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Abstract: A general study of the diffracted far field due to thermal lens heating using Gaussian beams
is presented. The numerical simulation considers the whole system, including both the optical and
the thermal parameters. It is shown that the existing simplified relations found in the literature and
used up to now only give the order of magnitude of the thermo-optical coefficients. More accurate,
simplified formulas are derived to measure the induced thermal phase shift when working with
Z-scan-based methods. Temperature estimation in absorbing media turn out to be more reliable
whether using time-resolved or steady-state techniques. The extension of the calculation to the image
formation in a 4f system is also addressed.
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1. Introduction

Many applications use the thermal lens (TL) principle as an ultrasensitive spectropho-
tometric readout [1] to characterize different physical phenomena, for example (recently
found in the literature) to investigate molecular/particle dynamics [2], to measure the
photothermal parameters of opaque solids [3], to understand thermal lensing effects using
Z-scan-based methods at multiple laser repetition rates and multiple average powers [4,5],
to study the effect of highly localized thermal gradients on the catastrophic optical damage
process of high-power laser diodes [6], to evaluate optically induced temperature changes in
colloidal samples for photothermal therapy [7], to quantify very low concentrations in solu-
tions [8], and to image single light-absorbing nanoparticles by photothermal microscopy [9].
Recently, we have demonstrated experimentally the feasibility of extracting an image of the
phase shift induced by TL and applying this method to map an inhomogeneous thin film
doped with different concentrations of silver nanoparticles transversally [10]. Since Gordon
et al. [11] reported on optical thermal effects, considerable work has been done in this field
of a medium acting as a lens to characterize the thermo-optical coefficients of materials.
Indeed, the optical energy absorbed in a medium creates a transverse temperature gradi-
ent, inducing a variation in the linear index that is commonly called a thermal lens. The
first approximation considered a parabolic refractive-index distribution with a Gaussian
incident beam [12–14]. Then, another step was taken by considering the aberrant nature of
the thermal lens and predicting the central intensity variation in the far field of the laser
beam in the presence of weakly absorbing media [15–17]. Measuring the diffraction of light
in a single beam or dual-beam methods [18] allow us to obtain highly sensitive techniques
to estimate the material absorbance. Given the complexity of the problem, simplified rela-
tionships using physical approximations were derived from theoretical models and used
through nonlinear fits to estimate the quantities of interest. These relationships describe
the general behavior of the thermal lens qualitatively quite well but are not quantitatively
accurate. With the computing power of today’s processors, more accurate calculation can
be derived by taking into account the whole system fundamental equations to approach
the real nature and behavior of the thermal lens response.

The first goal of this paper is therefore to extend the field of applicability related
to the thermal effect methods in absorbent liquids. More advanced calculation will be
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obtained showing that the difference can be relatively large when considering the usual
rough approximations. Then, we aim to correctly establish a junction between the thermal
lens characterization technique and Z-scan-based methods in order to check and improve
the reliability of the measurements, particularly in the stationary regime.

2. Theory of the Thermal Effect

The single beam method is considered here, and according to reference [15] some
assumptions are made: (i) the thin sample approximation (the beam radius is almost
constant along the thickness of the sample); (ii) dimensions of the cell are large compared
with the diameter of the beam; (iii) heat conduction through the ends can be neglected,
and thus the temperature variation can be taken as purely radial along the x direction.
An expression of the temperature change as a function of radius and time ∆T(x, t) can
be obtained by solving the non-steady state heat equation appropriate for the problem
when a Gaussian beam is illuminating the medium. The following symbols will be used:
α absorbance in m−1; ρ density in Kg/m3; I beam intensity in W/m2; L thickness of the
medium (cell) in m; P beam power in W; c specific heat in J/Kg/K; ω beam radius in m;
∆T temperature variation in ◦K; k thermal conductivity in J/s/m/K; λ wavelength in m.

Taking into account the aberrant nature of the thermal lens [15,17], the variation in
temperature in the medium is given by:

∆T(x, t) =
2Pα

πcρω2

∫ t

0

(
1

1 + 2t′/tc

)
exp

(
−2x2/ω2

1 + 2t′/tc

)
dt′, (1)

where tc = ω2cρ/4k is the characteristic buildup time constant of the thermal lens. This
temperature variation induces a change in the linear index according to the following
relationship [15]:

∆n(x, t) =
dn
dT

∆T(x, t), (2)

with dn/dT denoting the algebraic value of the thermo-optical coefficient, which is often
negative, and ∆n(x, t) = n(x, t)− n0 where n0 is the refractive index at the initial tempera-
ture. The phase shift is related to ∆n as usual, using ∆ϕ = 2π∆nL/λ with λ designing the
wavelength of the beam inducing and probing the phase shift.

First, in order to validate our numerical calculations, we present in Figure 1 the
temperature distribution in the thermal lens at various times as obtained from Equation (1).
The evolution is given according to the same characteristics as those shown in Figure 2 of
reference [15]. Indeed, the profiles generated by Equations (1) and (2) are important as they
determine the subsequent variation in index and phase due to ∆T, thus the final diffracted
field. Note the nonlocal response due to the radial propagation of the heat for increasingly
long heating times and the perfect agreement of the result with that found in the later
reference. This behavior is understood because at a given point in the profile, we can
see that, as t/tc increases, the temperature variation also increases for a given absorbing
liquid at a given incident power. Then, the curves tend to tighten, and the temperature
variation decreases for large t. Moreover, we can see that the heat propagates transversally
beyond the waist of the beam, which reflects a nonlocal response. When x � ω, the curves
continue to decrease and to tend towards 0 since the medium is considered sufficiently
large. This approximation is well validated in practice when considering beam-waists of
20–30 µm and cells of about 1× 10 cm2 transverse sections having approximately 1 mm
thickness.
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Figure 1. Temperature evolution in the thermal lens at various times (from lowest to highest:
t/tc = 0.1, 1, 5, 10, 15, 20 and 25).
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The next step is to understand the influence of this index variation on the diffracted
far field of a beam focused into the sample. This approach has been achieved by several
authors using more or less severe approximations that give for the most part the intensity
at the center of the diffracted beam. Here, we will determine numerically not only the
intensity at the system axis for x = 0 but also the entire profile of this beam. This will
be done without any approximation of the propagation of the wavefront, allowing us to
predict the relative variation in the size of the diffracted beam. Then, a comparison will be
made between the two results.

3. Results and Discussions

As shown in Figure 2, the basic theoretical setup is composed of a focusing lens L1, a
cell containing the liquid to be tested and a photodiode PD placed in the far field (D � ω).
In our study, it is considered the general case that the cell is scanned along the beam
direction around the focal plane (z = 0). Therefore, later we can also find results from the
simulation related to the Z-scan method [19] and its derivative [20]. Exposure of the sample
to the excitation beam is controlled by a chopping wheel placed before L1 and not shown
in this simplified arrangement. The absorption of the fused silica composing the cell is
considered to be negligible and its thickness lower than the Rayleigh range (L < πω2/λ).
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3.1. Intensity Profiles Versus z

The diffracted field formation at the output of the setup shown in Figure 2 is described
using a numerical model based on Fourier optics (see for details [21–24]).

We assume that the electric field at the object focal plane of L1 is Gaussian, E(x) =
E0 exp

[
−x2/ω2

e
]
, where x is the spatial coordinate, E0 denotes the on-axis amplitude and

ωe is the beam waist at the entry of the setup. Let S̃(u) be the spatial spectrum of E: S̃(u) =
F̃ [E(x)] =

∫ +∞
−∞ E(x) exp[−j2π(ux)]dx, where F̃ denotes the Fourier transform operation,

u is the normalized spatial frequency. In a general way, instead of propagating the field
with the Helmholtz equation, we propagate its spectrum over distance z′ using the transfer

function of the wave propagation phenomenon: H(u) = exp
(

j2πz′
√

1− (λu)2/λ

)
[21].

Then, the amplitude of the field at z′ is obtained by computing the inverse Fourier transform:
E(x, z′) = F̃−1

[
S̃(u)H(u)

]
. Additionally, to calculate the output beam after passing

through a lens with focal length f 1, we apply the phase transformation related to the
thickness variation: tL(x) = exp

[
−jπx2/λ f1

]
[21] in accordance with Figure 2. Then, we

propagate the beam up to the sample located at z using z′ = f1 + z in H, the optical transfer
function. Next the thermal phase shift related to the response of the material is taken into
account using Equation (2) where we define the thermal transmittance as:

TTL(x, t) = exp(j2π∆nL/λ), (3)

before continuing the propagation, again using H for a distance D− z up to the photodiode.
Finally, the intensity ID−z is calculated by squaring the optical field. At this level, we can
calculate the characteristics that allow us to trace the induced phase shift in TTL as a
function of z by calculating the diameter of the output beam or the intensity at the center.

To illustrate our approach, we have simulated the intensity profile obtained in the
steady state regime at a distance D = 30 cm from the focal plane of L1 having f1 = 5.2 cm.
The power of the beam, the absorption of the sample, its thickness, the thermo-optical
coefficients and the heating time t f are chosen to give a phase shift at the center of the
beam in the focus: ∆ϕ(x = 0, z = 0) = ∆ϕ0 = 4.61 rad for λ = 532 nm, where

∆ϕ0 =
4PαL

λcρω2
0 f

dn
dT

∫ t f

0

(
1

1 + 2t′/tc

)
exp

(
−2x2/ω2

0 f

1 + 2t′/tc

)
dt′, (4)

with ω0 f being the beam waist at z = 0. The other parameters were defined as follows:
ωe = 0.5 mm, z varies from−4 mm to +4 mm in increments of 2 mm. The intensity profiles
obtained from the simulation are shown in Figure 3, where we can see the profile labeled
(1) for z = −4 mm, (2) for z = −2 mm, (3) at the bottom of the figure for z = 0 mm, (4) for
z = 2 mm and finally (5) for z = 4 mm. The (0) labeled profile is obtained with no thermal
lens effect (∆ϕ0 = 0). Its diffracted beam-waist was measured from the simulation profile
to be ωd = 2.8806 mm while theoretically ωd = λD/πω0 f = 2.8846 mm. Scanning the
cell from negative to positive z values, the peak intensity as shown in profiles (1) and (2)
first increases and then suddenly decreases (3), and finally its value increases again in (4)
and (5). This is typical behavior of the Z-scan method with negative phase shifts, which
show a higher transmittance at pre-focal positions followed by a lower transmittance at
post-focal positions [19]. Moreover, at this point note that the relatively high considered
phase shift (≈ π) is possible when using Helmoltz formalism for the beam propagation
(or H, its equivalent in the spectrum domain). No simplifications or approximations are
usually made in the literature with diffraction theory (as for example in [15–17]) and there
are no such stringent conditions on the propagation distance, which can be in the near
field. Moreover, we take into account the basic equation describing the effect of the lensing
medium (Equation (3)) and not a limited second order expansion assuming a small phase
shift (∆ϕ0 � 1). In addition, the radius of curvature of the spherical wave of the Gaussian
beam is often approximated to a parabolic one in the previous references, which limits the
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analysis of the final intensity to values near the optical axis. In our case, this approximation
does not exist and therefore we can study the entire transverse profile of the output beam
and accurately measure its diameter with a CCD camera.
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Figure 3. Evolution of the intensity profiles at a distance D = 30 cm for z varying from −4 mm (1)
to +4 mm (5). The other parameters of the simulation are given in the text. The (0) labeled profile
(dots) is obtained when there is no TL effect. The y−axis is given with arbitrary units. The numbers
labelling the blue solid lines are placed in the order of increasing central intensity profiles.

3.2. Spatiotemporal Evolution of the Central Output Diffracted Beam

Before analyzing the effects of the above approximations on the final measurement,
we will introduce a spatiotemporal image showing the central intensity of the output
beam (x = 0) when varying z and t, the integration time on the photodiode. The used
parameters to generate the results must allow comparison with those of references [15–17]
in particular to be valid and consistent with the simplifying assumptions. Therefore, let
us define θ = PLα(dn/dT)/λk. It is appropriate that this parameter remains sufficiently
small because in most experiments invoking thermal lenses using the established analytical
relations, θ is of the order of 0.1 or less. Therefore, we considered the parameters shown in
Table 1 with t varying from 0 to t f and z from −Z to +Z on 50 and 51 samples, respectively.
We also considered the Fresnel reflections on the cell by considering the refractive index of
its glass walls n0 and we have chosen the size of the beam-waist ωe corresponding to the
output of most CW lasers.

Table 1. The considered parameters used for the simulation.

α(m−1) λ (nm) L (mm) f1 (cm) ωe (mm) P (mW) D (cm) n0 tf (ms) Z (mm)

90 532 1 5.2 0.5 0.3 30 1.5 30 4

These parameters define: θ = −95 mrad, Rayleigh distance Z0 = 1.83 mm, tc =
0.77 ms and the intensity at the focus in the center of the beam I0 = 0.591 MW/m2.
At the beginning of the program, we define the total number of points so that (i) the
Gaussian beam representing the object is sufficiently sampled (10 points for ωe) (ii) the
spatial window on which the output beam should be displayed is equal to two times the



Materials 2021, 14, 5533 6 of 11

beam-waist of the larger diffracted beam (obtained at z = 0, labeled (3) in Figure 3). These
conditions allow us to respect the Nyquist–Shannon sampling theorem and to limit the
number of points in order not to unnecessarily lengthen the computation time. In the
particular case of the simulation corresponding to Table 1 we had 10,292 sampling points
to consider. We can see the result of the calculation in Figure 4a as giving I(z, t) at x = 0
in arbitrary units. This image shows the typical characteristics mixing the shapes of the
Z-scan traces for a given t and the exponential growth (or decay) for a given z to reach the
quasi-stationary regime when t� tc. Figure 4b shows I(t), the intensity variation versus
t considering z as a parameter and Figure 4c shows I(z), the intensity variation versus z
considering t as a parameter where one can see clearly what will be considered the “peak”
and “valley” characteristics of the Z-scan traces.
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3.3. Results Comparison

Let us compare our results with those already established in [15] for low TL regimes,
i.e., when θ is sufficiently small. Note that the mode-mismatched or matched dual-beam
give the same analytical expressions in the particular case of a single beam [16]. In this
case, the signal is defined as being the fractional intensity change when the cell is located
at z after t times exposure of the material: S(z, t) = [I(z, t)− I(z, ∞)]/I(z, ∞). Analytical
calculations for the in-axis far field intensity variation provided [15]:

S(z, t) = −1 +
1− θtan−1[ 2V

3+V2+(9+V2)( tc
t )

]

1− θtan−1[ 2V
3+V2 ]

, (5)

where V = z/Z0 with Z0 = πω2
0 f /λ.
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Setting t = 0 in Equation (5) allows us to obtain the total fractional intensity change as
a function of V:

S(V) = −1 +
1

1− θtan−1
(

2V
3+V2

) (6)

The derivative of Equation (6) allows us to optimize this signal, finding positions of the
sample at V = ±

√
3 where S is extremal. Moreover, it is possible to get tc the characteristic

time of the absorbing liquid letting z =
√

3Z0 in Equation (5) where the signal becomes:

S(t) = −1 +
1− θtan−1

(
0.577

1+tc/t

)
1− θ(0.577)

(7)

Equations (6) and (7) will be tested next, comparing their results with those given
by the exact previous simulation, whose parameters appear in Table 1. Figure 5 shows
the evolution of S(V) as given by Equation (6) in the dashed (red) points while the simu-
lated exact evolution for the same parameters should be given by the curve as it appears
in the solid (blue) line. In other words, if we assimilate the exact-computed acquisi-
tion signal to the solid (blue) line, the fitting defined by Equation (6) and shown in the
dotted (black) line estimates θ as 4.7 times smaller. Recall that this signal is defined as
S(z, 0) = [I(z, 0)− I(z, ∞)]I(z, ∞) , which represents the relative change in intensity as a
function of z from the initial heating time up to steady state.
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Figure 5. (color online): Comparison of the signal given by the simulation without approximations
(solid blue line) with that from Equation (6) (dashed red line) used to characterize the TL effect. The
dotted (black) line is the fitting of the solid blue line representing the exact signal.

We also notice that the maximum and minimum of the signal given by the solid blue
line (obtained without resorting to approximations) and the analytical function defined
in Equation (6) do not give the same values. Indeed, as already mentioned, Equation
(6) is obtained following a rather rough calculation, so it is not surprising to see that its
extremums also do not correspond exactly to the correct values that are obtained around
V ≈ ±0.7, separated therefore by a distance ≈

√
2.

We can now study Equation (7) or its analogous Equation (5) using the correct values
for the maximum and the minimum. We have used a nonlinear least squares routine to
fit the temporal behavior at these positions obtained with the exact numerical simulation
as if they were experimental acquisitions. At the minimum, for V = −0.7, we obtained
θ = −36.9 mrad and tc = 0.50 ms, while at the maximum, for V = 0.61, we obtained
θ = −42.2 mrad and tc = 0.50 ms. It should be noted that a small difference is observed
in the fitting results when moving from negative to positive z because the response S(t)
is not symmetrical (see Figure 6 for t = 0). This asymmetrical response is much more
pronounced for higher absolute values of θ. In any case, the mean measured value is
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given as: θ = −39.5 mrad and tc = 0.5 ms which always underestimates the correct values
(−95 ms and 0.77 ms, respectively) with relative errors of 60% on θ and 35% on tc.

Materials 2021, 14, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 6. Nonlinear fit (solid red lines) of S(t) showing the temporal evolution of the exact numerical 

data (empty blue circles) characterizing the rise and the fall time of the TL effect. 

Comparing the results given by the fits according to Equation (5) on one side and 

Equation (6) on the other, one can notice that we do not obtain the same value for 𝜃. In-

deed, the fit realized in Figure 5 by Equation (6) takes into account the average value of 

the signal along the entire length of the 𝑉 axis. Therefore, for 𝑉 < 1.2, a part of the fitting 

curve (dashed line) is situated below the curve to fit (solid line) and for higher 𝑉 it is the 

opposite. While in Figure 6, the fit done by Equation (5) is considered at the extremums 

of 𝑆, which should logically give a slightly higher value for 𝜃—and this is indeed the case.  

Note that the sensitivity of the photodiode for different incident wavelengths should 

not affect the signal because it is always calculated as being the relative variation of the 

intensity. Regarding the bandwidth, the characteristic responses of the liquids are of the 

order of a millisecond, which does not represent any particular technical difficulty for a 

photodiode and for the oscilloscope to follow the rise or fall of the signal according to 

time”. 

3.4. Simplified Relations Using Z-scan-based Methods 

We will end this analysis by providing the relationship between the induced phase 

shift and the signal it generates in a single beam stationary mode. As already shown in 

the 4f setup [20], we can then measure the variation of the beam size at the output of an 

imaging system or directly, following the scheme in Figure 2. Indeed, the 4f setup acts 

through its second lens, forming the image as a far field diffraction, provided that 𝐷 ≫

⁡𝑍0. In the presence of a Gaussian beam, we checked that the relations obtained for the 

relative size variation of the output beam would be the same with or without this second 

lens. Therefore, to minimize the numerical calculation, we will present the results relative 

to the simplified scheme in Figure 2, knowing that the same relations would be obtained 

in the 4f system. The parameters of Table 1 will always be considered. Figure 7 shows the 

numerical simulation of the Z-scan trace, in the dashed (red) line, along with the relative 

size variation of the beam, in the solid (blue) line, measured using the D4σ method as in 

[20]. Based on the calculation of the second order moment of the diffracted beam, the D4σ 

method gives four times the standard deviation of the intensity profile distribution. The 

difference between the peak and the valley is a linear function of the induced phase shift 

as already shown experimentally in [10] using a CCD at the output of a 4f system. Using 

D4σ method we found: ∆𝜔𝑝𝑣 = 0.17𝛥𝜑0  with ∆𝜔𝑝𝑣 = (𝜔𝑇𝐿 − 𝜔𝑑) 𝜔𝑑⁄  where 𝜔𝑇𝐿  rep-

resents the size of the beam in the presence of the TL and 𝜔𝑑 without, i.e., in the low TL 

regime. Furthermore, the relation obtained for Z-scan linking the signal to the induced 

phase shift in the center of the beam at 𝑧 = 0 (with a closed aperture sensing the maxi-

mum of the intensity profile) is ∆𝑇𝑝𝑣 = 0.14Δ𝜑0. The sensitivity is defined as the ratio of 

Figure 6. Nonlinear fit (solid red lines) of S(t) showing the temporal evolution of the exact numerical
data (empty blue circles) characterizing the rise and the fall time of the TL effect.

Comparing the results given by the fits according to Equation (5) on one side and
Equation (6) on the other, one can notice that we do not obtain the same value for θ. Indeed,
the fit realized in Figure 5 by Equation (6) takes into account the average value of the signal
along the entire length of the V axis. Therefore, for V < 1.2, a part of the fitting curve
(dashed line) is situated below the curve to fit (solid line) and for higher V it is the opposite.
While in Figure 6, the fit done by Equation (5) is considered at the extremums of S, which
should logically give a slightly higher value for θ—and this is indeed the case.

Note that the sensitivity of the photodiode for different incident wavelengths should
not affect the signal because it is always calculated as being the relative variation of the
intensity. Regarding the bandwidth, the characteristic responses of the liquids are of the
order of a millisecond, which does not represent any particular technical difficulty for a
photodiode and for the oscilloscope to follow the rise or fall of the signal according to
time”.

3.4. Simplified Relations Using Z-scan-based Methods

We will end this analysis by providing the relationship between the induced phase
shift and the signal it generates in a single beam stationary mode. As already shown in
the 4f setup [20], we can then measure the variation of the beam size at the output of an
imaging system or directly, following the scheme in Figure 2. Indeed, the 4f setup acts
through its second lens, forming the image as a far field diffraction, provided that D � Z0.
In the presence of a Gaussian beam, we checked that the relations obtained for the relative
size variation of the output beam would be the same with or without this second lens.
Therefore, to minimize the numerical calculation, we will present the results relative to
the simplified scheme in Figure 2, knowing that the same relations would be obtained in
the 4f system. The parameters of Table 1 will always be considered. Figure 7 shows the
numerical simulation of the Z-scan trace, in the dashed (red) line, along with the relative
size variation of the beam, in the solid (blue) line, measured using the D4σ method as
in [20]. Based on the calculation of the second order moment of the diffracted beam, the
D4σ method gives four times the standard deviation of the intensity profile distribution.
The difference between the peak and the valley is a linear function of the induced phase
shift as already shown experimentally in [10] using a CCD at the output of a 4f system.
Using D4σ method we found: ∆ωpv = 0.17∆ϕ0 with ∆ωpv = (ωTL −ωd)/ωd where ωTL
represents the size of the beam in the presence of the TL and ωd without, i.e., in the low
TL regime. Furthermore, the relation obtained for Z-scan linking the signal to the induced
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phase shift in the center of the beam at z = 0 (with a closed aperture sensing the maximum
of the intensity profile) is ∆Tpv = 0.14∆ϕ0. The sensitivity is defined as the ratio of the
output of a measurement system with respect to an input. The coefficient 0.14 found here
is in good agreement with that found in the literature. According to [25], the sensitivity of
Z-scan in the steady-state regime is 0.15.
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One could notice that the sensitivity of D4σ and Z-scan methods are almost the same.
D4σ measurement has already demonstrated a sensitivity similar to that of Z-scan by
characterizing the Kerr-type optical nonlinearities [22]. The main advantage of D4σ comes
from the fact that the signal to noise ratio is much higher given the use of all the pixels
defining the spatial extension of the beam on the CCD. This is to be compared with the
few pixels used when processing the measurement relative to the linear transmittance of
the closed aperture located at the top hat of the diffracted beam. Moreover, the obtained
steady-state signals with a CCD are not sensitive to the characteristic time for the transient
induced nonlinear index variation because the CCD takes a longer time to acquire an image.
In addition, a study is being developed to propagate vortex beams [26] in this imaging
system, which could improve the sensitivity of the measurement by increasing the contrast
in the image of the phase object that would be placed at the entrance of the setup. This
numerical model has been widely used with third order optical nonlinearities induced by
high pulsed laser intensities in the picosecond regime. Here, the same propagation model
is used (for more details, see [20,22–24]), but what is new is the use of a thermal lens phase
shift in the focal region instead of that relative to third order optical nonlinearities.

In summary, the use of rough approximations to obtain simplified analytical formulas
is no longer necessary with today’s computing power. It would be necessary to calibrate
the setup with known parameters that can be measured beforehand in a classical way. A
more accurate determination of the thermo-optical coefficients is then possible. On the
other hand, many publications have appeared with large values of the nonlinear third
order optical index due to thermal effects generated by either a relatively low intensity
CW laser, relatively long pulse duration in the nanosecond regime or high repetition rate
in the femtosecond regime. We need to study the exact influence of these parameters on
the generated signals. This is an area that deserves full attention and efforts to refine the
nonlinear measurements where many existing artifacts are found in this field. Therefore,
this paper paves the way to study from a metrological point of view the phase shift induced
by the thermal lens effect that comes sometimes with the instantaneous Kerr induced ones
as was found initially in [27] and more recently in [5].
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4. Conclusions

A numerical analysis method has been developed using the transfer function of the
spectrum propagation to calculate the near-field diffraction beam. A study of the simplified
analytical relations generally used to evaluate the thermo-optical coefficients in a single
mode beam has been established using the output of a classical CW laser. These analytical
rough relations have the advantage of existing but only give an order of magnitude of the
desired coefficients to be measured: θ is underestimated with 60% relative error although
the characteristic time tc remains acceptable with 35% error. Other characteristics of the
signal can be misleading, such as its position of the minimum and the maximum, which are
found to be separated by ∼

√
2Z0 instead of 2

√
3Z0. Finally, a study of the Z-scan-based

method sensitivities has yielded relationships that may be useful for attaining more accurate
measurements to determine the steady-state thermal lens phase shift more precisely.
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