
antibiotics

Review

Allergic Diseases Caused by Aspergillus Species in Patients
with Cystic Fibrosis

Aidan K. Curran 1 and David L. Hava 2,*

����������
�������

Citation: Curran, A.K.; Hava, D.L.

Allergic Diseases Caused by

Aspergillus Species in Patients with

Cystic Fibrosis. Antibiotics 2021, 10,

357. https://doi.org/10.3390/

antibiotics10040357

Academic Editor: Claudia Cafarchia

Received: 31 January 2021

Accepted: 24 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Pulmatrix Inc., 99 Hayden Avenue, Lexington, MA 02421, USA; acurran@pulmatrix.com
2 Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
* Correspondence: dave.hava@synlogictx.com

Abstract: Aspergillus spp. are spore forming molds; a subset of which are clinically relevant to humans
and can cause significant morbidity and mortality. A. fumigatus causes chronic infection in patients
with chronic lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and cystic
fibrosis (CF). In patients with CF, A. fumigatus infection can lead to allergic disease, such as allergic
bronchopulmonary aspergillosis (ABPA) which is associated with high rates of hospitalizations for
acute exacerbations and lower lung function. ABPA results from TH2 immune response to Aspergillus
antigens produced during hyphal growth, marked by high levels of IgE and eosinophil activation.
Clinically, patients with ABPA experience difficulty breathing; exacerbations of disease and are at
high risk for bronchiectasis and lung fibrosis. Oral corticosteroids are used to manage aspects of
the inflammatory response and antifungal agents are used to reduce fungal burden and lower the
exposure to fungal antigens. As the appreciation for the severity of fungal infections has grown, new
therapies have emerged that aim to improve treatment and outcomes for patients with CF.
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1. Pulmonary Aspergillus Infections

Aspergillus spp. are ubiquitous spore forming molds, a subset of which are clinically
relevant to humans and can cause significant morbidity and mortality. Pulmonary infec-
tion from A. fumigatus, the most common Aspergillus pathogen, causes a diverse set of
diseases, ranging from acute invasive disease to long-term, chronic infections [1]. The
type of disease and disease severity are largely dictated by the immune system of the
host. Immunosuppressed patients, such as those undergoing organ transplantation or
cancer treatment, are at high risk for invasive aspergillosis (IPA). IPA is a life-threatening
disease that occurs following the inhalation of fungal conidia and the evasion of host
defense that allows the fungus to invade host tissues and grow unchecked in the lung [2].
The mortality rate of IPA can be as high as 90% in some patient populations [3,4] and
prophylaxis using oral antifungal drugs is commonly used to prevent infections. Chronic
pulmonary aspergillosis is distinct from IPA and manifests in a variety of different diseases
including aspergilloma, cavitary disease and fibrosing disease [5]. Patients with chronic
lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and cystic
fibrosis (CF) are susceptible to chronic aspergillosis.

Chronic diseases caused by Aspergillus can result from stable active infection of the
lung or from allergic sensitization resulting from the exposure to Aspergillus antigens. In the
first case, disease results from stable and persistent infection of the airways with Aspergillus
resulting in fungal growth and an inflammatory response that aims to clear the infection
from the lung. In some instances, this has been referred to aspergillus bronchitis [6], which
may have a varying impact on lung function and clinical disease. In contrast, allergic
diseases, characterized by a TH2-driven immune response to Aspergillus antigens, include
both severe asthma with fungal sensitization (SAFS) and allergic bronchopulmonary as-
pergillosis (ABPA). Both SAFS and ABPA are significant clinical issues in patients with
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asthma, with the latter being a significant clinical problem in patients with CF [7,8]. A.
fumigatus is the common cause of ABPA, however sensitization to other Aspergillus species
has been noted [9]. In the case of allergic disease, the resulting allergic response to antigen
is likely independent of the specific Aspergillus species. It has been suggested that there
may be a continuum of disease that starts with aspergillus bronchitis and progresses to
sensitization and ultimately ABPA [6], for the purposes of this review, we primarily focus
on aspergillus bronchitis and APBA in patients with CF.

While the clinical impact of Aspergillus colonization and persistence may vary among
patients and require continued characterization, allergic fungal infections have a clear
deleterious clinical impact. CF patients with sensitization to A. fumigatus antigens have a
distinct and robust TH2 inflammatory response in sputum samples after allergen challenge.
This inflammation is marked by increases in sputum eosinophils and increased expression
of IL-5 and IL-13 [10]. ABPA is characterized by a complex TH2 hypersensitivity reaction in
response to fungal antigens that drives immune cell activation and eosinophil recruitment
(Figure 1) [11,12]. Expression of IL-4 and IL-5 are central to these processes. IL-4 stimulates
the upregulation of adhesion molecules involved in eosinophil recruitment and the pro-
duction of IgE by B cells, which in turn leads to mast cell activation. IL-5 produced by both
TH2 cells and mast cells is a key mediator of eosinophil activation. Activation of both mast
cells and eosinophils results in the release of mediators that induce bronchoconstriction
(Figure 1) [12]. Through repeated cycles of inflammation, patients with ABPA are at high
risk for frequent exacerbations and the development of bronchiectasis [1].
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Figure 1. Pathophysiology of ABPA. Inhalation of fungal conidia and subsequent germination of fungal hyphae results
in the expression of antigens specific to hyphal growth. These antigens are recognized by the immune system and cause
a TH2 driven immune response marked by increased levels of TH2 cytokines, recruitment of eosinophils to the lung and
increased production of IgE. The activation of eosinophils and mast cells drive the pathophysiology of ABPA and the
resulting clinical symptoms.

2. Prevalence and Diagnosis of Aspergillus Infections in Patients with CF

Chronic aspergillosis and ABPA affect a large number of patients each year, with
more than 3 million cases of chronic disease and nearly 5 million cases of ABPA reported
on an annual basis [7,13]. The majority of ABPA represents disease in asthmatics, with
an estimated 1 to 2.5% of all asthmatics worldwide having ABPA [14]. Reports of ABPA
prevalence in patients with CF vary from 1 to 15% [15,16], with reports of colonization rates
in respiratory samples ranging from 6 to 58% [13,17,18]. The variability in these reports is
likely at least partially due to differences in sample collection, processing and diagnostic
approaches between laboratories.

A. fumigatus is the most common species present in the lungs of patients with CF,
however, other Aspergillus species are clinically relevant, including A. niger, A. terrus and A.
flavus [15,19,20]. The prevalence of Aspergillus in adult CF patients has been appreciated
for a number of years, with increased prevalence associated with prophylactic antibiotic
use [21,22]. More recently, an increase in prevalence has been observed in young children
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with CF [23–25]. In infants with CF, Aspergillus spp. were detected in bronchoalveolar
lavage (BAL) samples with similar prevalence and at similar ages as the common the
bacterial colonizers Staphylococcus aureus, Pseudomonas aeruginosa, and Haemophilus influen-
zae. However, whereas S. aureus and P. aeruginosa prevalence decreased over time due to
antibiotic therapy, Aspergillus prevalence remained unchanged [23].

An appreciation for the clinical significance of Aspergillus colonization and persistence has
increased in recent years. Several studies have suggested an association between A. fumigatus
infection, respiratory function and severe pulmonary exacerbations. In several studies, CF
patients with chronic A. fumigatus infection have lower percent predicted forced expiratory
volume (FEV1) than uninfected controls [17], higher rates of hospitalization resulting from
pulmonary exacerbations [17], show more rapid loss of lung function [24,26,27] and have
worse respiratory quality of life [28]. Declines in clinical disease are a result of increased
pulmonary inflammation [29,30], which can also result in structural lung changes by
high-resolution CT (HRCT) scan. In a cross-sectional study of children, BAL samples
positive for Aspergillus were associated with air-trapping on HRCT, although the same
study failed to show an association with lung function decline between the ages of 5
and 14 [31]. A recent longitudinal study of 330 children found similar findings linking
Aspergillus culture positivity to changes in structural lung disease [30]. Aspergillus infection
was associated with worse initial CT scores that declined further in the subsequent year,
with the most significant impact on air-trapping and mucus plugging [30]. Interestingly, the
magnitude of disease progression was associated with the number of Aspergillus infections
over the course of the study, suggesting a dose-responsive relationship between infection
and disease. A similar association with progression of lung diseases was observed for P.
aeruginosa infection, but not for S. aureus and H. influenzae infections.

An understanding of incidence and prevalence is further hampered by the difficulty
of diagnosing disease. Diagnostic criteria for ABPA include both obligatory and supportive
criteria in addition to having either asthma or CF. High levels of serum IgE (>1000 U/mL)
and a positive hypersensitivity skin test or increased IgE antibody to Aspergillus are re-
quired criteria together with at least two additional supportive features: eosinophilia (>500
cells/µL), Aspergillus-specific IgG, and/or radiographic findings [32]. ABPA is charac-
terized clinically by wheezing, dyspnea, mucus production and productive cough and
bronchoconstriction. Repeated episodes of mucus production, bronchial obstruction and
inflammation may lead to bronchiectasis and, in severe cases, pulmonary fibrosis, which
collectively result in a progressive loss of lung function. A combination of clinical symp-
toms and biomarkers have been used to develop a staging system to help in disease
management [32].

The range of reported disease prevalence and variations in diagnostic approaches
suggests that pulmonary fungal infections in CF may be under diagnosed. This is fur-
ther complicated by the use of culture-based diagnostic methods, which underestimate
Aspergillus detection compared to molecular methods, such as quantitative PCR [6,33].
New methods to detect Aspergillus in sputum using RT-PCR and high-volume culture
techniques have the potential to significantly increase the sensitivity of detection and
ultimately, diagnosis [13,34]. Using these new culture techniques, CF patients can be put
into four subgroups; those without aspergillosis, those sensitized to Aspergillus, those with
ABPA and those with aspergillus bronchitis [13]. Using this methodology, Baxter et al. clas-
sified 130 CF patients and found that 30% had aspergillus bronchitis and 17.7% had ABPA.
Armstead et al. compared these rates to the reported rates of ABPA in CF registries and
literature reports for adult CF patients from 30 different countries [35]. They found that the
number of ABPA cases diagnosed and reported is likely a significant underrepresentation
of the estimated cases when more sensitive diagnostic assays are utilized. In the United
States the number of documented adult CF cases of ABPA (869 cases) was 34.6% of the
estimated cases (2510 cases) as defined by Armstead et al. Using the more recent data,
almost 50% of US adult CF patients may have either ABPA or aspergillus bronchitis [35].
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3. Aspergillus ssp. and Bacterial Interactions in the Pathogenesis of Disease

CF patients have a complex lung microbiota, where there is likely significant interplay
between colonizing bacteria and fungi [36]. Longitudinal assessment of data from the
Cystic Fibrosis Foundation Patient Registry suggests that P. aeruginosa and Stenotrophomonas
maltophilia infections are positively correlated with Aspergillus infections [37]. In contrast,
infection with Burkholderia cepacia complex was negatively associated with both current and
future Aspergillus infection [37], indicating that there are specific mechanisms in different
bacteria that influence the susceptibility of patients to Aspergillus infections. Potential inter-
actions between Aspergillus species and non-tuberculous mycobacterial (NTM) infections
have not been well characterized. Given the importance of NTM infections in CF [38] and
the suggestion that A. fumigatus can negatively impact NTM infection in mice [39], a more
detailed assessment of the impact of co-infection with these pathogens is needed.

In CF patients, the most common bacterial and fungal isolates are P. aeruginosa and
A. fumigatus, respectively [40] and colonization with both species results in greater lung
function decline relative to individuals with either infection alone [17,41]. Given the
relationship between bacteria and fungi, there is growing interest in understanding how
these infections interact, influence each other and affect the progression of CF-related
disease. In particular, it is important to understand how the treatment of one infection may
increase or decrease susceptibility to another infection. Indeed, in clinical practice, antibiotic
treatment has been shown to predispose CF patients to Aspergillus colonization [22].

Both P. aeruginosa and A. fumigatus form biofilms in vivo and in vitro [42,43]. Several
reports suggest that P. aeruginosa inhibits A. fumigatus planktonic growth and biofilm for-
mation by secreted factors and different isolates of P. aeruginosa exhibit different degrees
of toxicity [41,44]. P. aeruginosa inhibits A. fumigatus growth by the production of pyover-
dine, a siderophore that sequesters iron. P. aeruginosa mutants defective in pyoverdine
production are not toxic to A. fumigatus, and the addition of pyoverdine to mutant cultures
restores A. fumigatus toxicity [45]. More research will be required to understand not only
the in vivo balance between these pathogens, but also the effect of these interactions and
individual eradication treatments on patient outcomes.

S. maltophilia is a Gram-negative pathogen of increasing significance in CF. Data
from an in vitro mixed-culture biofilm model of A. fumigatus and S. maltophilia suggest an
inhibitory effect of S. maltophilia on A. fumigatus growth and production of extracellular
matrix [46]. Co-culture of these organisms also impacts their susceptibility to antibiotics.
Susceptibility of A. fumigatus to amphotericin B was increased in mixed-culture biofilms,
whereas S. maltophilia susceptibility to levofloxacin decreased [47]. These data highlight
potentially clinically relevant, complex interactions between A. fumigatus and bacteria
other than P. aeruginosa. Further study of interactions between A. fumigatus and bacteria
commonly found in the CF patients is warranted.

4. Treatment of ABPA with Approved Therapies

In addition to managing the symptoms of asthma or CF, treatments targeted at treating
ABPA aim to prevent acute exacerbations, reduce pulmonary inflammation and to prevent
progression toward end-stage fibrotic disease [48]. While there are no approved therapies
for ABPA, much of our understanding of how to treat ABPA in CF patients comes from
clinical trials conducted in asthmatics with ABPA. Oral corticosteroids are used in an effort
to suppress inflammation and oral antifungals are used in an attempt to eradicate Aspergillus
from the airways to reduce antigen stimulation of the allergic response [49]. Therapeutic
effects are typically monitored through changes in serum IgE levels while tapering steroids
until remission is observed [11,49]. Improvements in pulmonary function are a desired
impact of therapy, however, deterioration of lung function in patients with APBA is
variable, with some patients maintaining stable lung function and others presenting with
progressive deterioration [50,51]. Current ABPA treatment paradigms have been informed
by a number of clinical trials that have evaluated the effects of approved anti-inflammatory
and anti-infective therapies on ABPA clinical disease (Table 1).
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Table 1. Randomized, controlled clinical trials conducted in ABPA.

Drug Dose Design N Duration Primary Outcome Reference

Prednisolone 0.5mg/kg *
0.75mg/kg *

Randomized,
controlled 92

6 to 8 weeks
followed by taper

for up to 10 months

Exacerbation rate
Steroid-dependent

ABPA
[49]

Itraconazole
Prednisolone

200mg BID
0.5mg/kg *

Randomized,
controlled 131 16 weeks

Composite clinical
response

Decline in IgE
Exacerbation rate

[52]

Itraconazole 400mg QD

Randomized,
double blind,

placebo
controlled

29 16 weeks Sputum eosinophil
count [53]

Itraconazole 200mg BID

Randomized,
double blind,

placebo
controlled

55 16 weeks Composite clinical
response [54]

Voriconazole
Prednisolone

200mg BID
0.5mg/kg *

Randomized,
controlled,
unblinded

50 16 weeks
Composite clinical

response
Exacerbation rate

[55]

Inhaled
amphotericin B 10mg BID Randomized,

controlled 21 16 weeks Time to first
exacerbation [56]

Omalizumab 600 mg

Randomized,
double blind,

placebo
controlled

14 ** 24 weeks
Requirement for

rescue
corticosteroids

NCT00787917

* Starting doses, regimens involved a pre-specified reduction in dose and tapering regimen; ** Discontinued due to poor enrollment.

4.1. Oral Corticosteroids

The use of corticosteroids in treating ABPA in asthma has largely been based on
experience in clinical practice with few randomized, controlled clinical trials studying
steroid use as chronic therapy. Long-term steroid use is associated with adverse side-
effects, which must be managed in parallel with the management of ABPA [12,57,58]
and long-term steroid increases the risk of developing corticosteroid-dependent disease.
Although studies on steroid use in patients with relapsing and chronic disease are lacking,
two recent clinical studies have evaluated corticosteroid use in acute treatment naïve
ABPA patients, with positive results. A comparison of high-dose and medium-dose steroid
regimens in treatment-naïve ABPA patients found that both treatment protocols resulted
in a similar number of acute exacerbations after 1 year and a similar number of patients
with glucocorticoid-dependent ABPA after 2 years. However, the medium-dose group
resulted in fewer glucocorticoid side-effects [49]. In a similar clinical study comparing
prednisolone treatment to itraconazole treatment, a similar medium steroid dose resulted
in high rate of clinical response and reduced IgE levels [52]. The lower steroid doses used
by Agarwal et al. are similar to common treatment regimens world-wide [59].

4.2. Anti-Fungal Therapy

Use of antifungals in management of ABPA is supported by a strong biological link
between Aspergillus infection in the airway and the resulting allergic inflammatory response
that is the hallmark of ABPA inflammation. A high percentage of asthmatics sensitized to A.
fumigatus are sputum culture-positive for A. fumigatus growing in their airways [6], which
correlates with reduced lung function [60]. Fungal spores are largely non-inflammatory and
allergic disease is primarily driven by antigens produced in the hyphal growth state [61–63],
highlighting the fact that the germination of spores into growing hyphae is necessary for
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eliciting the immune response and the resulting pathophysiology of the disease (Figure 1).
That these antigens are expressed in vivo and that they can be reduced by therapies that
limit fungal growth is supported by several studies showing that antifungal therapy
reduces Aspergillus-specific IgG and IgE [64]. Likewise, in a small study that examined
Aspergillus infection in patients with ABPA and SAFS, 9 patients that were positive for
Aspergillus infection by PCR became negative for Aspergillus infection following treatment
with itraconazole. This conversion was associated with a reduction in total serum IgE [65].

The most common antifungal therapy used in the management of ABPA is itracona-
zole, a triazole that inhibits fungal cytochrome P450 synthesis of ergosterol, a critical
component of the fungal cell wall [66]. Clinically, itraconazole is used to reduce fungal
burden and inflammation, and also as a steroid-sparing agent to reduce the long-term usage
of corticosteroids. A number of clinical studies and case series have shown the benefit of
itraconazole in treating Aspergillus bronchitis [67] and ABPA [53–55,68], including ABPA
patients with CF [64]. As with any anti-infective therapy, long term therapy with triazoles
can lead to the emergence of resistance [69]. Of particular concern, since the predominant
mechanism that azole resistance develops is through mutation of the cyp51A gene, the
molecular target of azole activity, the development of resistance to one azole can result
in broad cross-resistance to multiple azoles [70]. This concern is further underscored by
the recent description of a second mechanism of multiple-azole resistance resulting from
mutations in cyp51B, a second 14-α sterol demethylase, which may be further exacerbated
by a second mutation in hmg1 [71].

Oral itraconazole efficacy in asthmatics with ABPA has been studied in two random-
ized, placebo-controlled studies to study the clinical response and anti-inflammatory effect
of treatment [53,54]. In a study of 55 asthmatics with ABPA, patients were randomized
to receive oral itraconazole or placebo for 16-weeks, after which all patients received itra-
conazole for an additional 16 weeks in an open label extension period [54]. Itraconazole
efficacy was assessed using a composite clinical response score that included reduction in
corticosteroid use, reduction in IgE and either improved lung function or exercise tolerance.
Compared to placebo, oral itraconazole significantly improved clinical responses and more
than 70% of patients on itraconazole lowered their oral corticosteroid dose by more than
50%. In the open-label extension portion of the study 12 of the 33 patients who did not
respond in the double-blind portion or were on placebo had a clinical response [54], further
underscoring the efficacy of itraconazole in this patient population.

Inflammation resulting from A. fumigatus antigen exposure is the main driver of clinical
disease. In a second randomized, double-blind placebo-controlled study the effect of
itraconazole on pulmonary inflammation was assessed in 29 subjects with stable ABPA [53].
Over 16 weeks, treatment with oral itraconazole significantly reduced the number of
sputum eosinophils and eosinophil cation protein, with a significant reduction observed
after only one month of therapy. Serum markers of inflammation, IgE and IgG specific to
Aspergillus antigens, were also reduced [53]. More recently, a comparison of steroid therapy
to itraconazole therapy in acute, treatment naïve patients found that while there was
moderate benefit for steroid therapy over itraconazole (100% vs. 88% composite response;
p = 0.007), itraconazole had a significant benefit to the majority of patients, with fewer side
effects than steroid treatment [52].

Although anti-fungal drugs have not been widely studied in CF patients with ABPA,
data generated in asthmatics suggests that antifungal therapy may provide benefit to CF
ABPA patients. This is further supported by small studies of itraconazole in patients with
CF. In a study of itraconazole in six ABPA patients, three of whom had CF, itraconazole
treatment reduced steroid use and two of the three CF patients had clinical benefit, in-
cluding improved lung function [68]. An additional case series of 16 CF patients with
ABPA also showed that itraconazole treatment resulted in fewer acute exacerbations and
provided a steroid-sparing benefit [72]. In addition to itraconazole, other available azoles
such as voriconazole and posaconazole have been used with some benefit in ABPA and
CF [73–76]. In one randomized trial comparing voriconazole and prednisolone, there was



Antibiotics 2021, 10, 357 7 of 13

no difference between the two therapies after 16 weeks of dosing [55]. The opportunity to
use anti-fungals in place of high dose, systemic steroids is appealing since long-term steroid
use increases the risk of developing diabetes and osteoporosis, and the development of
steroid-dependent ABPA is a significant concern [77,78].

Amphotericin B, a polyene anti-fungal that acts by disruption of the fungal cell wall, is
commonly used as an intravenous drug to treat severe fungal infections in immunocompro-
mised patients [79]. In an effort to directly target anti-fungal therapy to the lung, inhaled
liposomal amphotericin B has been suggested as a treatment option for patients with ABPA
and SAFS, however, clinical experience in small studies with inhaled amphotericin has
been mixed. In one instance, inhaled amphotericin B reduced exacerbations in patients
with ABPA and was reasonably tolerated after the first dose [80]. In other studies, inhaled
amphotericin B has been associated with significant tolerability concerns. In a case series
study of 177 patients with pulmonary aspergillosis that received inhaled amphotericin
B, 66% of patients were able to tolerate an initial dose, however, 21% stopped therapy
in the following 6 weeks. Only 10% of patients continued with therapy for more than
3 months, with 28% of those patients showing improvement in IgE levels [81]. Similarly, in
a small clinical study of 21 adult asthmatics with SAFS and ABPA, who had failed previous
antifungal therapy, 18 subjects either failed initial dosing or discontinued therapy in the
following 12 months [56].

Elevated serum and sputum IgE levels are a hallmark of ABPA. IgE can trigger mast
cell degranulation and cause hypersensitivity responses in the lung, which together drive
the pathophysiology of the disease [82]. Omalizumab is an anti-IgE monoclonal antibody
developed for the treatment of moderate-to-severe uncontrolled allergic asthma. Omalizumab
has been used off label in a series of small studies in adults and children with CF and ABPA. In
several case reports, omalizumab treatment has shown promise with improved lung function,
reduced steroid use and fewer exacerbations in CF patients [83–85]. However, not all studies
have shown efficacy with omalizumab [86], and the only well controlled randomized
clinical trial was terminated early due to poor enrollment (NCT00787917). Further study is
warranted for this approach.

5. New Therapies to Treat ABPA and Fungal Infections

Despite the advances in diagnosis and management of ABPA, there remains a signifi-
cant unmet medical need for the treatment of ABPA. The primary antifungal therapy, oral
itraconazole, is generally safe and well tolerated in both CF and non-CF patients, though
there is an extensive list of drug-drug interactions (DDI), which requires drug monitoring
during therapy. Itraconazole absorption and pharmacokinetics can be highly variable,
resulting in inconsistent exposure across patients, which may impact the consistency of
clinical responses [68,72]. In healthy volunteers, oral bioavailability of itraconazole is 55%
and is impacted by digestive function [87]. In CF patients, itraconazole exposure is variable
and a significant fraction of patients may not achieve therapeutic dose levels. In a study of
11 CF patients, oral itraconazole dosing resulted in sub-therapeutic plasma concentrations
in 5 of 11 patients. Low plasma concentrations correlated with variable sputum itracona-
zole concentrations that were below the reported minimum inhibitor concentrations of
itraconazole against A. fumigatus [88]. Variable itraconazole pharmacokinetics following
oral dosing highlight the challenge of achieving the high, and consistent lung exposure
required for efficacy. Consistent with this, a clinical study showing no clinical benefit of
itraconazole in CF patients also found that most patients failed to adequate itraconazole
exposure [89].

Given the challenges of oral anti-fungal therapy, efforts have aimed to improve the
bioavailability of itraconazole to increase exposure in the lungs. One recent approach
has been the development of SUBA-itraconazole, an oral formulation with improved
pharmacokinetics that rapidly achieves therapeutic levels in the lung [90]. Alternatively,
several groups have aimed to use inhalation as an approach to directly deliver anti-fungal
agents to the site of disease. Inhalation offers the potential to overcome many of the
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challenges of oral therapies, including achieving high and consistent drug concentrations
at the site of infection. Achieving high drug concentrations may limit the emergence of
drug-resistant strains or alternatively enable the treatment of drug-resistant infections by
achieving concentrations in excess of minimum fungicidal concentrations. Several of these
inhalation approaches utilize novel drug delivery technologies to reformulate itraconazole
or voriconazole for delivery to the lungs, thereby leveraging the known activity of azoles
against A. fumigatus. In addition, PC945, a novel azole delivered by liquid nebulization is
also in development as a therapy for treating pulmonary fungal infections (Table 2).

Table 2. Novel drugs in development as treatments of ABPA.

Product Company Formulation Drug Clinical Trials Primary
Indication

Development
Phase

PUR1900 Pulmatrix Dry Powder Itraconazole NCT03479411
NCT03960606 ABPA Phase 2

ZP-059 Zambon Dry Powder Voriconazole NCT04229303 IPA Phase 1

TFF-Vori TFF Dry Powder Voriconazole NCT04576325 ABPA Phase 1

PC945 Pulmocide Liquid Nebulization Novel Azole NCT02715570 IPA Phase 1

6. PUR1900: Inhaled Itraconazole

PUR1900 (Pulmatrix Inc, Lexington, MA, USA) is a dry powder formulation of itracona-
zole being developed using a proprietary inhaled delivery technology called iSPERSE [91].
A Phase 1 study in healthy volunteers and adult asthmatic patients (NCT03479411) demon-
strated that PUR1900 was safe and well-tolerated. Compared to oral dosing, PUR1900
achieved higher lung and lower plasma itraconazole exposure relative to oral itracona-
zole treatment [92]. After a single dose of inhaled PUR1900 in asthmatics, therapeutic
itraconazole sputum concentrations were observed for over 24 hours in most patients [92].

6.1. Inhaled Voriconazole

ZP-059 (Zambon, Milan, Italy) is a dry powder formulation of voriconazole being
developed using a novel spray drying technology for the treatment of ABPA in asthma [93].
This formulation was recently evaluated in a Phase 1 study (NCT04229303); however, no
results have been reported to date.

TFF-VORI (TFF Pharmaceuticals, Austin, TX, USA) is a dry powder formulation of
voriconazole formulated using thin film freezing technology, which produces excipient-free
nanoaggregates of drug for inhalation [94,95]. A Phase 1b clinical safety, tolerability and
pharmacokinetic study in adults with asthma (NCT04576325) began in late 2020 with an
estimated completion date of December 2021.

6.2. PC945: A Novel Inhaled Azole

PC945 (Pulmocide, London, UK) is a novel triazole being developed for liquid nebu-
lization for the treatment of IPA, with potential for use in ABPA. PC945 is a potent inhibitor
of ergosterol synthesis, exhibiting 14-fold greater potency than voriconazole and 2.6-fold
more potency than posaconazole against A. fumigatus [96]. A Phase 1 study in healthy
volunteers and adult asthmatic patients (NCT02715570) showed that following inhalation,
PC945 was slowly absorbed from the lung and led to low systemic exposure, suggesting
an improved safety and DDI profile relative to oral itraconazole [97].

7. Conclusions

Significant advances have been made in understanding the incidence and severity
of Aspergillus-related allergic diseases in patients with CF. With this understanding, more
work is needed to decipher the relationship between A. fumigatus infections and different
clinical outcomes. An increased appreciation of the clinical significance of ABPA has led
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to an understanding of the importance of the interactions between fungal and bacterial
infections. Additional research in these areas is warranted to further characterize the
complex microbial ecology of the CF lung and to help identify new treatment strategies for
the management of disease. In recent years there have been several large, well-controlled
clinical studies of therapies for ABPA, which have significantly improved treatments
for patients and established a framework for the continued study of new therapies in
development. The assessment of anti-fungal drugs with novel mechanisms of action as
treatments for ABPA and other allergic fungal diseases would be a welcome step towards
improving patient lives.
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