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ABSTRACT
Background. The reprogramming of energy metabolism and consistently altered
metabolic genes are new features of cancer, and their prognostic roles remain to be
further studied in stomach adenocarcinoma (STAD).
Methods. Messenger RNA (mRNA) expression profiles and clinicopathological data
were downloaded fromTheCancerGenomeAtlas (TCGA) and theGSE84437 databases
from the Gene Expression Omnibus (GEO) database. A univariate Cox regression
analysis and the least absolute shrinkage and selection operator (LASSO)Cox regression
model established a novel metabolic signature based on TCGA. The area under
the receiver operating characteristic (ROC) curve (AUROC) and a nomogram were
calculated to assess the predictive accuracy.
Results. A novel metabolic-related signature (including acylphosphatase 1, RNA
polymerase I subunit A, retinol dehydrogenase 12, 5-oxoprolinase, ATP-hydrolyzing,
malic enzyme 1, nicotinamide N-methyltransferase, gamma-glutamyl transferase 5,
deoxycytidine kinase, galactosidase alpha, DNA polymerase delta 3, glutathione S-
transferase alpha 2, N-acyl sphingosine amidohydrolase 1, and N-acyl sphingosine
amidohydrolase 1) was identified. In both TCGA and GSE84437, patients in the high-
risk group showed significantly poorer survival than the patients in the low-risk group.
A good predictive value was shown by the AUROC and nomogram. Furthermore,
gene set enrichment analyses (GSEAs) revealed several significantly enriched pathways,
which may help in explaining the underlying mechanisms.
Conclusions. A novel robust metabolic-related signature for STAD prognosis predic-
tion was conducted. The signature may reflect the dysregulated metabolic microenvi-
ronment and can provided potential biomarkers for metabolic therapy in STAD.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology, Medical Genetics
Keywords Stomach adenocarcinoma, Metabolism, Prognosis, TCGA, GEO

INTRODUCTION
Stomach adenocarcinoma (STAD) is one of the five most common cancers and ranks third
among the cancer-related deaths worldwide. Globally, there are approximately 951,600 new
STAD cases and approximately 723,100 STAD-related deaths each year. STAD is harmful
to human health and social development. Due to the lack of specific symptoms in the
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early stage of STAD, most patients have reached the middle and late stages of the disease
when they are diagnosed, which then leads to a poor prognosis. According to the statistics,
the 5-year survival rate of patients with advanced STAD is less than 20%, whereas the
5-year survival rate of patients with early diagnosis and surgical resection can increase to
reach more than 90% (Thrumurthy et al., 2015; Thrumurthy et al., 2013). Therefore, early
diagnoses and timely interventions are of great significance for improving the prognosis of
patients with STAD. At present, the diagnosis of STAD is mainly based on the pathological
examination using endoscopy and tissue biopsy, but this method is traumatic and costly
and has a low patient compliance rate. Although common gastrointestinal tumor markers,
such as CEA, CA72-4, and CA19-9, have been widely used in clinical practice, the positive
rate of early diagnosis is limited and cannot meet the requirements of early screenings of
STAD. Therefore, it is of great practical significance to develop noninvasive, sensitive and
specific biomarkers for the diagnosis and prognosis of gastric cancer.

Metabolic disorder is a key event in cancer, and tumor-related metabolic changes are
involved in the generation, maintenance and progression of tumors (Beger, 2013). When
compared with that in normal tissues, there is a large amount of metabolic heterogeneity in
cancer cells and tumors; this includes glucose and amino acids exhibiting imbalanced levels,
which increases the demand for nitrogen (Pavlova & Thompson, 2016). In the occurrence
and development of STAD, abnormal glycolysis and amino acid metabolism constitute
the essence of metabolic phenotype changes in STAD (Gu et al., 2016). The regulation
of tumor metabolism mainly involves the activation of oncogenes, the inactivation of
tumor suppressor genes and the changes in metabolic pathways that are mediated by these
genes. The metabolism of gastric cancer is also affected by the regulation of many classical
pathways, such as the hypoxia inducible factor (HIF-1a) pathway and the insulin signaling
pathway (Yuan, Yamashita & Seto, 2016). The results showed that fatty acid synthase
(FASN), a new metabolic reprogramming agent, also has prospective clinical applications.
Metabolic reprogramming is emerging as a novel hallmark of cancer, and it is particularly
important to identify biomarkers with high sensitivities and specificities at the metabolic
level for the diagnosis and prognosis of STAD.

MATERIALS AND METHODS
Raw data
Transcriptome RNA sequencing (RNA-seq) data of 407 samples (normal samples, 32
patients; tumor samples, 375 patients) and the corresponding clinical datawere downloaded
from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). The
GSE84437 data with 433 tumor samples was downloaded from the GEO database (Yoon
et al., 2020). The metabolic genes were retrieved from the metabolic pathways of GSEA
(c2.cp.kegg.v7.1.symbols.gmt).

Identification of intersected differentially expressed mRNAs in
TCGA-STAD
The limmaR software package (version 3.6.2) was used to analyze the differential expression
of the annotated protein coding genes and the expression patterns of the 940 metabolic

Nie et al. (2021), PeerJ, DOI 10.7717/peerj.10908 2/13

https://peerj.com
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
http://dx.doi.org/10.7717/peerj.10908


genes were studied in TCGA. The 940 metabolic genes were selected as being consistently
altered metabolic genes for subsequent prognostic analyses in the GSE84437 datasets.
Metabolism-related genes shared by TCGA and GSE84437 datasets.

Construction of the prognostic metabolic gene signature
The prognosis-related metabolic genes were confirmed by combining the univariate Cox
regression and LASSO penalized Cox regression analysis and to set up a new prognostic
gene signature. P < 0.001 was selected as the screening condition in univariate regression
analysis. The prognostic gene signature was calculated by (coefficientmRNA1 ×expression of
mRNA1) + (coefficientmRNA2 × expression of mRNA2) + (coefficientmRNAn × expression
of mRNAn). The optimal cutoff point of the above prognostic gene signature and the
Kaplan–Meier survival curve were conducted by R package (survival, survminer). The
predictive performance was shown by ROC curve. Multivariate Cox regression analysis was
conducted by forward stepwise analysis method and a nomogram was conducted based all
of the independent prognostic factors.

External validation of the prognostic gene signature and gene changes
in the GEO data
The GSE84437 data set was included to calculate the risk score of the included patients
with the gene signature. ROC and Kaplan–Meier analyses, as well as the construction and
validation of the nomogram, were performed identically as those analyses in the cohort
TCGA-STAD.

Gene set enrichment analyses
Hallmark sets v 6.2 collections were downloaded from the Molecular Signatures Database
as the target sets with which GSEA was performed by using GSEA 3.0 software. The entire
transcriptome of all of the tumor samples was used for the GSEA, and only gene sets with
NOM P < 0.05 and FDR Q< 0.05 were considered to be statistically significant.

RESULTS
Construction of the prognostic metabolic gene signature in TCGA
There are 192 metabolic genes in the TCGA-STAD database, including 119 up-regulated
genes and 73 down-regulated genes (Fig. 1). 16 survival-related genes were confirmed by a
univariate Cox regression analysis; then 14 survival-related genes were identified by LASSO-
penalized Cox analysis; finally, a prognostic model was constructed based on 14 survival-
related genes. The 14 genes included acylphosphatase 1 (ACYP1), RNApolymerase I subunit
A (POLR1A), retinol dehydrogenase 12 (RDH12), 5-oxoprolinase, ATP-hydrolyzing
(OPLAH), malic enzyme 1 (ME1), nicotinamide N-methyltransferase (NNMT), gamma-
glutamyl transferase 5 (GGT5), deoxycytidine kinase (DCK), galactosidase alpha (GLA),
DNA polymerase delta 3 (POLD3), glutathione S-transferase alpha 2 (GSTA2), N-acyl
sphingosine amidohydrolase 1 (ASAH1), and N-acyl sphingosine amidohydrolase 1
(CKMT2). The risk score = 0. 0258×expression of ME1 -0. 0458×expression of ACYP1 -0.
0583×expression of POLR1A + 0. 0097×expression of RDH12 -0. 0109×expression
of OPLAH + 0. 0039×expression of NNMT +0. 009411×expression of GGT5 - 0.
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Figure 1 Construction of the prognostic metabolic gene signature in TCGA. (A) Heatmap for expres-
sion level between normal patients and tumor patients; (B) Volcano for expression level between normal
patients and tumor patients; (C) Forest map for univariate COX regression analysis with 192 different ex-
pression genes (DEGs), with the top 16 being listed.

Full-size DOI: 10.7717/peerj.10908/fig-1

0097×expression of DCK - 0. 0372×expression of GLA-0. 0062×expression of POLD3
+ 0. 01629×expression of GSTA2 +0.0128 expression of ASAH1 + 0.0841 expression of
CKMT2.

Validation of the prognostic metabolic gene signatures in TCGA and
GEO
According to the median risk score, patients were divided into high- and low-risk groups.
The overall survival (OS) was significantly poorer in the high-risk group than in the low-risk
group (P < 0.0001; Fig. 2A). As shown in Fig. 3C, people who died were more obviously
distributed on the outlier risk scores than near the median risk scores. Subsequently, the
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Figure 2 Survival analysis of prognostic metabolic gene signatures in TCGA and GEO. (A) Kaplan–
Meier curve of the four-gene signature in TCGA cohort; (B) Kaplan–Meier curve of the four-gene signa-
ture in GSE84437.

Full-size DOI: 10.7717/peerj.10908/fig-2

Figure 3 Validation of the prognostic metabolic gene signatures in the TCGA and GEO. (A, B) Risk
scores of patients with different metabolic gene signatures in TCGA and GEO; (C, D) Survival states dis-
tribution of patients with different metabolic gene signatures in TCGA and GEO; (E, F) Heatmap for Ex-
pression level of prognostic metabolic gene.

Full-size DOI: 10.7717/peerj.10908/fig-3

prognostic model was validated in the GSE84437 cohort. According to the median risk
score, patients were divided into a high- risk and low-risk group. The OS was significantly
poorer in the high-risk group than in the low-risk group (P < 0.0001; Fig. 2B). As shown
in Fig. 3D, people who died were more distributed on the outlier risk scores than near the
median risk score. The expression of GSTA2, ME1, and CKMT2 in the high-risk group
were higher than those in the low-risk group; however, the expression of OPLAH and GLA
in the high-risk group were lower than those in the low-risk group (Fig. 3F).
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Figure 4 Independent prognostic role of the prognostic gene signatures. (A, B) Univariate Cox regres-
sion analysis for clinical characteristics and prognostic gene signatures in TCGA and GEO; (C, D) Mul-
tiple Cox regression analysis for the clinical characteristics and prognostic gene signature in TCGA and
GEO.

Full-size DOI: 10.7717/peerj.10908/fig-4

Independent prognostic role of the prognostic gene signature
Among the 375 patients who were included in the TCGA-STAD cohort, univariate
and multivariate Cox regression analyses indicated that age and risk score were both
independent prognostic factors for OS (Figs. 4A, 4C). Importantly, our risk scores were
also independent prognostic factors for OS via the analysis of the 433 patients who were
included in the GSE84437 cohort, which was consistent with the results from the cohort
TCGA-STAD (Figs. 4B, 4D).

As shown in Fig. 5A, the area under the ROC curve (AUROC) of the risk score (AUROC
= 0.696, sensitivity = 56.45%; specificity = 74.29%, Youden index = 0.307) was higher
than that of the other parameters. In the GSE84437 cohort, the performance analysis of the
discriminative accuracy of the risk score for mortality had an AUROC of 0.574 (sensitivity
= 54.12%; specificity = 63.49%, Youden index = 0.176), which was also significant (Fig.
5B). A nomogramwas built by including the TNM stage and the prognostic model (Fig. 6A)
in the TCGA-STAD cohort (Fig. 6A). Age and risk score were determined to be the best
parallel parameters for prognosis. Importantly, the risk score was also the best parallel
parameter for prognosis in the GSE84437 cohort. Therefore, our prognostic model may
have the potential to be a marker for STAD prognosis, which may help with the clinical
management of STAD.
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Figure 5 Receiver operating characteristic curves of the clinical characteristics and prognostic gene
signatures. (A) ROC for TCGA; (B) ROC for GEO.

Full-size DOI: 10.7717/peerj.10908/fig-5

Figure 6 Nomogram plot for the clinical characteristics and prognostic gene signatures. (A) Nomo-
gram plot for TCGA; (B) Nomogram plot for GEO.

Full-size DOI: 10.7717/peerj.10908/fig-6

Gene set enrichment analyses
GSEAs were performed, and 17 significantly enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were found in the TCGA-STAD or GSE84437 cohort. As
shown in Fig. 7B, many of the enriched pathways were related to metabolism, such as drug
metabolism of P450, arachidonic acid metabolism, retinol metabolism, and pyrimidine
metabolism. In addition, most of the metabolism-related pathways were enriched in the
low-risk group, whereas most of the pathways that were not related to metabolism were
enriched in the high-risk group.

DISCUSSION
Early diagnosis is the key to improving the survival rates of patients. In recent years, a
large number of studies have shown that molecular biomarkers play an important role
in disease diagnosis, prognosis prediction and targeted therapy. STAD is one of the most
serious malignant tumors in the world, with a high mortality rate and a poor prognosis.
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Figure 7 GSEA for samples with high levels of prognostic gene signature and low expression. (A)
GSEA for samples with high expression levels; (B) GSEA for samples with low expression levels.

Full-size DOI: 10.7717/peerj.10908/fig-7

Helicobacter pylori infection, improper diet, poor hygiene and smoking are common risk
factors for STAD (Yang et al., 2011). In addition, the delay in diagnosis and the metastasis
of gastric cancer are the main causes of death for patients with gastric cancer. Therefore, the
search for new molecular markers is very important for early diagnosis, targeted treatment
and prognosis evaluation of gastric cancer (Salati et al., 2019).

Cancer is a metabolic disease. Metabolic disorder is a key event in the occurrence and
development of cancer, and it constitutes one of the signs of cancer (Faubert, Solmonson &
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De Berardinis, 2020). In a cohort study of 125 gastric cancer samples with different stages
(I-N), 48 different metabolites were identified, 13 of which involved glycolysis, glutamine
metabolism, amino acid metabolism, and choline metabolism, and these metabolites were
related to the progression of gastric cancer, with a potential for staging diagnosis (Wang et
al., 2016). The combined survival analysis of the serum metabolome of 125 gastric cancer
patients showed that the serum levels of 2,4-hexadienoic acid, 4-tolyl dodecanoate and
tributyrin were inversely related to the survival rates of patients, then suggesting that the
combination of 3 serum metabolites may be an independent prognostic factor for gastric
cancer (Wang et al., 2017). The plasma amino acid metabolism profiles of 82 patients with
gastric ulcers and 84 patients with gastric cancer were compared. Five different amino acids
(glutamine, ornithine, histidine, arginine, and tryptophan) showed good differentiation
ability between gastric ulcer and gastric cancer (Jing et al., 2018). In summary, changes in
metabolites can effectively predict the progression and prognosis of gastric cancer patients.

In recent years, mRNA gene signatures based on certain characteristics, such as long
noncoding RNA have become a hot topic in research for mortality risk prediction in cancer
(Li et al., 2016). In the study by Liu, GM, it was demonstrated that a four-gene metabolic
signature has a predictive value in the OS for patients with hepatocellular carcinoma (Liu
et al., 2020a); however, reports on the prediction of metabolism-related genes in gastric
cancer are very limited. In this study, we identified a novel efficient metabolic prognostic
signature based on the data set from TCGA and validated its efficiency in the GSE84437
data set. Our signature could efficiently stratify the OS values of patients. Via univariate
and multivariate Cox regression analyses, the efficacy of our signature was found in the
training set and in the validation set, thus indicating a robustly high prognostic value of the
signature. In the GSEA cohort, most of the pathways in the high-risk group were mainly
enriched in pathways that were not related to metabolism; however, most of the pathways
in the low-risk group were mainly enriched in metabolism-related pathways.

Fourteen genes (ME1, ACYP1, POLR1A, RDH12, OPLAH, NNMT, GGT5, DCK, GLA,
POLD3, GSTA2, ASAH1, and CKMT2) were involved in the disorder. In the study of
acute myeloid leukemia, DCK is the rate-limiting enzyme for the metabolism of cytarabine
after entering the cell, and changes in the properties of DCK directly affect the effective
concentration of cytarabine (Shi et al., 2004). POLD participates in mediating the process
of DNA amplification, replication and damage repair by interacting with proliferating cell
nuclear antigen (PCNA) (Zhou et al., 2018). Rayner et al. (2016) reported that mutations
in the POLD3 gene line can increase the risk of rectal cancer. Glutathione S-transferase
(GST) is a very important enzyme superfamily in vivo that is involved in biotransformation
and the detoxification process of many carcinogens. GST can form a DNA adduct after
exposure to a pre-carcinogen, thus resulting in a high level of DNA damage. This results
in the ineffective metabolism of the corresponding carcinogens, thus resulting in the
accumulation of carcinogens in the body, which increases the risk of cancer. Mitochondrial
creatine kinase 2 (CKMT2) is an important kinase that exists on the surface of the
mitochondrial membrane and is directly related to intracellular energy transfer and ATP
regeneration (Cannavo et al., 2018). CKMT2 is positively correlated with the malignant
degree of gastric cancer. ASAH1 is a key enzyme that regulates the hydrolysis of intracellular
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ceramide and plays an important role in cellular proliferation and apoptosis (Roh et al.,
2016). The expression of ASAH1 in tumor tissues is positively correlated with breast cancer
tumor size. There are many reports concerning the previously described genes, but the
confirmed mechanisms of actions of these genes need to be further studied, especially in
relation to gastric cancer.

There were some reports on the bioinformatics analysis of gene expression and the
predictive prognosis of STAD, especially after the application of machine learning
techniques in bioinformatics (Quoc et al., 2020; Le et al., 2020). From the perspective
of alternative splicing, Liu et al. reported that 2,042 alternative splicing genes play an
important role in regulating gastric cancer-related processes, such as GTPase activity
and the PI3K-Akt signaling pathway, and they found that ECT2 may be a biomarker
for diagnosis and prognosis (Liu et al., 2020b). The occurrence and prognosis of STAD
are closely related to inflammation. Additionally, a prognostic model based on seven
immune-related genes was developed (Wu et al., 2020). Metabolic recombination is an
important characteristic of cancer, and glycolysis is an important part of this process. A
gene signature based on a seven-gene signature of glycolysis was conducted, which has
good calibration and moderate discrimination (Yu et al., 2020). Zhao et al. (2020) reported
that BicC family RNA-binding protein 1 (BICC1) may be a potential prognostic biomarker
in STAD and correlates with immune infiltrates. However, a bioinformatics analysis based
on all of the metabolic genes is limited.

This study had several limitations. Firstly, although it has been verified by the GSE84437
cohort, the main aim of this study is represented by the bioinformatics analysis based on
TCGA, and functional experiments are necessary to reveal the predictive mechanisms.
Secondly, confounding effects of treatment factors are difficult to control because of the
lack of treatment information and and it was difficult to reduce the batch effect. Lastly,
the predictive performance of GSE84437 was not very good, which was related with the
different pathogenesis mechanisms of stomach adenocarcinoma from different regions;
thus, a larger, multicenter cohort is required. Finally, the AUROC between TCGA and GEO
data was relatively large and may be reduced by enlarging the sample size, constructing
convolutional neural networks (CNN) or the use of a support vector machine (SVM).

In conclusion, our study showed that a novel metabolic signature based on TCGA
has the potential to be a prognostic factor for STAD patients. Our signature may reflect
the dysregulated metabolic microenvironment and can provide potential biomarkers for
metabolic therapy; however, validations of the signature and functional experiments are
still needed.
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