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A B S T R A C T
Background

The histopathologic heterogeneity of lung cancer remains a significant confounding factor in
its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification
of the disease that has clinical relevance.

Methods and Findings

Molecular profiles of tumors from 186 patients representing four different lung cancer
subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development
model using principal component analysis in both temporal and genomic domains. An
algorithm for the classification of lung cancers using a multi-scale developmental framework
was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient
subgroups identified via their developmental association. We found multi-scale genomic
similarities between four human lung cancer subtypes and the developing mouse lung that are
prognostically meaningful. Significant association was observed between the localization of
human lung cancer cases along the principal mouse lung development trajectory and the
corresponding patient survival rate at three distinct levels of classical histopathologic
resolution: among different lung cancer subtypes, among patients within the adenocarcinoma
subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association
between a human tumor profile and the mouse lung development sequence, the poorer the
patient’s prognosis. Furthermore, decomposing this principal lung development trajectory
identified a gene set that was significantly enriched for pyrimidine metabolism and cell-
adhesion functions specific to lung development and oncogenesis.

Conclusions

From a multi-scale disease modeling perspective, the molecular dynamics of murine lung
development provide an effective framework that is not only data driven but also informed by
the biology of development for elucidating the mechanisms of human lung cancer biology and
its clinical outcome.

The Editors’ Summary of this article follows the references.
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Introduction

Lung cancer is the leading cause (28%) of cancer deaths
worldwide [1,2] and accounted for 163,500 new cases of
cancer in the United States in 2004 [2]. Compared with the
other major cancers—breast, colorectal, and prostate—it has
seen only modest improvements in its survival rates and
clinical outcome up to the present time, and is the only major
cancer type to have increased in the number of deaths
annually [2,3].

Histopathologic heterogeneity is a major confounding
factor in lung cancer diagnosis and treatment [4]. Classically,
lung cancer comprises three primary histological subtypes:
carcinoid, small cell, and non–small cell, which account for
about 2%, 13%, and 86% of lung cancers, respectively. Non–
small cell lung cancer (NSCLC) is further subdivided into at
least three histologic subtypes: adenocarcinoma (AD), squ-
amous cell carcinoma (SQ)/epidermoid, and large cell
carcinoma. Small cell lung cancer (SCLC), the most aggressive
form of lung cancer, includes small cell carcinoma, mixed
small cell/large cell carcinoma, and combined small cell
carcinoma. Carcinoids (COIDs) form a distinct histologic
tumor subtype that may secrete bioactive molecules, and are
further subdivided into typical and atypical varieties [5].
Tumors such as adenosquamous and neuroendocrine carci-
nomas possess histological characteristics of more than one
subtype, whereas tumors from the same histopathologic
subtype may have dissimilar clinical outcomes such as drug
response [6,7]. The differential histopathology between lung
cancer subtypes is not always obvious or objective, and
proper classification is a critical component of pretreatment
evaluation. For instance, cases of COIDs being misdiagnosed
as SCLC are not uncommon, yet typical treatments for COIDs
and SCLC are very different [8,9]. This heterogeneity has
motivated several efforts to classify lung cancers by their
molecular profiles [10–14].

In a majority of molecular classification studies, hierarch-
ical clustering methods are used that, in some cases, uncover
previously unidentified disease subsets within a classical
histopathologic subtype that have differential clinical out-
comes. However, even though the molecular profiles of
samples from one cancer subtype tend to occupy a common
dendrogram cluster, there is significant admixing with
samples from different cancer subtypes. Cluster configura-
tions resulting from hierarchical algorithms are generally not
well defined since they vary depending upon the input order
of the same data [15,16] and are often irreproducible [17].
More importantly, hierarchical clustering (or any purely
correlative technique) alone does not provide a rational
biological basis for disease classification.

It has been hypothesized that lung and other solid cancers
arise from self-renewing progenitor cells that are capable of
generating morphologically and functionally diverse progeny.
An important corollary is the idea that embryonic develop-
ment programs play key roles in tumor genesis and
progression. The developmental–stem cell association for
non-solid cancers such as leukemia is well established [18], but
the case for solid tumors is less clear. Borczuk et al. [12] found
that murine orthologs of marker genes for human AD and
large cell lung carcinoma are associated with distinct stages of
mouse lung development and biological function. AD
markers were expressed late in mouse lung development,

and were largely associated with differentiation and signal
transduction. Large cell lung carcinoma markers were
expressed earlier in mouse lung development, and were
mainly involved in cell cycle and proliferation. Kho et al. [19]
reported that in the central nervous system, primary human
cancers showed molecular association with cognate organo-
genesis both temporally and genomically.
In contrast to previousmolecular classification studies using

hierarchical clustering on lung cancer data with no direct
reference to development [10,12–14], we used cognate organ
development as the primary foundation for a classification
scheme and examined its clinical relevance.We considered the
molecular associations of four human lung cancer subtypes to
a developing mouse lung sequence and investigated the link
between those associations and clinical outcome.

Methods

RNA Microarray Dataset of Mouse Lung Development and
Human Lung Normal and Cancer Subtypes
The mouse lung development RNA data were derived from

perfused, whole, wild-type mouse lung at ten distinct
developmental days assayed on Affymetrix (http://www.
affymetrix.com) Mu11K microarrays [20]. These data are
publicly available at http://lungtranscriptome.bwh.harvard.
edu. The normal human lung (NL) tissue and cancer subtype
RNA profiles were assayed on Affymetrix U95A microarrays;
the corresponding clinical parameters for human patients
have also been described [10] and are publicly available at
http://research.dfci.harvard.edu/meyersonlab/lungca. We eval-
uated NL tissue (n¼ 17) and four lung cancer subtypes: AD (n
¼ 139; 125 with survival information), SQ (n¼ 21), SCLC (n¼
6), and COIDs (n ¼ 20).
The human lung AD dataset used for independent

validation of the findings is the one published in Beer et al.
[21]. The raw microarray data and other associated data such
as patient survival and tumor stage are publicly available at
http://dc.nci.nih.gov/dataSets. The dataset includes 86 lung
ADs and ten NL samples assayed with Affymetrix Hu6800
microarrays.

Mouse–Human Orthologous Gene Pairs and Genomic
Vectors
The sequence homology mapping between mouse and

human genes—as identified by their Entrez GeneID accession
numbers—can be found on the NCBI HomoloGene Web site
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼homologene)
[22]. Both the Mu11K and U95A microarray platforms have
instances where more than one probeset on a platform
possess a common Entrez GeneID, i.e., different probesets are
assaying the same RNA transcript. In this instance, one
probeset was selected to represent the Entrez GeneID/gene
based on the number of Affymetrix present calls and the
maximal coefficient of variation of the probeset’s reported
signal across the mouse (or human, for the human dataset)
dataset. Between the mouse Mu11K and the human U95A
platforms, 3,590 homologous ortholog gene pairs were found
following this rule. Each mouse or human sample is
represented as a 3,590-feature vector of expression measure-
ments. The jth component in the mouse and human vectors
are gene orthologs of one another. For example, if the 1,685th
component of the mouse vector is the expression for the
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mouse gene brain acyl-CoA hydrolase (Bach), then the 1,685th
component of the human vector is the expression of its
human ortholog, BACH. For the independent validation with
the separate human lung AD dataset, we found and thereby
used 2,653 homologous genes common to the dataset
mentioned above.

Temporal and Genomic Principal Component Analysis of
the Mouse Lung Development Data, and the Projection of
Human Cancer Profiles into Mouse Genomic Framework/
Space

Before applying principal component analysis (PCA) on the
temporal axis of the mouse lung development dataset of 3,590
genes 3 ten stages, each gene’s profile/signal across the ten
lung stages was standardized to mean zero and variance one
[19,23]. The first three temporal principal components (PCs)
captured 59.77% of the total temporal variance of the mouse
lung development dataset.

In the PCA of the genomic axis (using all 3,590 genes) of the
mouse lung development data, the first three genomic PCs
captured 59.56% of the total genomic variance. The
projection of human lung sample profiles into this genomic
mouse lung development framework/space was done via the
transformation where U9matrix of PCs xold_vector¼ xnew_vector is
applied [19]. Note that temporal and genomic PCAs—and
subsequent projections of human profiles into the latter
genomic space—were done separately for several different
sets of mouse genes that were the outputs of the ‘‘top union’’
method (described below) to find a minimal subtype-
discriminating gene set.

Rank Normalization and Wilcoxon’s Rank Sum Test for
Differential Expression in Human Lung Samples

A nonparametric approach was used to determine genes
that are differentially expressed between human lung cancer
subtypes and NL samples. First, each human lung sample of
3,590 unique gene signals was rank-normalized. That is, each
reported gene signal was replaced by a rank integer ranging
from 1 to 3,590—depending upon the magnitude of its signal
relative to the signals of the 3,589 other genes in that sample.
Rank normalization renders the dataset less susceptible to the
inherent ‘‘noise’’ of the measurement system across the
different samples. Wilcoxon’s rank sum test [24] was then
applied to assess the likelihood (a p-value) of obtaining a
Wilcoxon test statistic that is equal to or greater than the
observed statistic between the cancer and normal groups,
with the null hypothesis of no differential expression.

Genes were then ordered by their p-values. A Bonferroni
correction factor set the p-value cut-off for statistical
significance [25]. Any gene whose p-value fell below this cut-
off was considered to be significantly differentially expressed
between a cancer subtype and the NL, i.e., a top gene for that
cancer subtype.

A Top-Union Algorithm and Discrimination Measure for
Determining Gene Sets That Best Discriminate between
Human Lung Cancer Subtypes

A two-part top-union algorithm was designed to minimize
‘‘noise’’ in the mouse–human data, namely, to find a
minimum set that discriminated the different lung cancer
subtypes developmentally, based on gene signature in terms
of cancer versus control.

The first part of the algorithm identified genes that are
differentially expressed between each of the four human lung
cancer subtypes with respect to NL tissue via Wilcoxon’s test
as described above. Four lists of genes were obtained, each
3,590 genes long and ordered by their Wilcoxon p-values. We
found 405 top genes for AD, 737 for COID, 782 for SCLC, and
464 for SQ—the union of which are 1,148 unique genes. As a
reality check, Figures S1–S4 show that applying the genomic
PCA–projection method above to these respective gene
subsets clearly discriminates each lung cancer subtype from
the NL with respect to a mouse lung development back-
ground.
The second part of the algorithm used the union of the top

gene sets (1,148 genes in this case) to construct a correspond-
ing mouse lung development genomic framework and
projected the human samples into the resulting space with
the PCA–projection method above. We then quantified the
discrimination of cancer subtypes in this genomic mouse lung
development space (the standard Euclidean distance on PC1
and PC2) using a discrimination measure that is characterized
by four parameters: ad_cc, the average distance between
centroids of the closest pairs of cancer subtypes; t, the average
tightness of cancer subtypes computed as the area of the
convex hull of the human sample points divided by the
number of samples in the subtype(the convex hull of a set of
points is defined to be the smallest convex set C containing
these points; a set C is convex if a line joining any given two
elements in C is contained within C); ad_cn, the average
distance between centroids of cancer subtypes and NL; and
novlp, the number of overlapping sample points between
different cancer subtypes—for each pair of distinct subtypes,
we counted the number of samples located in the intersection
of the corresponding two convex hulls.
For optimal discrimination between subtypes, the aim was

to maximize ad_cc, ad_cn, and t, and minimize novlp. We
defined the scorepca for this discrimination measure as the
equal weighted sum of each score calculated from ad_cc,
ad_cn, t, and novlp alone. Scorepca is clearly a direct function
of the genes that went into constructing the genomic
development background.
Starting with the 1,148 top genes above, we sought a gene

subset that maximizes scorepca. The details of the procedure
and pseudo codes are included in Protocol S1.

Statistical Analysis
A nonparametric Pearson v2 test with Yates continuity

correction was used to assess the significance of the mouse
lung developmental profile segregation of genes that are
significantly 2-fold up-regulated in human lung cancers
versus genes that are significantly 2-fold down-regulated.
The v2 tests were performed using R software (http://www.
r-project.org). All survival analyses were standard and
performed using MedCalc software (http://www.medcalc.be),
and the statistical significance of the separation between the
Kaplan–Meier (K-M) curves was evaluated using a log-rank
(Mantel–Haenzel) test under the assumption of proportional
hazards in the two groups being tested. Multiple-predictor
comparisons were evaluated through Cox proportional-
hazards regression. The Wilcoxon’s rank sum test was
carried out with Matlab (MathWorks; http://www.
mathworks.com).
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Results

Distinct Mouse Lung Development Profiles of
Differentially Expressed Human Lung Cancer Genes

The mouse lung development expression profile of genes
differentially expressed in human lung cancer with respect to
NL tissue was examined. The lung development data are RNA
profiles of perfused, whole, wild-type mouse lung at ten time
points: embryonic days 12, 14, 16, and 18, and postnatal days
1, 4, 7, 10, 14, and 21 [26], covering the five main stages of
mouse lung development [20,27], measured on Affymetrix
Mu11K microarrays. The human lung cancer RNA dataset has
been described [10], and consists of 139 ADs, 21 SQs, six
SCLCs, 20 lung COIDs, and 17 NL tissue samples—assayed on
Affymetrix U95A microarrays. A total of 3,590 unique
mouse–human orthologous gene pairs were found between
the mouse and human RNA microarray platforms (see
Methods).

In order to visualize the developmental profiles of 3,590
separate genes in a compact manner summarizing the large-
scale developmental patterns, PCA [19,23,28] was applied on
the temporal axis of the mouse lung development dataset of
3,590 mouse genes 3 ten developmental time points (Figure
1). PCA [29] reduces the feature space dimensionality—i.e.,
features such as genes or samples—of a multivariate dataset
and identifies the most variationally informative features

(variationally informative features are the main contributors
to global variation in the data matrix [30]). The original data
are rewritten as an equivalent set of coefficients relative to a
new basis of PCs. Each PC is a linear combination of the
original features (here samples and time stages) and repre-
sents a direction of extremal variance in the feature space.
The first PC (PC1) captures the greatest amount of total
variance in the dataset. PC2 captures the next greatest
contribution to variance. The disc-shaped scatter plot in
Figure 1A shows the 3,590 genes rewritten with respect to the
two most important temporal PCs of the lung development
dataset. Each dot marks a gene, and its coordinates indicate
its expression pattern over the ten developmental time
points. The high dot concentrations along the periphery of
the left and right hemispheres represent gene clusters whose
expression levels are high early in development and decrease
monotonically with time and genes whose expression levels
are low early in development and increase monotonically
with time, respectively. The temporal PC1 coordinate of a
gene is a qualitative indicator of its lung developmental
profile (Figure 1B).
Next, mouse orthologs of genes that were up- and down-

regulated in each of the four human lung cancer subtypes
with respect to the NL were investigated in mouse lung
development with respect to their temporal PC1 coordinates
in lung development. Wilcoxon’s rank sum test was used to
find genes that were significantly differentially expressed
between a human lung cancer subtype and the NL (see
Methods). A total of 1,148 genes were significantly differ-
entially expressed between a cancer subtype and the NL, of
which 719 genes were additionally 2-fold up- or down-
regulated in a lung cancer subtype (Figure 1C).
For human lung AD, 55 genes were 2-fold significantly up-

regulated and 70 were 2-fold significantly down-regulated.
Figure 2A shows the temporal PC1 coordinate distribution of
mouse orthologs of these 125 AD genes during lung develop-
ment. The segregation of AD down-regulated genes to late
mouse lung development and AD up-regulated genes to early
development is statistically significant (v2 ¼ 36.83, p , 0.001,
odds ratio (OR)¼ 13.074; v2 is the Pearson v2 test with Yates
continuity correction; the OR summarizes the strength of this
profile segregation). The lung development profile segrega-
tion for 2-fold up- and down-regulated genes was also found
in the other three lung cancers: SQ (Figure 2B; 124 up- and
145 down-regulated genes; v2 ¼ 119.036, p , 0.001, OR ¼
26.526), SCLC (Figure 2C; 92 up- and 97 down-regulated
genes; v2 ¼ 81.584, p , 0.001, OR ¼ 27.955), and COIDs
(Figure 2D; 175 up- and 275 down-regulated genes; v2 ¼
72.363, p , 0.001, OR¼ 6.174). Note that COID up-regulated
genes are less strongly segregated to the early lung hemi-
sphere than the up-regulated genes of the three other lung
cancer subtypes (Figure 2D). The premise that the set of
under- or overexpressed genes might well contain biologically
correlated genes that are therefore possibly statistically
dependent was checked and found to be negative in the
absence of a developmental segregation for under- or
overexpressed cancer genes relative to a ‘‘mismatched’’
developing tissue background [19].
Temporally, murine orthologs of genes that are up-

regulated in human lung cancers tend to have an expression
profile that is decreasing with time during mouse lung
development—though this segregation is less prominent in

Figure 1. Mouse Lung Development Profiles in Temporal PC Represen-

tation, and the General Developmental Profile Segregation of Up- and

Down-Regulated Genes in Human Lung Cancer

(A) Expression profiles of all 3,590 unique genes during mouse lung
development as represented in temporal PC1 and PC2. Each dot marks a
gene.
(B) Developmental profile examples of genes at the periphery of the disc-
like scatter plot in (A) at 458 (p/4 radians starting at ‘‘3 o’clock’’)
rotational intervals.
(C) Histograms of the mouse lung temporal PC1 coordinates of the 719
genes 2-fold significantly up- and down-regulated in any one of the four
human lung cancer subtypes (v2¼ 168.338, p , 0.001, OR¼ 8.652).
(D) The profiles of the top 100 genes (68 cancer up-regulated [green
circles] and 32 cancer down-regulated [magenta circles]) composing the
malignancy signature (see Results) among all 3,590 mouse lung
developmental gene profiles. Of the 68 cancer up-regulated genes, all
but two are in the late developmental profile hemisphere. Of the 32
cancer down-regulated genes, all but two are in the early developmental
profile hemisphere (v2¼ 82.5185, p , 0.001, OR¼ 544).
DOI: 10.1371/journal.pmed.0030232.g001
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COIDs (comparing developmental profile ORs). Genes that
are down-regulated in lung cancers tend to have a monotoni-
cally increasing expression profile during mouse lung
development.

A Mouse Lung Development Genomic Framework

Discriminates between Human Lung Cancer Subtypes
The genomic level associations between human lung cancer

subtypes and mouse lung development stages were examined.

This is in contrast to the preceding temporal PCA–profile
gene-level investigation of lung cancer and development.
Each human and mouse sample was viewed as an algebraic
vector of 3,590 gene features—representing its measured
gene expression profile.
A genomic mouse lung development framework was first

constructed by applying PCA to the 3,590-gene genomic axis,
in contrast to the previous ten-point time axis, of the mouse
lung development dataset. The PCs are now genomic, rather
than temporal. Human sample profiles were then projected
into this genomic mouse lung development framework
(Figure 3A). Human lung cancer samples were closer to early
mouse lung development stages, while NL samples were closer
to later mouse lung development stages (Table S1). In
particular, note the left to right—i.e., early to late develop-
ment—placement of human sample subtypes along genomic
PC1: SCLC, SQ, COID, AD, and NL (see below).
Next, the genomic mouse lung development framework was

refined to improve the discrimination between human lung
cancer subtypes. To do this, a new mouse lung development
framework was similarly constructed based on 596 genes (a
subset of the earlier set of 1,148 differentially expressed
genes) that increased the separation between the human
cancer subtypes (Figure 3). A functionally annotated list of
the 596 genes is included (Dataset S1). Using this algorithm
(top union; see Methods), the relationship between the cancer
subtypes and developmental stage is more distinct (Figure
S5). Cancer samples now segregate even closer to the earlier
mouse lung development stages, while the normal samples
segregate to the late development stages. The placement of
the cancer subtypes along this new genomic PC1 is
unchanged from above.
Genomically, human lung cancer subtypes are more similar

to earlier stages of mouse lung development, whereas the
normal human lungs are more similar to the later mouse lung
stages. The four cancer subtypes are further distinguishable
from one another in a refined genomic mouse lung develop-
ment framework. On a technical note, the top-union class
discrimination methodology used here extends easily to the
more general problem of feature selection for optimizing
class discrimination.

Lung COIDs Are Genomically Developmentally Distinct
from the Three Other Lung Cancers
In Figure 3C, the 20 COID samples are distinguished from

the other three lung cancer subtypes by their prominent
variance along genomic PC3. This placement pattern suggests
that COIDs are genomically distinct from the other lung
cancer cancers. COID prognosis is generally better than for
the other three cancer subtypes, with 5-y survival rates
ranging from 27% to 75%, depending on whether the COID
histological subtype is typical (better prognosis) or atypical
[5]. Here, COID sample placement along genomic PC3
appears to be separated into two groups, possibly reflecting
further histological discrimination of COIDs into typical and
atypical subclasses.

Human Lung Cancer Survival Rates Correlate with Their
Genomic Placement along the Mouse Lung Development
Trajectory
The left to right (early to late development) placement of

the human genomic profiles of SCLC, SQ, COIDs, AD, and NL

Figure 2. Temporal Analyses of the Significantly Differentiated Lung

Cancer Genes in Murine Lung Development

Analysis of mouse lung development profiles of genes 2-fold significantly
up- or down-regulated in each of the four human lung cancer subtypes
in relation to all 3,590 gene profiles in temporal PC1 and PC2 confirms a
developmental association at the gene-by-gene scale. Shown are the
mouse lung development profiles of 2-fold significantly up-regulated
(green circles) and down-regulated (magenta circles) genes in human
lung cancer subtypes relative to NL.
(A) Up- and down-regulated genes in AD (v2 ¼ 36.83, p , 0.001, OR ¼
13.074).
(B) Up- and down-regulated genes in SQ (v2¼ 119.036, p , 0.001, OR¼
26.526).
(C) Up- and down-regulated genes in SCLC (v2¼ 81.584, p , 0.001, OR¼
27.955).
(D) Up- and down-regulated genes in lung COID (v2¼ 72.363, p , 0.001,
OR¼ 6.174).
DOI: 10.1371/journal.pmed.0030232.g002
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along the mouse genomic PC1 was investigated for histologic
and prognostic relevance. SCLC is the most aggressive of the
three lung cancer subtypes [5]. The 5-y survival rates for SCLC,
SQ, and AD patients are 5%, 14%, and 17%, respectively [3].
These populational statistics suggest a link between the
genomic alignment of human lung cancer on the mouse lung
development trajectory and survival rate (Table 1).

In this human cancer dataset (Table S2; [10]), clinical
parameters (namely, survival time, treatment, etc.) were
available for only 125 of 139 AD patients. When these 125
AD patients were ordered by their mouse genomic PC1
coordinates and split at the median into quasi-equal-sized
groups, the two groups had statistically distinct survival
outcomes (Figure 4A). Furthermore, restricting the analysis to
stage I AD patients and similarly dividing the population into
two equal-sized groups by their mouse genomic PC1
coordinates revealed that the survival outcomes of these
two groups were significantly different (Figure 4B). The 64
stage I patient samples here were selected from the dataset
with the criteria described in Beer et al. [21].

By hierarchically clustering the AD genomic profiles,
Bhattacharjee et al. [10] found two distinct AD subclasses
from the AD population that were significantly different in

terms of their survival. The natural question in relation to the
foregoing development-placement result would be where
their two AD subclasses—denoted C2 and C4—localized on
this mouse lung development framework. The mouse ge-
nomic PC1 and PC3 coordinates of C2 and C4 samples were
plotted (Figure 5A and 5B). With respect to the mouse lung
development genomic framework, C2 and C4 remained
distinct. C4 was located further right (late development)
along mouse genomic PC1, while C2 was further left (early
development). The foregoing result on development place-
ment and prognosis would suggest that the C4 subclass has a
better survival rate than the C2 subclass—consistent with
Bhattacharjee et al.’s findings. When the mouse genomic PC1
halfway point between C2 and C4 ([maximum PC1 coordinate
of C2þminimum PC1 coordinate of C4]/2) was used to divide
the overall AD patient population, the resulting two groups
had even more distinctive survival rates (Figure 5C). Cox
regression was also performed with the C2–non-C2 classi-
fication combined with the corresponding grouping in
genomic PC space. In the cases of both all AD samples and
stage I AD samples, the developmental method gives statisti-
cally more significant p-values and a higher risk index
(Dataset S2).

Figure 3. The Projection of NL and Lung Cancer Genomic Profiles onto the Genomic Mouse Lung Development Frameworks Constructed from Three

Different Mouse Gene Subsets

In all cases, genomic PC1 of mouse lung development is positively correlated with lung development time. Mouse lung sample placements (blue
circles) are nearly contiguous as a function of their stage of development. The separation between the human lung cancer subtypes in this mouse
genomic development framework is defined by a class differentiation measure (see Methods). Table S3 gives the scorepca values for the top-union
algorithm for these gene set size parameters. Mouse, mouse lung development stages.
(A) Human lung samples projected onto the mouse lung development genomic framework (genomic PC1 and PC3) of all 3,590 genes.
(B) Same as (A), but for the mouse development framework constructed from the subset of 1,148 significantly differentially expressed genes in the
human lung cancer subtypes.
(C) Same as (B), but for the mouse development framework constructed from a further subset of 596 genes of the 1,148.
DOI: 10.1371/journal.pmed.0030232.g003

Table 1. Summary of the Gross-Level Association of Lung Cancer Malignancy with Lung Development

Histologic

Group

Percent among

All Lung Cancers

Number of

Samples in

This Study

Temporal OR of Up-Regulated

Gene Being Early against

Down-Regulated Gene Being Late

5-y Survival Genomic PC1 Value of

the Centroid along Development

Trajectory in Figure 3C

SCLC 13% 6 27.955 5% �54.627

SQ 30% 21 26.526 14% �36.201

AD 40% 139 13.074 17% �23.470

Lung COIDs 1–2% 20 6.174 70% (typical type) Perpendicular to genomic PC1

Summary findings of the four primary human lung cancer subtypes relative to mouse lung development temporal and genomic PCs show the gross-level association of lung cancer
malignancy with lung development.
DOI: 10.1371/journal.pmed.0030232.t001
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To check if the association between AD patient survival
and mouse lung development placement was particular to
this lung cancer dataset, we performed a similar analysis on
an independent AD dataset [21] relative to the mouse lung
development dataset above. Patients were separated into two
groups at the median of their genomic mouse PC1 coor-
dinates. The mouse lung development framework here was
constructed from 91 genes significantly differentially ex-
pressed between AD and NL. These two patient groups had
significantly different survival rates (Figure 6A). The AD up-
and down-regulated 91 genes had a significantly different
mouse lung development temporal profile (Figure 6B).

Together, these findings demonstrate the existence of a
significant correlation between the survival outcome and
genomic placement along the mouse lung development
trajectory at three distinct levels of classical histopathologic
resolution (Figure 7). Patients whose lung cancer samples
were associated with earlier mouse lung development stages
had a poorer outcome.

Molecular Signature for Human Lung Cancer Malignancy
in the Principal Mouse Lung Development Trajectory
Genomic PC1 of mouse lung development, observed to be

significantly correlated with human lung cancer survival, is a
linear combination (weights) of 596 distinct gene profiles.
The top 100 most heavily weighted genes in genomic PC1
were evaluated for specific function in lung cancer biology
and development in the published literature (see complete
list in Dataset S1). Of these, 68 genes are significantly up-
regulated in human lung cancer and 32 are significantly
down-regulated, with each group showing significant differ-
ences in their mouse lung development profile (Figure 1D).
The most enriched molecular pathways in these 100 genes

were pyrimidine metabolism and cell cycle. Eleven genes

Figure 4. Survival Analyses of AD Patients Based on Lung Development Association

Survival analyses of lung AD patients based on their mouse lung genomic PC1 coordinate show significant survival time differences between samples
with early PC1 coordinates versus samples with later PC1 coordinates. The lung development genomic framework is constructed from 472 genes that
are significantly up- or down-regulated in AD, SQ, or SCLC subtypes from among the set of 596 significant genes (i.e., excluding COID significant genes).
(A) K-M plot for 125 AD patients separated into two quasi-equal-sized groups at the median (50th percentile) by their mouse lung genomic PC1
coordinate (p¼ 0.0091).
(B) K-M plot for 64 stage I AD patients separated into two equal-sized groups at the median by their mouse lung genomic PC1 coordinates (p¼0.0144).
These 64 stage I AD patient samples are selected for having more than 40% tumor cellularity, no mixed histology (adenosquamous), and patient
survival information; the same criteria were described in Beer et al. [21].
DOI: 10.1371/journal.pmed.0030232.g004

Figure 5. Survival Analyses of Human Lung AD Subclasses from

Bhattacharjee et al. [10] Based on Lung Developmental Association

(A) AD samples identified as forming two distinct subclasses C2 and C4
by Bhattacharjee et al. seen from the genomic PC1 and PC3 perspective
of the 472-gene mouse lung development framework. Each sample point
is color-coded by its survival time. Circles indicate members of class C4,
diamonds indicate members of class C2, and ‘‘X’’s correspond to all other
AD samples.
(B) Same as in (A), except that here only the stage I AD samples (such
samples within C2, C4, and other) are highlighted. The mouse genomic
PC1 halfway separation value between the C2 and C4 samples is noted.
(C) K-M plot based on 64 stage I AD patients separated into two groups
by the mouse PC1 halfway separation value from (B) (p ¼ 0.0169); the
low-survival group has 13 patients and the high-survival group has 51
patients.
DOI: 10.1371/journal.pmed.0030232.g005

Figure 6. Independent Validation with Separate Human Lung AD

Dataset from Beer et al. [21]

(A) Survival analyses of 86 human lung ADs by K-M plot with patients
separated into two groups by the mouse PC1 median point (p¼ 0.0216).
(B) The profiles of the 91 genes (26 cancer up-regulated [green circles]
and 65 cancer down-regulated [magenta circles]) among 2,653 mouse
lung developmental gene profiles.
DOI: 10.1371/journal.pmed.0030232.g006
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participate in the general cell cycle pathway (from 23 total
cell-cycle-associated genes), and eight genes are involved in
the pyrimidine metabolism pathway (Table 2). De novo
pyrimidine synthesis is necessary for mammalian cell pro-
liferation. All pyrimidine metabolism and cell cycle pathways
genes were up-regulated in lung cancer and most highly
expressed early in lung development. In terms of general

biological process, the largest categories were cell prolifer-
ation and DNA metabolism, with 26 genes each (15 shared)
(Dataset S1). Nine of the top 100 genes were involved in cell
adhesion, a process generally related to metastasis (Table 2);
eight of the nine were down-regulated in lung cancer and
most highly expressed late in lung development. Cell
apoptosis, another general metastasis-related process was
represented by six genes: CAD, CSE1L, FXR1, NME1, PARP1,
and TIA1.
Of the top 100 genes, eight were directly involved in lung

development, whereas 21 of the 100 have direct roles in lung
cancer formation and progression (Table 3). With regards to
non-lung-specific ‘‘oncologic’’ association, 48 genes of the top
100 have been directly implicated in tumorigenesis, pro-
gression, or metastasis of various solid tumors. Indeed, 13 of
the 20 most heavily weighted genes were cancer-related: PLK1
(number 1 by PC1 weight ranking), CSE1L (number 2),
DNMT1 (number 3), MSH6 (number 4), MCM7 (number 6),
RRM1 (number 8), EZH2 (number 11), TOP2A (number 12),
CSPG6 (number 15), MCM4 (number 17), MCM3 (number 18),
HSPD1 (number 19), and PTHR1 (number 20). The group

Table 2. The Most Enriched Biological Pathways and Processes (Pyrimidine Metabolism, Cell Cycle, and Cell Adhesion Genes)

Pathway Gene

Symbol

Entrez ID

(Human)

Early (E) or

Late (L)

Weight

Ranking

Annotation

Pyrimidine metabolism RRM1 6240 E 8 Ribonucleotide reductase M1 polypeptide

TOP2A 7153 E 12 Topoisomerase (DNA) II alpha 170 kDa

POLE3 54107 E 13 Polymerase (DNA directed), epsilon 3 (p17 subunit)

PARP1 142 E 27 Poly (ADP-ribose) polymerase family, member 1

NME2 4831 E 33 Non-metastatic cells 2, protein (NM23B)

NME1 4830 E 41 Non-metastatic cells 1, protein (NM23A)

RRM2 6241 E 57 Ribonucleotide reductase M2 polypeptide

CAD 790 E 81 Carbamoyl-phosphate synthetase 2, aspartate

transcarbamylase, and dihydroorotase

Cell adhesion ICAM2 3384 L 31 Intercellular adhesion molecule 2

PLEKHC1 10979 L 51 Pleckstrin homology domain containing, family C

(with FERM domain), member 1

SEPP1 6414 L 61 Selenoprotein P, plasma, 1

C1QR1 22918 L 69 Complement component 1, q subcomponent, receptor 1

ICAM1 3383 L 76 Intercellular adhesion molecule 1 (CD54),

human rhinovirus receptor

ENG 2022 L 80 Endoglin (Osler–Rendu–Weber syndrome 1)

PECAM1 5175 L 92 Platelet/endothelial cell adhesion molecule (CD31 antigen)

COL11A1 1301 E 95 Collagen, type XI, alpha 1

LGALS9 3965 L 96 Lectin, galactoside-binding, soluble, 9 (galectin 9)

Cell cycle PLK1 5347 E 1 Polo-like kinase 1 (Drosophila)

MCM7 4176 E 6 MCM7 minichromosome maintenance deficient 7

(Saccharomyces cerevisiae)

MCM4 4173 E 17 MCM4 minichromosome maintenance deficient 4

(S. cerevisiae)

MCM3 4172 E 18 MCM3 minichromosome maintenance deficient 3

(S. cerevisiae)

MCM2 4171 E 24 MCM2 minichromosome maintenance deficient 2,

mitotin (S. cerevisiae)

CCNB1 891 E 30 Cyclin B1

CCNA2 890 E 32 Cyclin A2

CCNB2 9133 E 39 Cyclin B2

MCM6 4175 E 49 MCM6 minichromosome maintenance deficient 6 (S. cerevisiae)

MCM5 4174 E 60 MCM5 minichromosome maintenance deficient 5, (S. cerevisiae)

PTTG1 9232 E 64 Pituitary tumor-transforming 1

This table shows the two most enriched biological pathways (pyrimidine metabolism and cell cycle), and the subset of cell adhesion genes, from among the top 100 malignancy signature
genes (i.e., top 100 most heavily weighted genes in mouse lung development genomic PC1 that are associated with lung cancer prognosis). Pyrimidine metabolism and cell adhesion are
critical processes in metastasis. ‘‘Early’’ and ‘‘late’’ denote a gene’s profile pattern during mouse lung development (see visualization for top 100 genes in Figure 1D). Weight ranking refers
to a gene’s contribution to genomic PC1.
DOI: 10.1371/journal.pmed.0030232.t002

Figure 7. Developmental Association Predicts Human Lung Cancer

Survival at Three Distinct Levels of Classical Histopathological Resolution

DOI: 10.1371/journal.pmed.0030232.g007
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median expression value for 47 of the 100 genes increased
monotonically from AD to SQ to SCLC subtypes, correlating
with the relative lethality of the subtypes, whereas six genes
exhibited the opposite, decreasing, group median trend:
EPHB4, GCS1, IL4R, PMP22, RARRES2, and TAGLN2. Inter-
estingly, EPHB4 promotes cell adhesion [31], RARRES2 is a
receptor for retinoids that are known to inhibit growth and

stimulate differentiation [32], and TAGLN2 is homologous to
TAGLN, whose expression loss marks the Ras oncogenic
transformation in epithelial cells [33].

Regarding metastasis, at least ten of the top 100 genes were
previously reported as metastasis markers. NME1 is a known
marker for carcinoma metastasis in diverse host organs.
CCNB1 [34], RRM1 [35], and PTHR1 [36] are markers for

Table 3. Top Genes That Are Linked to Lung Development, Lung Cancer, General Cancers, and Metastasis

Gene

Symbol

Entrez ID

(Human)

Early (E) or

Late (L)

Weight

Ranking

Lung

Development

Lung

Cancer

General

Cancer

Metastasis

PLK1 5347 E 1 u u

CSE1L 1434 E 2 u

DNMT1 1786 E 3 u u

MSH6 2956 E 4 u

MCM7 4176 E 6 u

RRM1 6240 E 8 u u

H2AFX 3014 E 9 u u

EZH2 2146 E 11 u u

TOP2A 7153 E 12 u

CSPG6 9126 E 15 u

MCM4 4173 E 17 u

MCM3 4172 E 18 u

HSPD1 3329 E 19 u

PTHR1 5745 E 20 u u

PAFAH1B3 5050 E 21 u

MCM2 4171 E 24 u u

EPHB4 2050 E 25 u

PARP1 142 E 27 u

CCNB1 891 E 30 u u

ICAM2 3384 L 31 u

AGER 177 L 36 u u

NME1 4830 E 41 u

HNRPA1 3178 E 45 u u

IL4R 3566 L 47 u

PLEKHC1 10979 L 51 u

ANP32B 10541 E 52 u

CCT3 7203 E 55 u

MVP 9961 L 56 u u

NMI 9111 L 63 u u u

PTTG1 9232 E 64 u u u

TIE1 7075 L 65 u u

DLG7 9787 E 68 u

BZRP 706 L 71 u u

AQP1 358 L 72 u u

ACE 1636 L 73 u u

ICAM1 3383 L 76 u u u

RARRES2 5919 L 77 u u u

SAT 6303 L 79 u u

ENG 2022 L 80 u u u

CAD 790 E 81 u

PRG1 5552 L 83 u

MDK 4192 E 85 u u

TIA1 7072 E 87 u

IFI27 3429 L 88 u

CLIC4 25932 L 89 u

HSPCB 3326 E 91 u

PECAM1 5175 L 92 u u u

ABCG1 9619 E 94 u

COL11A1 1301 E 95 u

LGALS9 3965 L 96 u

XRCC5 7520 E 98 u u

CBX1 10951 E 99 u

TAGLN2 8407 L 100 u

This table lists select genes from among the top 100 most heavily weighted in mouse lung development PC1 that are directly linked (in scientific literature) to the following four
categories: lung development, lung cancer, general cancers, and general metastasis. ‘‘Early,’’ ‘‘late,’’ and ‘‘weight ranking’’ mean the same as in Table 2.
DOI: 10.1371/journal.pmed.0030232.t003
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colorectal, lung, and breast cancer metastasis, respectively.
PTTG1 is associated with lymph node metastasis of gastric
carcinoma [37]. PARP1 is overexpressed in malignant
lymphomas [38]. AGER is associated with metastasis of
pancreatic and colorectal cancers [39–41]. ENG, ICAM1, and
PECAM1 have been linked to breast cancer metastasis [42,43].
ICAM1 is critical for the adhesion of human SCLC to
endothelial cells [44,45]. AQP1 is strongly correlated with
the malignancy grade in human astrocytomas [46]. These
results suggest that the heavily weighted genes constituting
lung development genomic PC1 may provide novel candidate
molecules and pathways for directed investigations into the
mechanisms of lung cancer biology.

Discussion

This study demonstrates that a multi-scale modeling
approach integrating the molecular dynamics of lung devel-
opment provides a rational and effective framework for
uncovering common developmental mechanisms of lung
cancer biology and clinical outcome.

Temporally, we observed that individual genes overex-
pressed in human lung tumors relative to NL tissue had a
significant likelihood of having corresponding mouse lung
development expression profiles that decreased with time.
On the other hand, genes underexpressed in lung tumors
were significantly more likely to have lung development
expression profiles that increased with time. A notable
exception was the COID subtype: COID up-regulated genes
did not have a strong tendency to have a time-decreasing lung
development profile (Figure 2D)—possibly reflecting a differ-
ent cell of origin for COIDs compared with the three other
lung cancer subtypes.

Genomically—with respect to a mouse lung development
background—human lung cancer profiles were found to be
more similar to the early stages of lung development, whereas
NL profiles localized to the later stage of mouse lung
development (Figure 3). Notably, we observed a significant
association between the cancer profile localization on our
mouse lung development trajectory and clinical prognosis at
three distinct levels of classical histopathologic resolution. At
the grossest histopathologic level, the early to late develop-
ment placement of group medians for the four cancer
subtypes along the mouse development trajectory correspond
to their group 5-y survival rates, and provides a developmen-
tal discrimination between the four classical subtypes (Table
1). Next, significant correlations were found between the
survival times of AD patients (Figure 4A) and the placement
of their samples in the same development trajectory (with the
same result for the stage I subset of these patients) (Figures
4B, 5B, S6, and S7). The earlier in development the placement
of an individual human sample on the mouse lung develop-
ment trajectory, the shorter the survival time was. The same
development–survival relationship held in an independent
AD dataset [21], even though that dataset had low gene-by-
gene correlations [47] with the dataset from Bhattacharjee et
al. [10]. In comparison with conventional histopathological
methods for survival prediction, the development-based
molecular method offers a new framework to investigate
lung cancers. Though it might not practically or effectively
replace classical histopathology in lung cancer diagnosis and
prognosis in its present design, it might have greater and

more fine-grained prognostic utility. For example, the Cox
regression multivariate analysis using substaging, grading,
and the genomic PC1 together in the case of lung AD shows
that the genomic PC1 produces significant p-values and
higher relative risk indices, while the conventional histopa-
thology factors such as substaging and grading do not give
significant p-values (Figure S8; Dataset S2).
The configuration of projected human cancer genomic

profiles on the cognate mouse development framework might
reflect additional prognostic and phenotypic parameters. In
contrast to cancer classification studies [10,12,13,48] that
apply clustering algorithms [49,50] directly onto the disease
datasets, the approach here does not apply PCA to the human
cancer data itself. Rather, human tumor molecular profiles
were projected into the PC space that was characterized by
the dominant genomic structures of mouse lung develop-
ment, i.e., human cancer is seen through the lens of mouse
lung development. Further contrasting with other expres-
sion-based cancer survival prediction methods [10,21,51], this
development-based approach involves no direct training or
clustering on the disease samples themselves. In addition, the
approach here does not use patient survival data for
prediction: the developmental association of a disease sample
is the key survival predictor. Together, these cancer–develop-
ment associations suggest a developmental basis for lung
cancer classification and prognosis.
Both the development expression profiles of genes up-

regulated in human lung COIDs and the COID projections on
mouse lung development suggest that COIDs are genomically
distinct from the three other lung cancer subtypes. COID
profiles were more prominently scattered along a different
genomic lung development axis (Figure 3C, PC3) from that of
the other lung cancer subtypes. These observations concur
with the fact that COIDs are histopathologically distinct from
the other subtypes in general. A recent study by Pelosi et al.
[8] reports that overdiagnosis of COID tumor as small cell
lung carcinoma in small fragmented bronchial biopsies
obtained via common fiberoptic bronchoscopy remains a
significant problem. The treatment protocols for lung COIDs
and small cell carcinomas are different. Thus far, hierarchical
algorithms have not been able to distinguish COIDs from
other lung cancer molecular profiles [10,12,13].
It is nontrivial to transition from genomic associations

between phenomenological factors (e.g., development stage
and disease prognosis) to functionally testable single genes
or pathways, the mainstay of biological experimentation.
Here, a scientific literature survey of the top 100 most
heavily weighted genes constituting the prognostically
relevant principal lung development trajectory showed
these genes to be highly enriched for biological processes
that suggest their common roles in lung development and
cancer biology (Tables 2 and 3). As shown by Kho et al. [19],
the lung and cerebellar signatures did not cross over (the
gene signature overlap between lung and central nervous
system is very small), suggesting that what we were
measuring was not merely proliferation, but tissue-specific
development. These are genes that are not just proliferative
markers but potentially developmental staging markers that
can better classify patients, which in turn may be useful for
prognostics and evaluating pharmacological effect. They
may also provide the basis of finding novel pharmacological
targets.
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The idea of shared molecular mechanisms between tumori-
genesis and development is an old one that originated from
initial observations of commonmorphologic features between
cancer cells and embryonic tissue [52]. It should be pointed
out that it is not always obvious which cognate or reference
development model is the best for modeling and resolving the
intrinsic biology of a given tumor type. This problem largely
relates to the cells of origin of a particular tumor. As has been
demonstrated by numerous studies, knowledge of the basic
actions of a gene or molecular pathway during development
provides a rational framework for understanding its role in
pathological systems such as cancer.

Supporting Information

Dataset S1. Annotated 596-Gene Set with Extra Annotation for Top
100 Genes

Found at DOI: 10.1371/journal.pmed.0030232.sd001 (514 KB XLS).

Dataset S2. Survival Analysis Report

Found at DOI: 10.1371/journal.pmed.0030232.sd002 (83 KB DOC).

Figure S1. Human AD and NL samples in Murine Lung Development

(A) Human lung ADs compared with NL samples in the genomic PC1
and PC2 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 405 top genes’ space.
(B) Human lung ADs compared with NL samples in the genomic PC1
and PC3 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 405 top genes’ space.

Found at DOI: 10.1371/journal.pmed.0030232.sg001 (139 KB PPT).

Figure S2. Human COID and NL Samples in Murine Lung
Development

(A) Human lung COIDs compared with NL samples in the genomic
PC1 and PC2 values of mouse lung development from embryonic day
12 to postnatal day 21 in the 737 top genes’ space.
(B) Human lung COIDs compared with NL samples in the genomic
PC1 and PC3 values of mouse lung development from embryonic day
12 to postnatal day 21 in the 737 top genes’ space.

Found at DOI: 10.1371/journal.pmed.0030232.sg002 (121 KB PPT).

Figure S3. Human SQ and NL Samples in Murine Lung Development

(A) Human SQs compared with NL samples in the genomic PC1 and
PC2 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 464 top genes’ space.
(B) Human SQs compared with NL samples in the genomic PC1 and
PC3 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 464 top genes’ space.

Found at DOI: 10.1371/journal.pmed.0030232.sg003 (121 KB PPT).

Figure S4. Human SCLC and NL Samples in Murine Lung
Development

(A) Human SCLCs compared with NL samples in the genomic PC1
and PC2 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 782 top genes’ space.
(B) Human SCLCs compared with NL samples in the genomic PC1
and PC3 values of mouse lung development from embryonic day 12 to
postnatal day 21 in the 782 top genes’ space.

Found at DOI: 10.1371/journal.pmed.0030232.sg004 (119 KB PPT).

Figure S5. Human Cancer Samples Are Genomically Most Similar to
the Earlier Mouse Lung Development Stages, whereas NL Samples
Identify with the Late Development Stages

(A) A stacked histogram of the mouse lung development stages closest
to each human lung sample in the framework of Figure 3C, by disease
subtype.
(B) The average, minimum, and maximum distances from human lung
samples (in each disease subtype) to all the mouse lung development
stages. The color scheme for disease subtypes follows (A). The
distance measure between human samples and mouse stages is the
standard Euclidean metric, calculated along the first ten genomic PCs
of mouse lung development, which capture 100% of total genomic
variance in the mouse lung dataset.

Found at DOI: 10.1371/journal.pmed.0030232.sg005 (74 KB PPT).

Figure S6. Survival as Surface Plot in Murine Lung Development

This figure visualizes the survival time of 125 AD patients as a surface
function of the genomic PC1 and PC3 in the mouse lung develop-
ment genomic framework constructed from 472 genes significantly
up- or down-regulated in AD, SQ, or SCLC subtypes from among the
set of 596 significant genes (i.e., excluding COID significant genes).
The plot is linearly color-coded, with the red spectrum representing
longer survival time and the blue spectrum representing shorter
survival time.

Found at DOI: 10.1371/journal.pmed.0030232.sg006 (112 KB PPT).

Figure S7. K-M Analysis of Human AD Patients in Three
Developmental Groups

This figure shows K-M analysis for stage I lung AD patients separated
into three quasi-equal-sized groups (at the 33.33th percentile) by
their mouse lung genomic PC1 coordinate (p , 0.001).

Found at DOI: 10.1371/journal.pmed.0030232.sg007 (86 KB PPT).

Figure S8. K-M Analysis of Human AD Patients with Traditional
Methods

K-M analyses of the lung AD stage I patients (64) from Bhattacharjee
et al. [10] by sub-staging and grades show that the traditional
histopathological way of classification does not predict in fine scale
the survival outcome with statistical significance.
(A) Survival analysis by sub-staging (T1 and T2).
(B) Survival analysis by grading in terms of tissue differentiation
(three grades).

Found at DOI: 10.1371/journal.pmed.0030232.sg008 (138 KB PPT).

Protocol S1. Supplementary Methods

Found at DOI: 10.1371/journal.pmed.0030232.sd003 (21 KB DOC).

Table S1. The Number of Samples Closest to Each Mouse Develop-
ment Stage

Found at DOI: 10.1371/journal.pmed.0030232.st001 (13 KB PDF).

Table S2. The Clinical Data for the Lung Cancer Patients from Their
Primary Source

Found at DOI: 10.1371/journal.pmed.0030232.st002 (207 KB XLS).

Table S3. The Scores for the Top-Union Algorithm in Action

Found at DOI: 10.1371/journal.pmed.0030232.st003 (13 KB PDF).
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Editors’ Summary

Background. Lung cancer causes the most deaths from cancer
worldwide—around a quarter of all cancer deaths—and the number of
deaths is rising each year. There are a number of different types of the
disease, whose names come from early descriptions of the cancer cells
when seen under the microscope: carcinoid, small cell, and non–small
cell, which make up 2%, 13%, and 86% of lung cancers, respectively. To
make things more complicated, each of these cancer types can be
subdivided further. It is important to distinguish the different types of
cancer because they differ in their rates of growth and how they respond
to treatment; for example, small cell lung cancer is the most rapidly
progressing type of lung cancer. But although these current classifica-
tions of cancers are useful, researchers believe that if the underlying
molecular changes in these cancers could be discovered then a more
accurate way of classifying cancers, and hence predicting outcome and
response to treatment, might be possible.

Why Was This Study Done? Previous work has suggested that some
cancers come from very immature cells, that is, cells that are present in
the early stages of an animal’s development from an embryo in the
womb to an adult animal. Many animals have been closely studied so as
to understand how they develop; the best studied model that is also
relevant to human disease is the mouse, and researchers have previously
studied lung development in mice in detail. This group of researchers
wanted to see if there was any relation between the activity (known as
expression) of mouse genes during the development of the lung and the
expression of genes in human lung cancers, particularly whether they
could use gene expression to try to predict the outcome of lung cancer
in patients.

What Did the Researchers Do and Find? They compared the gene
expression in lung cancer samples from 186 patients with four different
types of lung cancer (and in 17 normal lung tissue samples) to the gene
expression found in normal mice during development. They found

similarities between expression patterns in the lung cancer subtypes and the
developing mouse lung, and that these similarities explain some of the
different outcomes for the patients. In general, they found that when the
gene expression in the human cancer was similar to that of very immature
mouse lung cells, patients had a poor prognosis. When the gene expression
in the human cancer was more similar to mature mouse lung cells, the
prognosis was better. However, the researchers found that carcinoid tumors
had rather different expression profiles compared to the other tumors.

The researchers were also able to discover some specific gene types
that seemed to have particularly strong associations between mouse
development and the human cancers. Two of these gene types were ones
that are involved in building and breaking down DNA itself, and ones
involved in how cells stick together. This latter group of genes is thought to
be involved in how cancers spread.

What Do These Findings Mean? These results provide a new way of
thinking about how to classify lung cancers, and also point to a few groups of
genes that may be particularly important in the development of the tumor.
However, before these results are used in any clinical assessment, further
work will need to be done to work out whether they are true for other
groups of patients.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030232.
� MedlinePlus has information from the United States National Library of

Medicine and other government agencies and health-related organiza-
tions [MedlinePlus]
� The National Institute for Aging is also a good place to start looking

for information [National Institute for Aging]
� The National Cancer Institute [http://www.cancer.gov/cancertopics/

types/lung] and Lung Cancer Online [http://www.lungcanceronline.org]
have a wide range of information on lung cancer
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