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Abstract: PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1)
homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger
proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-
temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for
the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription
factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of
the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes
to the early establishment of anorexigenic neuron identity and the maintenance of high expression
levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs
are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and
Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-
activated in several cancer types. However, little information is currently available on PRDM12
expression in cancers and its mechanism of action has not been thoroughly described. In this review,
we summarize the recent findings regarding PRDM12 by focusing on four main biological processes:
neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the
importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer
onset and progression.

Keywords: cancer; cell metabolism; neurogenesis; pain perception; PRD-BF1 and RIZ homology
domain containing gene family; PRDM12

1. Introduction

The human PRDM [PRDI-BF1 (Positive Regulatory Domain I-binding factor 1)] gene
family consists of 19 members that encode for Kruppel-like zinc finger proteins, which
share a conserved N-terminal PR domain, followed by several zinc finger domains that
mediate sequence-specific DNA binding, protein–protein interactions and nuclear im-
ports [1,2]. The PR domain is endowed with lysine methyltransferases (KMTs) activity;
however, enzymatic activity is established only for a few family members [1,3–5]. Nonethe-
less, most of PRDM proteins (PRDMs) can directly or indirectly recruit histone-modifying
enzymes [1]. As an example, PRDM1, PRDM5, PRDM6 and PRDM12 function with G9a
histone methyltransferase (HMT) [6]. Although PRDMs could function differently in many
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contexts, several data propose that they act by regulating gene expression. Thus, PRDMs
exert this role by either recognizing specific consensus sequences in promoters or acting as
non-DNA binding cofactors [7,8]. Of note, PRDMs show a strong cell context dependency
through the selection of different target gene promoters, binding sites and partners [1].
PRDMs are involved in the transduction of many cell signals and participate in many
developmental processes, including the proliferation/differentiation switch, inflammation
and metabolism control. For example, PRDM14 and PRDM1/BLIMP1 (B-lymphocyte-
induced maturation protein 1), are essential for pluripotency maintenance in embryonic
stem cells [9,10]; moreover, PRDM1 is identified as a master regulator of terminal B cell dif-
ferentiation, whereas PRDM3 and PRDM16 play a key role in hematopoiesis and stem cell
homeostasis [11]. In addition to that, PRDM16 contributes to lipid metabolism, adipocyte
differentiation and cardiac development [12].

Recently, several reports indicated a pivotal role of multiple PRDMs in neuronal cell
fate establishment, particularly in hindbrain and spinal cord formation. Prdm genes are
dynamically expressed during the development of mouse and zebrafish nervous systems
in a spatially and temporally restricted manner [11]. For instance, Prdm1 is relevant for
neural crest and sensory neuron development in zebrafish embryos [13]. Prdm8 expression
was highly regulated in a spatial-temporal manner during neuronal differentiation and/or
specification; mechanistically, it forms a neuronal repressor complex with Bhlhb5, thus
possibly directing neural development through the regulation of Cadherin-11 [14,15].

Prdm16 is also a crucial player in brain development and homeostasis; specifically,
it controls neural stem cell maintenance and proliferation, intermediate progenitor pro-
liferation, neuronal cell migration and ependymal cell differentiation, at least in part, by
regulating genes involved in reactive oxygen species levels and the epigenetic states of its
bound enhancers [16–18]. Similarly, PRDM12 is proposed as a “master regulator” of the ner-
vous system regulatory cascade as it is required for midbrain cell differentiation [11,19–21].
PRDM12 could be detected in the mouse brain from embryonic day E10.5 and was
expressed in different diencephalon and hypothalamus regions during embryogenesis,
whereas, in humans, its expression was reported only in the peripheral nervous system [22].

PRDMs can also regulate the proliferation and differentiation of neuronal progenitors
through epigenetic modifications. For instance, PRDM4 is a component of an epigenetic
complex that can regulate the proliferative potential and modulate cell cycle progression in
neural stem cells [23].

Some PRDMs, including PRDM12, were down-regulated in high infertility risk pa-
tients. The gonadotropin-releasing hormone agonist treatment used for the therapy of
cryptorchidism, a risk factor for testicular cancer and infertility, induced these PRDMs,
suggesting their involvement in these diseases [24].

The dysregulation of PRDMs is also involved in the onset and progression of several
human cancers. Most PRDM genes express two main molecular variants, with one lacking
the PR domain. These two isoforms, which can be generated by either alternative splic-
ing or the alternative use of different promoters, play opposite roles in cancer [1,25,26].
Specifically, the full-length product (PR-plus) usually acts as a tumor suppressor, whereas
the short isoform (PR-minus) functions as an oncogene; a clear example is provided by
PRDM2 [25,27]. Chromosomal rearrangements, mutations and/or the aberrant expressions
of PRDM2, PRDM3/MECOM and PRDM16 were reported in lymphoid/myeloid malig-
nancies in accordance with their roles in the hematopoietic stem cell differentiation and
homeostasis control [1,28]. PRDM14 is overexpressed in approximately 25% of human
lymphoid neoplasms [29]. Recently, in vivo studies showed that PRDM15 sustained cancer
cell metabolism by regulating a transcriptional program that modulated the activity of
the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas [30]. Currently, little
information is available on PRDM12 expression in cancers and its mechanism of action
have not been described thus far.

Here, we summarize the current knowledge on PRDM12 gene functions by dissecting
their involvement in four main processes: neurogenesis, pain perception, cell metabolism
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and oncogenesis (see graphical abstract) [22,31]. Moreover, we attempt to provide insights
for the future study of the signaling pathway(s) involving PRDM12 and to clarify its role in
cancer onset and progression.

2. PRDM12 Gene and Its Protein Product

The human PRDM12 gene is localized on chromosome 9 at 9q33-q34, according to the
Entrez Gene [Gene ID: 59335]. It covers about 18.40 kb, from 133539981 to 133558370
(previous assembly, GRCh37.p13) or from 130664594 to 130682983 (current assembly,
GRCh38.p13). The gene is also known as HSAN8, or PFM9, and it is structured in five
coding exons and four introns on the sense strand (Figure 1). Unlike most of the PRDM
family members, a unique PRDM12 transcript of approximately 2478 bp is currently de-
scribed [RefSeq accession: NM_021619.3], which encodes a single protein of 367 amino
acids containing a PR domain (aa 86-203), three zinc finger domains C2H2-type (aa 243-265;
271-293; 299-323) and a C-terminal polyalanine tract (aa 344-359) [UniProt ID: Q9H4Q4]
(Figure 1). The PRDM12 protein has a nuclear subcellular localization with a diffuse, lace-
like pattern [32,33] and displays a restricted expression in adult human tissues (Figure S1).
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Figure 1. Graphic illustration of human PRDM12 gene, protein and distribution of known congenital
insensitivity to pain (CIP)-causing mutations. Figure shows a schematic representation of PRDM12
architecture: Su(var)3-9, Enhancer-of-zeste and Trithorax (SET) domain, three ‘classical’ zinc fingers
(ZnF_C2H2), and a Poly Ala region. Amino acid numbering is reported. See text for details.

PRDM12 lacks an intrinsic HKMTase activity, which is provided through the recruit-
ment of the H3K9 methyltransferase, G9a, which dimethylates H3K9me2, a repressive
transcriptional mark. The G9a recruitment mechanism is not completely clear. Indeed,
it may occur through the PRDM12 zinc finger domain in mouse and Xenopus models,
whereas it is not clear for zebrafish as the zinc finger domains are seemingly not required
for this interaction (Figure 2A) [34–36]. In Xenopus, this activity is complemented by the
histone H3 demethylase Kdm4a [31,34,37].
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Figure 2. Recognized PRDM12 functions in neurogenesis. (A) PRDM12 lacks an intrinsic HKMTase activity, and it recruits,
through its second zinc finger domain, the H3K9 methyltransferase G9a to dimethylate histone H3 at lysine 9 (H3K9me2),
a repressive transcriptional mark. Particularly, PRDM12 regulates a nociceptor-specific transcriptional program, such as
NTRK1/TRPV1. (B) In the pre-placodal ectoderm, PRDM12 is expressed and specifically stimulates the trimethylation of
histone H3 at lysine 9 (H3K9me3) on the Foxd3 promoter to bind a conserved noncoding sequence (CNS). Additionally,
Prdm12 inhibited the expression of different neural crest markers (Slug, Sox8, -9, -10 and Twist). A chromatin remodeling
factor, HP1, recognizes the trimethylation of H3K9me3 and recruits other factors to convert euchromatin to heterochromatin.

PRDM12 gene is phylogenetically conserved during metazoan evolution, and it can
also be found in some nonbilaterian phyla, such as sponges and cnidarians [38]. Addi-
tionally, PRDM12 is one of the PRDM genes in which more ancient duplications occur;
phylogenetic analyses strongly support the hypothesis of a duplication in the lineage
leading to the Euteleostei ancestor, since several related species display more than one
PRDM12 gene, specifically the paralogs Prdm12a and Prdm12b [38]. Currently, additional
301 vertebrate sequences can be downloaded as orthologs of the human PRDM12 gene
from the NCBI web page [39].

3. Established PRDM12 Functions: Neurogenesis

To date, the role of PRDM12 in neurogenesis is well-established and corroborated by
many studies both in in vitro cell cultures and in different animal models such as mouse,
frog, chicken, zebrafish and drosophila, altogether confirming Prdm12 expression in the
developing nervous systems. The first in vivo study reported that multiple genes in the
Prdm family (Prdm6, -8, -12, -13 and -16) were expressed in the developing mouse nervous
systems in a spatially and temporally restricted manner [19]. Specifically, mouse Prdm12
was expressed from early neurogenesis (E9.5) in the developing spinal cord and, weakly,
in the caudal forebrain and midbrain, where it increased at E10.5 in precise neuronal pro-
genitor areas where it could specify different neuronal subtypes (Figure 3A) [19]. With the
development of telencephalon, Prdm12 was expressed in the ventricular zone in a lateral-
to-medial graded manner. In the postnatal brain, it was expressed in the hippocampus,
part of the hypothalamus, and in the thalamus, whereas, outside the brain, it was expressed
in both the dorsal root and cranial ganglia. These findings implied its involvement in the
patterning, differentiation and function of specific neurons, potentially regulated by the
Notch-Hes pathway [19].
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Figure 3. Schematics showing the Prdm12 expression data collected throughout mouse brain de-
velopment and in different embryonal stages of Xenopus. (A) Prdm12 was expressed from early
neurogenesis (E9.5) in the developing spinal cord. Additionally, Prdm12 can be detected weakly in
the caudal forebrain and midbrain where it increases at E10.5 in precise neuronal progenitor areas.
(B) prdm12 expression was revealed during the early neurula stage of Xenopus embryos, specifically
in the lateral pre-placodal ectoderm after the late gastrula stage (St.13).

In P19 embryonal carcinoma cells, an in in vitro mouse model systems for neurogen-
esis, retinoic acid (RA) that prompted neural differentiation into neurons and glial cells,
induced Prdm12 expression, possibly through the regulation of a putative RA receptor
(RAR)-beta response element. Additionally, Prdm12 overexpression impaired P19 cell
proliferation and increased the percentage of cells in the G1 phase accompanied by p27
upregulation. Furthermore, both the PR domain and zinc finger domains were required
for the anti-proliferative activity of PRDM12. In contrast, Prdm12 knockdown and Prdm12
mutants resulted in an increased number of cells in a suspension culture of RA-induced
neural differentiation [34]. Altogether, these results suggested that Prdm12 was induced by
the RA signaling and might control neural differentiation during development through
p27 expression level regulation.

During the early neurula stage of Xenopus embryos, prdm12 expression was also re-
vealed in the lateral pre-placodal ectoderm after the late gastrula stage (st. 13), where it
was regulated by both BMP and Wnt signaling (Figure 3B) [37]. Several gain- and loss-
of-function experiments were approached to clarify the role of Prdm12 in early Xenopus
development. prdm12 overexpression through mRNA injection inhibited the expression
of neural crest markers (Foxd3, Slug, Sox8, -9, -10 and Twist) via H3K9 trimethylation
(H3K9me3) (Figure 2B). Otherwise, prdm12 knockdown through an antisense morpholino
oligomer (MO) inhibited the expression of presumptive trigeminal placode markers and
expanded the neural crest region through a H3K9me3 level decrease in the Foxd3 gene
promoter (Figure 2B). Notably, the histone demethylase, Kdm4a, inhibited the expression
of presumptive trigeminal placode markers producing a similar effect of prdm12 knock-
down. Accordingly, ChIP-qPCR analyses revealed that the expression of H3K9me3 on the
Foxd3, Slug, and Sox8 promoters was inhibited by Kdm4a overexpression. Altogether,
the mutual relationship between Prdm12 and Kdm4a indicated that the modification of
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the H3K9 methylation levels on the neural crest gene promoters by these two proteins
would determine a demarcation line between the pre-placodal ectoderm and the neural
crest region [37]. Interestingly, a recent analysis, performed to screen for zic1 targets in the
midbrain region of Xenopus, revealed that prdm12 was a downstream target of zic1 [21].
Zic1 is a highly conserved zinc finger transcription factor playing a critical role in the
establishment of the nervous system; it is expressed on the lateral edge of the neural plate
and in the dorsal neural tube [21]. Here, prdm12 was expressed in the caudal forebrain,
midbrain and hindbrain. Moreover, during embryonic development, zic1 and prdm12 were
co-expressed in the same cell, with Zic1 controlling the expression of prdm12 mediated by
Wnt signaling during brain cell differentiation. Additionally, gain- and loss-of-function
experiments revealed that prdm12 was both necessary and sufficient to promote midbrain
formation in the embryo [21].

In addition to the central nervous system, prdm12 expression was also detected in
the peripheral nervous system. The V1 interneurons are a class of inhibitory glyciner-
gic neurons playing a conserved role in vertebrate locomotion; they originate from the
spinal cord p1 domain and are characterized by the expression of Engrailed-1 (En1/Eng1).
prdm12b, the zebrafish prdm12 homolog, was expressed in the p1 domain of the neural tube
at least partially in response to Sonic Hedgehog (Shh) signaling. Interestingly, prdm12b
disruption led to the inappropriate dorsoventral patterning of the neural tube, depletion
of the V1 interneurons and an impaired escape response in zebrafish. These data suggest
that prdm12b is a key component of the genetic program required for motor circuit forma-
tion [40]. Likewise, in the frog embryos, prdm12 was selectively expressed in p1 progenitors
of the hindbrain and spinal cord; this restricted expression profile was also observed in
the neural tube of chick embryos and in the ventral nerve cord of the larvae of the basal
chordate amphioxus. Moreover, in frog, chicken and mice, Prdm12 expression in the p1 do-
main progenitors of the caudal neural tube was dependent on RA signaling and Pax6 and
it was repressed by Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains [35].
Functional studies in Xenopus and the genome-wide identification of molecular targets by
RNA-seq and ChIP-Seq, revealed that the vertebrate Prdm12 acted as a general determinant
of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. Both the PR and
zinc-finger domains of Prdm12 were required to exert this function; specifically, Prdm12
may act as a G9a-dependent repressor to induce En1. However, this activity was not found
in the amphioxus, and differences in the C-terminal region of the protein, including the
zinc-finger domains, may account for the differential functions of the amphioxus and
vertebrate proteins. Overall, these findings indicated that Prdm12 could promote V1 in-
terneurons through cross-repressive interactions with Dbx1 and Nkx6 genes. Interestingly,
this function could be acquired after the split between the vertebrate and cephalochordate
lineages [35]. Recently, the analysis of CRISPR/Cas9 prdm12 mutants, recapitulating the
phenotypes observed by MO-based approaches, has demonstrated that prdm12b acts as
transcriptional repressor in zebrafish, and that it can interact with both EHMT2/G9a and
Bhlhe22, a member of the basic Helix-Loop-Helix (bHLH) family, through its zinc-finger
domain. However, bhlhe22 function is not required for eng1b expression in vivo, suggesting
that other bhlh genes could be involved during embryogenesis. This study also suggested
that prdm12b is not only required to repress non-p1 fates, but also to promote p1 fates [36].
Additionally, a study in a mouse model revealed strong evidence that Dbx1 and Prdm12
expression was inhibited by both Pax3 and Pax7, two highly related transcription factors
controlling the spatial organization of spinal differentiation [41]. Notably, another mem-
ber of the Prdm family, PRDM13, was recently shown to be required for the restriction
of Prdm12 expression to the ventral neural tube during mouse embryogenesis [42]. In
mouse Prdm13 mutants, Prdm12 was aberrantly expressed in the dorsal region, altering the
identity of these neurons. Mechanistically, PRDM13 interacted with the genomic regions,
overlapping those bound by neural bHLH factors and functions, by limiting the ability of
these bHLH factors to activate enhancer-driven reporters. Specifically, PRDM13 repressed
Prdm12 in the dorsal neural tube via the inhibition of NEUROG1 and NEUROG2, which
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were likely to activate mouse Prdm12 transcription through one enhancer localized more
than 25 kb upstream of the ATG starting site [42].

PRDM12 could also function in the vagal sensory nervous system, to maintain visceral
homeostasis. Indeed, transcriptome profiling performed to reveal differentially expressed
genes between nodose and jugular C-fiber neurons detected Prdm12 as preferentially
expressed in mouse jugular vagal neurons [43].

Of note, PRDM12, together with ZIC1, ZIC2 and FABP7, were suggested as candidate
targets for a vulnerability to cocaine addiction in mice. RNAseq and immunohistochemistry
analysis revealed that these genes were downregulated in the nucleus accumbens (NAC),
a key component of the reward circuitry, of Social Stress (S-S)-exposed juvenile mice,
compared to control No Social Stress (NS-S) mice [44].

4. Established PRDM12 Functions: Pain Perception

Several studies established that PRDM12 was essential for human pain percep-
tion [31,45]. The sensation of pain is a conserved, protective mechanism essential for
the preservation of the body’s functional integrity. Acute pain, caused by damage and
mechanical, chemical, or thermal stimuli, is perceived by a specialized group of peripheral
neurons, called nociceptors [31]. The key molecular regulators necessary for the develop-
ment and initiation of pain-sensing neurons remain largely unknown. Nevertheless, many
recent insights about the molecular basis of the pain sensitivity system were provided by
studying painless genetic disorders and through the detection of their responsible genes,
such as NGF encoding the nerve growth factor β, and NTRK1 encoding its receptor, the
tropomyosin receptor kinase A (TRKA). Several research groups, investigating the PRDM12
role in vertebrate nervous system patterning, discovered that PRDM12 was mutated in
families with pain perception alterations (Table S1, Figure 1) [31,46].

Initially, 10 different homozygous mutations in PRDM12 were identified in subjects
from 11 families with a congenital insensitivity to pain (CIP), a type of hereditary sensory
and autonomic neuropathy (HSAN), which is a clinically and genetically heterogeneous
group of inherited neuropathies predominantly affecting peripheral sensory and auto-
nomic neurons [32]. Most of the variants were missense mutations, despite the revelation
of a splice-site mutation, a frame-shift mutation and an 18-alanine-repeat mutation (gen-
eral population contains a maximum of 14-alanine in this polymorphic site; Figure 1 and
Table S1). Heterozygote carriers were asymptomatic with a normal pain perception. To
determine whether these mutations could cause developmental defects in the sensory
neurons, committed to becoming nociceptors, the expression of PRDM12 during embryoge-
nesis and the differentiation in various in vivo models (mouse, Xenopus and human iPSC
derived sensory neurons) was explored. Prdm12 was expressed in nociceptors and their
progenitors and participated in the development of sensory neurons [32]. Moreover, the
CIP-associated PRDM12 mutations impaired the histone-methylation capacity [32]. In an
independent study, Prdm12 was also investigated as a key regulator of sensory neuronal
specification in Xenopus [47]. In this case, the modeling analysis of human PRDM12 muta-
tions causing HSAN revealed a remarkable conservation of the mutated residues during
evolution. As shown by RNAseq analyses, the expression of wild-type human PRDM12
in Xenopus induced the expression of several sensory neuronal markers including Islet1
and Tlx3; in contrast, embryos treated with PRDM12 MO or PRDM12 mutants displayed
reduced levels of these markers [47]. In Drosophila, the Hamlet gene was identified as
the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons.
Interestingly, the ectopic expression of human PRDM12 mutants in Drosophila nociceptor
neurons impaired pain perception, thus supporting the idea that PRDM12 was an evolu-
tionary, conserved, master regulator of sensory neuronal specification that played a critical
role in pain perception [47]. In addition to that, RNAseq analyses of human patient fibrob-
lasts with PRDM12 mutations disclosed the possible downstream target genes. Among
them, the gene-encoding, thyrotropin-releasing, hormone-degrading enzyme (TRHDE)
was revealed; its substrate, TRH, was previously found to affect pain in human and ro-
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dents. TRHDE knockdown in Drosophila sensory neurons resulted in an altered cellular
morphology and impaired nociception. These findings also added to our knowledge that
novel molecules and pathways controlled evolutionary, conserved nociception [47].

Other papers reported PRDM12 mutations in CIP and similar pathological condi-
tions [32]. Some authors suggested that PRDM12-CIP was a phenotypically distinct form
of ‘Congenital Insensitivity to Pain’ [48]. A case report highlighted a novel PRDM12 muta-
tion presenting as early-onset, autosomal-recessive, sensory polyneuropathy; congenital
insensitivity to pain; touch and temperature; global developmental delay and early loss
of muscle stretch reflexes [49]. A further study presented the manifestations and dental
management of a patient with HSAN-VIII, harboring the homozygous mutation c.516G>C
(p. Glu172Asp) in the PRDM12 gene (Figure 1) [50].

Additionally, the term ‘midface toddler excoriation syndrome’ (MiTES) was proposed
for a distinctive, localized skin condition sometimes occurring in the context of a mild
neurological deficit or congenital insensitivity to pain [51]. MiTES may reflect a limited or
early manifestation of CIP [52]. Four out of five children, from four families, with facial
lesions typical of MiTES, showed homozygous or heterozygous pathogenic expansions of
the PRDM12 polyalanine tract. This finding extended the phenotypic spectrum of PRDM12
mutations, which usually caused HSAN-VIII, characterized by mutilating, self-inflicted
wounds of the extremities, lips and tongue. By contrast, MiTES showed severe midfacial
lesions with little, if any, evidence of generalized pain insensitivity. Again, this condition is
most likely genetically heterogeneous [52].

To date, the number of reported cases of both syndromes, HSAN-VIII and MiTES
harboring PRDM12 mutations has expanded, and it is likely to increase further in the
future due to the advancement of sequencing strategies [53–60].

Overall, these genetic studies strongly support the model that PRDM12 could par-
ticipate in sensory neuron development. However, only recently, the combined loss- and
gain-of-function approaches in mouse and chicken have clearly demonstrated that PRDM12
is essential for determining the nociceptive lineage from neural crest cell progenitors [61].
In the absence of PRDM12, specific neuronal progenitors completely failed to maintain the
expression of neurogenin (Ngn1), a fundamental factor for the generation of the nociceptive
lineage, and to activate the downstream pro-neuronal genes NEUROD1, BRN3A, and ISL1.
The loss of neurogenin expression was concomitant with a decrease in the number of
progenitors and their proliferation. Similarly, PRDM12 loss also failed to repress alternative
fates in progenitor cells implying that the mechanism of nociceptive fate commitment is
molecularly defined in precursors [61]. Constitutive and conditional Prdm12 knock-out,
mouse models and gain-of-function approaches in Xenopus and human iPSCs, showed
that PRDM12 could regulate a nociceptor-specific, transcriptional program in sensory gan-
glia [62]. Specifically, PRDM12 cooperates with the proneural factors NGN1/2 to promote
the activation and maintenance of TRKA (Ntrk1) expression and other nociceptive mark-
ers such as TrpV1, allowing nociceptor survival and differentiation during development
(Figure 2A). Aside from Ntrk1 expression at E11.5, PRDM12 contributed to the transcription
regulation of several other nociceptive target genes such as Nhlh1, Brn3a, and Neurod1 [62].

A very recent study investigated how Prdm12 deletion during development or adult-
hood could affect nociception by employing tissue- and temporal-specific knockout mouse
models. Results showed that constitutive Prdm12 loss caused deficiencies in proliferation
during sensory neurogenesis. More interestingly, the conditional knockout from dorsal root
ganglia during embryogenesis caused defects in nociception, whereas in adult dorsal root
ganglia, PRDM12 was unnecessary for most pain-sensation and injury-induced hypersensi-
tivity. Transcriptome analysis also emphasized different expression patterns between adult
and embryonic Prdm12 knockout and that PRDM12 could be a transcriptional activator
in the adult. Notably, these findings strongly suggest that PRDM12 may have different
functions during the developmental stages [63]. Likewise, several developmental and
adult-onset deletion mouse models confirmed the PRDM12 requirement for the genesis
and function of nociceptors, whereas its proper expression was no longer essential for
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survival or needed for the established CNS functions, but it was still required for nocicep-
tive responses [59]. Moreover, developmental or adult-onset deletion of Prdm12 caused
different effects on downstream gene expressions, supporting the hypothesis that PRDM12
regulates distinct, age-dependent transcriptional patterns [59].

The upstream genes and signals controlling PRDM12 expression in developing sensory
ganglia still remain to be addressed. It could be speculated that PRDM12, essential for
TrkA initiation, is also a target of NGF-TrkA signaling, considering that, in adult mice and
humans, NGF signaling induces nociceptor sensitization leading to chronic pain states [64]
and PRDM12 is highly expressed in mature nociceptors. Interestingly, PRDM12 expression
increased significantly (by 1000 times) when skin-derived precursor cells (a subtype of
neural crest stem cells that persist in certain adult tissues such as the skin) were induced
in vitro to differentiate into sensory neurons by several molecules, including NGF, which
prompted the upregulation of neurogenins [65].

Moreover, both other partners of PRDM12 constituting the transcriptional complex,
which epigenetically regulated gene expression in developing nociceptors, as well as the
PRDM12 transcriptional targets need to be identified. Overall, these studies suggest that
pharmacotherapies targeting this pathway, or the epigenetic mechanisms controlled by
PRDM12, and could be a promising strategy in the treatment of chronic pain conditions.

The supplementary understandings of the identity of the potential PRDM12 interactors
and the transcriptional, and epigenomic changes in the sensory neuron progenitors upon
PRDM12 manipulation, will be relevant in understanding the PRDM12 gene regulation
during the generation of the nociceptive lineage. The further comprehension of the involved
molecular mechanisms will provide key insights into how sensory neuron diversity is
generated and may provide genetic tools to induce a desired neuronal lineage in stem
cell engineering.

5. Exploring Novel PRDM12 Functions: Cancer

Although little is known about the function of PRDM12 in oncogenesis, previous
studies showed that PRDM12 might act as a tumor suppressor gene in human chronic
myeloid leukemia (CML) [66–68]. In approximately 15% of CML patients, deletions occur
on the derivative chromosome 9 [der(9)] within a region containing the PRDM12 gene.
The PRMD12 disruption could prompt the aggressive phenotype and the observed short
survival [67]. However, further investigation is warranted to elucidate its role in the
CML pathogenesis.

Our pan-cancer meta-analysis based on The Cancer Genome Atlas (TCGA) data
showed that PRDM12 was upregulated in several cancer types: colon, breast, kidney, colon,
lung, liver, thyroid, ovary and prostate cancers, suggesting that it could represent a putative
tumor marker [25]. These findings indicate that PRDM12 is not expressed in adult normal
tissues. Accordingly, PRDM12 expression was described only in dorsal root ganglia but
not in other adult tissues [32]. Additionally, the integrated analysis of abnormalities of
HMTs encoding genes in prostate cancer from TCGA, identified a role for PRDM12 in
the pathogenesis of this cancer type [69]. PRDM12 gene amplification induced an mRNA
expression level increase in cancer cells compared to adjacent normal ones. Moreover,
PRDM12 gene expression showed a significantly positive correlation with the Gleason’s
score. These findings indicated that PRDM12 expression level alterations in prostate cancer
tissue samples could have a prognostic value [69]. Similarly, in a recent study, somatic copy
number alterations were also found for PRDM12 in stomach adenocarcinoma samples [70].
However, currently, no studies have identified the mechanism by which PRDM12 could
participate in oncogenesis. Moreover, as mentioned above, unlike the other PRDM family
members, a unique transcript is known for PRDM12 gene signifying, which means that
the well-known “Yin and Yang” mechanism cannot function [28]. Indeed, it is recognized
that different isoforms exist for almost all PRDM family members, and they play opposite
roles in cancer; this duality is termed the ‘Yin and Yang’ mechanism, typical of PRDMs and
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involving a complex regulation of alternative splicing or alternative promoter usage, to
generate full-length or PR-lacking isoforms [1,26–28].

The mutational profiling analyses of PRDM12 gene across human cancers revealed
72 mutations, 30 of which were detrimental somatic mutations (frameshift, in-frame dele-
tions, stop gained and start lost mutations; splice site, UTR, and intron variants). Inter-
estingly, those mutations were significantly enriched in the PR domain of PRDM12 [25].
In particular, PRDM12 was frequently mutated in a splice donor site in a region coding
for the PR domain in different tumor types (breast cancer; colon adenocarcinoma; kidney
renal clear cell carcinoma; lung adenocarcinoma; pancreatic adenocarcinoma; prostate ade-
nocarcinoma; skin cutaneous melanoma; thyroid carcinoma; uterine corpus endometrial
carcinoma) indicating this position as a possible mutational hotspot site (Figure 1) [25].

Although preliminary lines of evidence suggest that PRDM12 is endowed with a
tumor-promoting function, several aspects should be investigated to define the role of
PRDM12 in cancer. Cancer tissue specimen analysis by immunohistochemistry could be
useful to establish if a correlation among PRDM12 expression, with grading, tumor size,
biomarkers serum levels, tumor vascular invasion, overall survival and prognosis, exists.
Additionally, in vitro studies should be carried out to investigate the functional role of
PRDM12. Overexpression and silencing experiments should be performed to assess its
role in cell viability, cell death and proliferation, and cell migration and invasion. Finally, a
transcriptome profiling analysis of both PRDM12 overexpressing and silenced cells could
reveal PRDM12 target genes and the involved regulated pathways, thus clarifying its
mechanism of action. The PRDM12 function elucidation could provide new insights useful
for the discovery of novel therapeutic approaches.

6. Exploring Novel PRDM12 Functions: Cell Metabolism

An interesting and unexpected PRDM12 role in metabolism was recently demon-
strated [71]. Food intake and energy balance regulation depends on the arcuate nucleus
of the hypothalamus (ARH), consisting of two distinct neuronal populations: the pro-
opiomelanocortin (POMC)-expressing neurons and the neuropeptide Y/agouti-related
peptide (NPY/AgRP)-expressing neurons. POMC and NPY/AgRP expressing neurons de-
rive from the same hypothalamic progenitor but have opposing effects on food intake, being
the first anorexigenic (POMC) and the last orexigenic (NPY/AgRP). The cell-type-specific
transcriptome profiles of developing POMC and NPY/AgRP neurons in mice revealed
that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic
factors. The transcription regulator PRDM12 was selectively enriched in POMC neurons
but absent in NPY/AgRP neurons (Figure 4A) [71]. PRDM12 plays an essential role in the
early establishment of hypothalamic melanocortin neuron identity and function. PRDM12,
indeed, is co-expressed with POMC in mouse neurons of the ARH from the onset of Pomc
expression at E10.5 and throughout the lifespan [22]. The selective ablation of Prdm12
from ISL1 neurons greatly reduced Pomc expression in the developing hypothalamus,
demonstrating that it was essential for the onset and later maintenance of Pomc expression.
PRDM12 integrates a distinctive set of transcriptional regulators, including NKX2.1 and
ISL1, to dictate the neuronal-specific expression of ARH Pomc. Moreover, PRDM12 acts to
program bodyweight homeostasis, maintaining the hypothalamic Pomc mRNA expression
level. Adult mice of both sexes selectively lacking Prdm12 from POMC neurons, showed a
considerable reduction in Pomc mRNA levels that led to an amplified food intake, adiposity
and bodyweight gain, as well as early-onset obesity that recapitulated symptoms of human
POMC deficiency (Figure 4B) [22,71].

Additional studies should be performed to define the PRDM12 role in human metabolic
diseases. The study population could be useful to define whether PRDM12 polymorphisms
represent a risk factor for obesity under permissive environmental conditions. It is con-
ceivable that PRDM12 polymorphisms generating hypomorphic alleles could impair ARH
Pomc expression, and thus compromise food intake and energy balance control. Moreover,
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the disclosure of the PRDM12 mechanism of action in food intake and energy balance could
have a relevant impact for the identification of new strategies to counteract obesity.
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Figure 4. Possible mechanism of PRDM12 in POMC neurons. (A) PRDM12 expression level in
POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) in mouse brain.
(B) To study the role of PRDM12 specifically in postmitotic POMC neurons, Pomc-Cre mice were bred
with Prdm12fl/fl mice to generate Pomc-Cre; in Prdm12fl/fl mice Prdm12 was selectively deleted in
embryonic POMC neurons (designated as Prdm12POMCeKO mice). The expression of Npy and
Agrp remained unaffected. Prdm12POMCeKO mice lacking Prdm12 selectively from POMC neurons
showed a considerable reduction in Pomc mRNA levels that led to severe obesity.

7. Conclusions

Neuronal cell fate specification is orchestrated by several fine-tuned molecular mecha-
nisms in which several transcription factors are involved. Developmental studies uncov-
ered the highly tissue-specific expression of PRDM12 as well as its involvement in neuronal
lineage specification. Indeed, emerging evidence suggests that PRDM12 cooperates with
several proteins to regulate a critical set of genes required for the commitment of neuronal
progenitors. Moreover, the mechanisms underlying G9a recruitment and function should
be elucidated given the recent progress on the use of molecules targeting this histone
methyltransferase for the therapy of many cancers and other human diseases [72]. Ac-
cordingly, PRDM12 is not expressed in adult normal tissues, even though its expression
is re-activated in several cancer types. However, the upstream regulatory signals from
oncodrivers or signaling pathways establishing oncogenic transcriptional programs, or
supporting chromatin remodeling towards a pro-oncogenic phenotype involving PRDM12,
should be addressed. Targeting PRDM12 and its transcriptional program could have a high
therapeutic potential, representing a promising strategy to overcome resistance and selec-
tively target cancer cells. Thus, the further elucidation of involved molecular mechanisms
will also provide new tools for therapy.

Overall, studies aimed to identify the potential PRDM12 interactors, their transcrip-
tional and epigenetic activities, and downstream cellular functions are necessary to clarify
how PRDM12 and its interactors function in health and diseases.
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