http://dx.doi.org/10.1242/jeb.163063
http://www.ncbi.nlm.nih.gov/pubmed/29237765
http://dx.doi.org/10.1073/pnas.1909890117
http://www.ncbi.nlm.nih.gov/pubmed/31907314
http://dx.doi.org/10.1152/jn.00860.2016
http://www.ncbi.nlm.nih.gov/pubmed/28275060
http://dx.doi.org/10.3389/fnbeh.2016.00081
http://www.ncbi.nlm.nih.gov/pubmed/27199690
http://dx.doi.org/10.1364/OE.17.023920
http://www.ncbi.nlm.nih.gov/pubmed/20052103
http://dx.doi.org/10.1007/978-3-030-33509-0_67
http://dx.doi.org/10.1109/TRO.2012.2221313
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1017/S0263574714001921
http://dx.doi.org/10.1109/TPAMI.1987.4767983.
http://dx.doi.org/10.1109/ICRA.2016.7487258


Sensors 2022, 22, 3109 18 of 18
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