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ABSTRACT Nontyphoidal Salmonella (NTS) is a leading global cause of bacterial
foodborne morbidity and mortality. Our ability to treat severe NTS infections has
been impaired by increasing antimicrobial resistance (AMR). To understand and miti-
gate the global health crisis AMR represents, we need to link the observed resis-
tance phenotypes with their underlying genomic mechanisms. Broiler chickens rep-
resent a key reservoir and vector for NTS infections, but isolates from this setting
have been characterized in only very low numbers relative to clinical isolates. In this
study, we sequenced and assembled 97 genomes encompassing 7 serotypes iso-
lated from broiler chicken in farms in British Columbia between 2005 and 2008.
Through application of machine learning (ML) models to predict the observed AMR
phenotype from this genomic data, we were able to generate highly (0.92 to 0.99)
precise logistic regression models using known AMR gene annotations as features
for 7 antibiotics (amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriax-
one, streptomycin, and tetracycline). Similarly, we also trained “reference-free” k-mer-
based set-covering machine phenotypic prediction models (0.91 to 1.0 precision) for
these antibiotics. By combining the inferred k-mers and logistic regression weights,
we identified the primary drivers of AMR for the 7 studied antibiotics in these iso-
lates. With our research representing one of the largest studies of a diverse set of
NTS isolates from broiler chicken, we can thus confirm that the AmpC-like CMY-2
�-lactamase is a primary driver of �-lactam resistance and that the phosphotrans-
ferases APH(6)-Id and APH(3�-Ib) are the principal drivers of streptomycin resistance
in this important ecosystem.

IMPORTANCE Antimicrobial resistance (AMR) represents an existential threat to the
function of modern medicine. Genomics and machine learning methods are being
increasingly used to analyze and predict AMR. This type of surveillance is very im-
portant to try to reduce the impact of AMR. Machine learning models are typically
trained using genomic data, but the aspects of the genomes that they use to make
predictions are rarely analyzed. In this work, we showed how, by using different
types of machine learning models and performing this analysis, it is possible to
identify the key genes underlying AMR in nontyphoidal Salmonella (NTS). NTS is
among the leading cause of foodborne illness globally; however, AMR in NTS has
not been heavily studied within the food chain itself. Therefore, in this work we per-
formed a broad-scale analysis of the AMR in NTS isolates from commercial chicken
farms and identified some priority AMR genes for surveillance.
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Genomic methods are being increasingly established as key tools in rapid contin-
uous surveillance, tracking, and control strategy development for infectious dis-

eases (1). They are critical to our ability to study the evolution and spread of antimi-
crobial resistance (AMR), especially as we adopt a broader One Health (2) approach that
integrates clinical, food production, and environmental settings. AMR is a current and
growing global health crisis with soaring levels of observed multidrug resistance in a
broad range of pathogens (3) combined with record low levels of novel drug discovery
(4). There is a global consensus that AMR poses a severe and growing threat to human
and animal health (3).

Currently, phenotypic antibiotic susceptibility testing (AST) is the principal method
for the identification of AMR in treatment protocol determination and surveillance
programs. Unfortunately, AST is highly variable between laboratories and can take days
to weeks longer than genomic approaches (5). Despite the development of high-quality
curated databases such as the Comprehensive Antibiotic Resistance Database (CARD)
(6), we still observe a high level of variability in our ability to predict the phenotypic
AMR profile from purely genomic data (7, 8). This disconnect can be attributed to
fundamental limitations in the genomic methods used to describe phenotype (i.e.,
representing genetic capacity but not necessarily gene expression) as well as gaps in
our knowledge of resistance determinants. Therefore, despite these expression-related
limitations, AST prediction from genomics data is still a highly useful tool for the
identification of novel mechanisms and key resistance drivers as well as for determi-
nation of the propensity for a given driver to be transmitted. This is vital for prioritizing
research and surveillance efforts for the determinants driving AMR.

There have been several approaches used for predicting AST from genomic data
sets; these can be divided into AMR gene-centered and gene-free k-mer-based models.
The simplest of the approaches in the first category is that of annotation of known AMR
genes within the genome and the direct tallying of their associated resistances; for
example, in cases in which the genome contained a broad-spectrum �-lactamase such
as New Delhi metallo-�-lactamase 1 (NDM-1), the isolate would be considered resistant
to �-lactam antibiotics (7, 9). Alternatively, the presence and absence of AMR genes can
be used as features to train machine learning (ML) classification models (10). These
models learn to determine the weights across the genes that best explain the observed
pattern of resistance to a given antibiotic. Such approaches are likely to perform best
when organisms are well studied and the AMR mechanisms are relatively well charac-
terized.

The approaches classified into the second category, consisting of the gene-free
k-mer-based models, provide an alternative approach. This approach, while more data
intensive, attempts to identify the parts of the genome that correlate best to the
resistance pattern (11). Gene-free approaches do not include a priori assumptions about
the AMR determinants in the genome and allow discovery of new genomic features
(11–13). However, in certain data sets with limited diversity, such approaches may
identify non-AMR-related k-mers that are shared by the resistant organisms only
incidentally.

Salmonella is a broadly distributed Gram-negative bacterium found in a range of
environments throughout the food chain, including in many prominent food-
producing animals, e.g., poultry, pigs, and cattle (14). Additionally, it is known to have
numerous inter- and intraspecific and environmental transmission routes (15). Nonty-
phoidal Salmonella (NTS) serovars represent the leading global cause of foodborne-
related lost years of life (2.4 to 6.2 million years) and lost disability-adjusted life years
(2.5 to 6.3 million) (15). Additionally, NTS serovars are conservatively (16) estimated to
cause 31.8 to 211.2 million infections globally and 36.3 to 89.1 million deaths annually
(15). An increased prevalence of resistant NTS is of great concern due to the association
of AMR with worse clinical outcomes (17, 18). Therefore, due to the heavy global
burden of NTS, understanding AMR dynamics in this system is highly important.

Previous studies have investigated the utility of genomic methods for AMR predic-
tion of Salmonella infections by certain clinical isolates and serovars (7, 19). However,
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isolates of Salmonella from one of the most important vectors of foodborne salmonel-
losis, chicken, have been previously characterized genomically in only relatively low
numbers (20). Therefore, this study aims both to expand this AMR genomic character-
ization to a broader sampling of NTS serovars isolated from commercial chicken farms
and to train prediction models for AMR phenotypes. These models are then used to
identify the most important drivers of the observed resistance patterns in this ecolog-
ical context.

RESULTS
Assembly and annotation. All 97 de novo assemblies resulted in genomes com-

prising between 19 and 105 contigs (mean � 43.56) of average length of between
45.72 kb and 247.03 kb (mean � 122.18 kb). The distribution of N50 values ranged from
a minimum of 68.01 kb to a maximum of 735.38 kb (mean � 341.91 kb), and total
genome sizes ranged from 4.64 Mb to 5.05 Mb (mean � 4.84 Mb). G�C% content
displayed a tight range over the assembled genomes, with a mean of 52.11% and a
standard deviation of 0.11%. All assemblies were deposited in GenBank, and all
accession numbers and assembly metrics can be found in Table S1 in the supplemental
material.

Phylogeny. Phylogenetic analysis of a core genome single nucleotide polymor-
phism (SNP) alignment shows a relatively well-supported monophyletic distribution of
serotypes (see Fig. 1). Isolate 3333 was the one exception to this monophyly, branching
with 100% ultrafast bootstrap support as sister to the well (100%)-supported Salmonella
enterica serovar S. I:4,[5],12:i: clade.

Antibiotic susceptibility testing. In contrast to the largely monophyletic serotype
patterns observed in the phylogenetic analysis, the observed complements of resis-
tances to the antibiotics tested showed variation both within and between the serovars
(Fig. 1; see also Table S2). S. Kentucky serotypes, in particular, displayed the greatest
range of observed AMR phenotypes, with 6 distinct patterns of resistance. S. Hadar
serotypes had 4 resistance sets, and S. I:4,[5],12:i: serotypes displayed 3 different sets.
The remaining isolates with more than a single exemplar, namely, S. Typhimurium, S.
Enteritidis, and S. Heidelberg, were more consistent, showing only 2 different resistance
patterns each.

The most commonly observed set of cooccurring resistances (see Fig. S1G in the
supplemental material) to a group of antibiotics consisted of the 48.4% (47/97) of
isolates resistant to all the �-lactam antibiotics tested, i.e., the aminopenicillins
(amoxicillin-clavulanic acid [AMOCLA] and ampicillin [AMPICI]) and the cephalosporins
(cefoxitin [CEFOXI], ceftiofur [CEFTIF], and ceftriaxone [CEFTRI]). Only 2 isolates were
susceptible to some but not all �-lactam antibiotics: a single S. Kentucky isolate (3184)
that was susceptible to CEFTRI while being resistant to the other �-lactams and a single
S. Hadar isolate (3138) that showed intermediate resistance and full resistance to
AMOCLA and AMPICI, respectively, but susceptibility to the 3 cephalosporins. In terms
of serotypes, this group of �-lactam-resistant isolates included all of the S. Heidelberg
isolates, 20/32 (65.63%) of the S. Kentucky isolates, 10/15 (66.6%) of the S. I:4,[5],12:i:
isolates, 1/17 (5.9%) of the S. Hadar isolates, and the lone S. Thompson isolate.

The other most commonly observed group of shared resistances (see Fig. S1H) was
that consisting of the 36.1% (35/97) of isolates resistant to the aminoglycoside strep-
tomycin (STREPT) and tetracycline (TETRA). This pattern of shared resistances included
16/17 (94.1%) of the S. Hadar isolates, 16/32 (50%) of the S. Kentucky isolates, 2/15
(13.3%) of the S. I:4,[5],12:i: isolates, and 1/10 (10%) of the S. Enteritidis isolates. There
were only 2 exceptions to the pattern of isolates being resistant to either of STREPT or
TETRA (implying resistance to the other): S. Typhimurium isolate 3333 and S. Heidelberg
isolate 1769.

Constituting a set apart from those resistant to the �-lactams, streptomycin, and
tetracycline, only 5 isolates were resistant to any other antibiotic tested: 2/15 (13.3%) of
the S. I:4,[5],12:i: isolates (1892 and 1893) showed resistance to chloramphenicol
(CHLORA) and sulfamethoxazole (SULFIZ), a single (1/32, 3.13%) S. Kentucky isolate
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(3338) and a single (1/10, 10%) S. Enteritidis isolate (3181) had intermediate resistance
to CHLORA (see Fig. S2), and, finally, a single S. Hadar isolate (1/17 5.9%) was also
resistant to SULFIZ.

The isolates showing resistance to the greatest numbers of antibiotics (i.e., the most
multiresistant isolates) were S. I:4,[5],12:i: isolates (1893 and 1892) and the S. Hadar

FIG 1 Core genome SNP phylogeny. The figure shows the IQTree maximum likelihood phylogeny generated from core genome SNP alignment. Internal tree
nodes with �90% ultrafast bootstrap support are noted by black circles. Correspondences of serotype clades to the lowest common ancestor of each are
highlighted according to the following color scheme (as indicated by the legend): a blue background indicates S. Kentucky serovars, orange S. Hadar, green
S. Heidelberg, red-orange S. I:4,[5],12:i:, purple S. Enteritidis, brown S. Typhimurium, and light pink S. Thompson (outgroup). A randomly chosen name
representing the farm from which a sample was isolated is indicated in parentheses. AST results are indicated using circles, with resistance indicated by a white
circle, intermediate resistance by a gray circle, and susceptibility by a black circle. Antibiotics are abbreviated per standard shorthand from the taxon label
outward as follows: amoxicillin-clavulanic acid (AMOCLA), ampicillin (AMPICI), azithromycin (AZITHR), cefoxitin (CEFOXI), ceftiofur (CEFTIF), ceftriaxone (CEFTRI),
chloramphenicol (CHLORA), ciprofloxacin (CIPROF), gentamicin (GENTAM), nalidixic acid (NALAC), streptomycin (STREPT), sulfamethoxazole (SULFIZ), tetracy-
cline (TETRA), and trimethoprim-sulfamethoxazole (TRISUL). Taxa for which the AST was systematically predicted incorrectly are indicated in white characters.
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isolate (3149), which were resistant to chloramphenicol and sulfamethoxazole, respec-
tively, as well as to the �-lactams and to the aminoglycoside and tetracycline tested. A
total of 12/32 (37.5%) S. Kentucky isolates were resistant to all of these antibiotics apart
from chloramphenicol and sulfamethoxazole. At the other end of the spectrum, S.
Enteritidis was the most susceptible serotype with 9/10 (90%) of isolates showing
susceptibility (or intermediate susceptibility) to all antibiotics. Similarly, 6/7 (85.7%) of
the S. Typhimurium isolates, 7/32 (21.88%) of the S. Kentucky isolates, 5/15 (33.3%) of
the S. I:4,[5],12:i: isolates, and 1/17 (5.9%) of the S. Hadar isolates also showed suscep-
tibility (or intermediate susceptibility) to all tested antibiotics.

Antimicrobial resistance gene analysis. Twenty-five putative AMR genes were
identified across all isolates and serotypes by CARD’s “strict” or “perfect” match criteria
(see Fig. 2). Every isolate had a pair of fosfomycin resistance-related mutations in the
glpT and uhpT transporters (21) as well as a pmrF gene associated with resistance to
polymyxin antibiotics (22), a Penicillin-binding protein (PBP) 3 gene (23), and a bacA
gene (associated with low-level resistance to bacitracin) (24). Additionally, there were
16 efflux components and determinants associated with their expression, including

FIG 2 All AMR genes detected by serotype under CARD’s “Strict” and “Perfect” criteria (including efflux system components). Each cell indicates the percentage
of isolates belonging to the relevant serotype (column) that contained each detected determinant (rows). Black blocks indicate that no isolates of that serotype
had that AMR gene, and cream blocks indicate that 100% of the isolates had that AMR gene. Serotypes and genes are each ordered via hierarchical clustering
as indicated by the dendrograms.
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general efflux regulators such as H-NS histone-like protein (25) and cpxA (26). Genes
implicated in specific efflux systems included genes associated with the acrAB system:
sdiA (27), marR and marA (28), and soxR and soxS (29). Interestingly, while acrB was
detected in all but a single S. Hadar strain, acrA was not detected in any isolate. The
other ubiquitous efflux pump-related systems included mdsABC-associated genes golS,
mdsA, and mdsC (30); MATE efflux system mdt-associated efflux components CRP (31),
baeR (32), and mdtK (33); and emrAB-TolC components and regulators emrB, emrD, and
emrR (34, 35). Interestingly, only the S. Hadar and S. Kentucky isolates had emrA and
only the S. Typhimurium and S. I:4,[5],12:i: isolates had mdsB. Finally, there were patA
and msbA transporters found in all isolates despite no detection of patB (36). kdpE, a
regulator of potassium transport associated with aminoglycoside resistance (37), was
nearly ubiquitous (absent in 2/15 S. Heidelberg and 1/10 S. Enteritidis isolates).

Some predicted AMR genes had more varied serotype distributions. The chloram-
phenicol exporter mdfA (38) was ubiquitous in all serotypes apart from S. Typhimurium,
where it was present in a single isolate (1/7). Similarly, the aminoglycoside resistance
gene AAC(6’)-Iy (39) and the adeFGH efflux component adeF (40) were present in all
genomes apart from those of the S. Typhimurium and S. I:4,[5],12:i: isolates. The
�-lactamase CMY-2 gene (41) was present in all of the S. Heidelberg and S. Thompson
strains but absent from the S. Enteritidis and S. Typhimurium isolates. CMY-2 was more
unevenly distributed in other serotypes, being detected in 5.88% of S. Hadar isolates,
66.67% of I:4,[5],12:I isolates, and 68.75% of S. Kentucky isolates. All S. Typhimurium and
S. I:4,[5],12:i: isolates but no isolates of other serotypes contained AAC(6’)-Iaa. Similarly,
APH(6)-Id was found in all S. Hadar isolates but in only 13.33% of the S. I:4,[5],12:i:
isolates and 50% of the S. Kentucky isolates. Every S. Kentucky isolate also had the
streptogramin A resistance-related vgaC gene (42), but it was otherwise found only in
a single S. Typhimurium isolate (3333).

AMR genes detected within only a single serotype included fosA7 in every S.
Heidelberg isolate sequenced, and tet genes corresponding to efflux pump-related
proteins, namely, tetR, tetD, and tetA (43), were found exclusively in 16/32 (50%) of S.
Kentucky isolates. The rarest AMR genes in our data set, floR (phenicol resistance) (44)
and sul2 (sulfonamide resistance) (45), were found in only 2 (13.3%) of S. I:4,[5],12:i:
isolates (1892 and 1893) collected from the same farm. Another S. I:4,[5],12:i: isolate was
the lone carrier of ramR mutations related to upregulation of acrAB (46). Finally, the
TEM-1 �-lactamase gene (47) was found in only a single S. Hadar isolate (3142), with
aadA, sul1, and AAC(3)-VIa found in only a single different S. Hadar isolate (3186).

Predicting phenotype from genotype. The relationship between the observed
AST phenotype and the AMR determinants detected within the sequenced genomes
was assessed according to standard FDA categories. If the predictions from the genome
or models trained using the genome matched the phenotypic data, then the result was
classified as representing “categorical agreement.” However, if the prediction was of
resistance but the phenotype showed susceptibility, then the result was classified as
representing a “major disagreement,” and if the prediction was of susceptibility but the
phenotype showed resistance, then the result was classified as representing a “very
major disagreement.”

By using the antibiotic resistance ontology (ARO) that CARD is built upon (48), we
were able to directly tally the associated resistances with the detected AMR determi-
nants. As can be seen in the high levels of major disagreement (48% to 62% of isolates;
Fig. 3) and poor precision (0 to 0.5; Fig. 4), directly tallying resulted in a massive
overprediction of resistance. As this was initially believed to be due to the presence of
the efflux pump components, we also performed this direct tallying without efflux
pumps but observed the same overprediction of resistance. The one exception to this
pattern was tetracycline resistance, which was consistently underpredicted in the
absence of efflux (i.e., all isolates were classified as “susceptible with very major
disagreement”). Overall, the level of precision seen from direct tallying of ranges is low,
at approximately 0.5 for �-lactams and 0.38 for streptomycin and tetracycline (0.0
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precision with no efflux genes for tetracycline). This represents the underlying propor-
tion of resistant isolates in our data set.

Logistic regression. A simple set of binary logistic regression models using de-
tected AMR genes as features were able to predict the AST. On a held-out test set,
average precision ranged from 0.91 for streptomycin to 0.98 for ceftiofur and cefoxitin
(see Fig. 4). This meant that, overall, there were a maximum of only 3 major disagree-
ments and a maximum of 4 very major disagreements among the 97 isolates.

Inspection of the mostly highly weighted AMR determinants for each trained logistic
regression model revealed that the �-lactamase AmpC-like CMY-2 gene was most
important for prediction of resistance to �-lactam antibiotics (see Fig. 5). No other
determinant had a weighting of greater than 25% of that of CMY-2 for the �-lactam
models. For the streptomycin and tetracycline models, the phosphotransferase genes
APH(6)-Id and APH(3”)-Ib were the most highly weighted determinants by a factor of 2
or greater.

Set-covering machine. Similarly, the k-mer-based set-covering machine classifiers
also greatly outperformed direct tallying. Set-covering machines (implemented using
the Kover algorithm as described previously [13, 49]) represent a type of machine
learning model that learns a set of Boolean rules, e.g., presence/absence (and higher-
order conjunctions) of specific features (k-mers in our case) which predict the resistance
label (50).

Performance for all 7 antibiotics represented greater than 0.9 precision and was only
slightly poorer than that of logistic regression despite having only the genomic 31-mers

FIG 3 FDA categorization of AST prediction performance across the antibiotics with sufficient numbers of susceptible and resistant isolates for assessment.
“Categorical Agreement” represents the cases in which the prediction matched the observed phenotype, “Major Disagreement” corresponds to a prediction
of resistance but a determination of susceptibility by the AST, and “Very Major Disagreement” indicates a prediction of susceptibility but a determination of
resistance by the AST. (A) Performance of direct tallying of the presence of AMR genes as detected by RGI. (B) The same procedure was performed but with
exclusion of efflux determinants. (C) Accuracy of prediction of resistance patterns by the use of binary logistic regression models trained using the AMR genes
as features. (D) Accuracy of prediction of resistance directly from the genome by the use of a k-mer-based set-covering machine model.
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as features (see Fig. 3; see also Fig. 4). Overall, under the FDA categorization metrics, the
set-covering machines performed similarly to logistic regression and considerably
better than direct tallying.

When the 31-mers identified by the trained set-covering machines as the most
highly equivalently important rules to predict AST were mapped back to the underlying
genomes, the majority mapped to the same AMR genes that were most highly
weighted by logistic regression, i.e., CMY-2 for �-lactam antibiotics and APH(3”)-Ib and
APH(6)-Id for streptomycin and tetracycline (see Fig. 5). However, there were a few
additionally weighted non-AMR-specific genes that had significant numbers of map-
ping k-mers. For example, the amoxicillin-clavulanic acid model included 12.1% of
k-mers mapping to the gene sugE, and the streptomycin model had a reasonably high
21.9% rate of mapping to a hin DNA invertase gene.

FIG 4 Observed precision for direct tallying with and without efflux pumps and test set average classifier precision
for set-covering machine and logistic regression models. These results clearly show that both machine learning
approaches created far more precise predictions of AST (�0.9) than direct tallying of the AMR determinants.

FIG 5 A plot of the most important features and their identity for the machine learning models. (A) Learnt coefficients/weights on the AMR gene
presence/absence matrix by the logistic regression models. Only weights greater than 1 are displayed on this plot. (B) Top genomic origins of the 31-mers learnt
by the set-covering machines. Non-Gene Loci are the 31-mers mapping outside any of the identified genes.
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DISCUSSION

Overall, the serotypes isolated from broiler chicken in this study included the top 5
serovars implicated in human salmonellosis in Canada (51). The most common clinical
isolate serovar, S. Enteritidis (56% of cases) (51), was relatively less common in the
chicken isolates studied here (10.31%) than in the clinical data. This might reflect the
earlier sampling date of these isolates, as the most recent Canadian FoodNet report
indicated that 41% of Salmonella isolates from broiler chicken manure at sentinel sites
were S. Enteritidis (51). As S. Enteritidis has become more common in Canadian
salmonellosis cases, it is perhaps reassuring that all broiler chicken S. Enteritidis isolates
in this study were totally susceptible to all 14 tested antibiotics. Other serotypes either
were found in our isolates in proportions similar to those of the Canadian clinical
isolates (for S. Typhimurium, 7.2% versus 7%) or were more common in our data set,
including S. Heidelberg (31.9% versus 3%) and S. I:4,[5],12:i: (15.4% versus 3%) (51). Rare
clinical isolates such as S. Kentucky (33%) and S. Hadar (17.5%) were far more common
in our isolates, but S. Infantis, which is the 5th most common cause of salmonellosis
(3%) (51), was totally absent. These observed overlaps and differences with respect to
the diversity of human clinical and broiler chicken NTS isolates underscore the utility
and relevance of this type of genomic surveillance work.

The Salmonella in silico typing resource (SISTR) in-silico serotyping conducted is
supported by the largely monophyletic distribution of serotypes within the core
genome phylogeny (Fig. 1). There was only one exception to this pattern, namely,
an S. Typhimurium isolate (3333) which branched within the I:4,[5]:12:i clade. As this
is a monophasic S. Typhimurium variant, we would expect this to branch within
the phylogenetically adjacent S. Typhimurium clade. This suggests that this (well-
supported) branching location might reflect some form of phylogenetic reconstruction
artifact. Otherwise, the inferred relationships between serotype clades largely agree
with those previously inferred in dedicated Salmonella phylogenomic analyses (52).

There were limitations to this data set for the purposes of predicting phenotypic
resistance from genomic data. Tests of several antibiotics identified no or very few
resistant isolates, meaning that it was possible to train models for only a subset of
antibiotics (e.g., AMOCLA, AMPICI, CEFOXI, CEFTIF, CEFTRI, STREPT, and TETRA) due to
the problem of label imbalance. The treatment of phenotypes showing intermediate
resistance as resistant is another potential cause of distortion in the trained models.
However, only a single model (AMOCLA) used any isolates with intermediate pheno-
types (a single isolate, representing 1.03% of the data). This means that, even if it were
misleading to treat this isolate as resistant, doing so would have a correspondingly
small effect on the learnt weights and k-mer mappings of the AMOCLA models. Finally,
we do lose potentially interesting granularity in our models by performing only binary
predictions of susceptibility or resistance. Ideally, we would train regression models
that directly predict MIC values. Unfortunately, this is a difficult problem due to this
data set being somewhat small for this level of prediction and due to the nature of MIC
measurement. MICs are generally measured to within an accuracy of only a 2-fold
dilution, meaning that the amount of measurement error is greater for higher MIC
values than for lower ones. The other problem is that MICs at the extremes of the
standardized measured range are presented only as inequalities (i.e., �256 mg/liter or
�0.5 mg/liter) which is difficult to handle mathematically. However, future work incor-
porating larger numbers of genomes and measurements could use approaches such as
maximum margin interval trees to address these issues (53).

This being said, by using the learnt weights and k-mer mapping locations (see Fig. 5)
in the high-precision (see Fig. 4) AMR gene-based and gene-free resistance prediction
models generated in this study, it was possible to identify key drivers of observed
resistance patterns for the subset of antibiotics with a reasonable balance of resistant
and susceptible isolates in our data set. Therefore, we attempted to identify key AMR
drivers for �-lactam resistance (specifically, amoxicillin-clavulanic acid, ampicillin, ce-
foxitin, ceftiofur, and ceftriaxone) as well as for streptomycin resistance and tetracycline
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resistance. It should be noted that these results are specific to the isolates and serovars
within our data set; while there are some highly encouraging functional connections,
expanding this approach to incorporate new serotypes would be best served by
retraining the models.

The �-lactam models were largely identical, pinpointing the �-lactamase CMY-2
gene (or k-mers derived from this gene) as the most important feature in all individual
models. Only the amoxicillin-clavulanic acid k-mer model featured less than 50% k-mers
deriving from a CMY-2 gene. This model featured a low but notable proportion of
k-mers (12.1%) deriving from a sugE gene. sugE is associated with resistance to
quaternary ammonium compounds (forming part of an efflux pump), specifically,
cetylpyridinium, cetyldimethylethyl ammonium, and cetrimide, cations commonly used
as disinfectants (54). This gene has previously been detected on the same plasmid as
CMY-2 (55) and may play a coselection role. Every single isolate with CMY-2, with the
exception of 3186, had a directly adjacent lipocalin gene (blc) on the same strand
followed by a sugE gene in the opposite orientation (see Fig. S4 in the supplemental
material). This suggests that sugE was likely learnt to be predictive purely due to its
colocation/linkage instead of due to any specific antimicrobial resistance-related func-
tion. The presence of this adjacent blc may further potentiate the resistance, as these
have been reported in other bacteria to increase MICs of �-lactam antibiotics by
binding the antibiotic in the medium (56, 57).

This result is supported by previous work identifying CMY-2 as a key driver of
extended-spectrum-�-lactam resistance in Escherichia coli derived from broiler chickens
(58). CMY-2 has been established as displaying relatively broad distribution in samples
derived from a range of bacteria and food production animals in Canada (59) as well as
globally (60–62). Importantly, evidence of the direct connections of NTS with CMY-2-
related extended-spectrum-�-lactam resistance in human clinical infections has been
established (if somewhat poorly understood) (63). Previous work in poultry E. coli
isolates has shown that without active selection from antibiotic usage, this gene is
rapidly lost in chicken samples (58). However, CMY-2 does persist in poultry farm
environmental samples (58), suggesting that further work is needed to elucidate the
selective forces determining persistence and transmission of this critical resistance
gene. One potential avenue for this work, underlined by the k-mers derived from the
sugE gene, is that of looking at the role which the use of quaternary ammonium-based
disinfectants plays in this process. Similarly, there is a need to experimentally investi-
gate whether the presence of blc can lead to increased �-lactam resistance in Salmo-
nella such as they have been shown to do in other bacteria (56, 57) and what impact
this has on the retention of CMY-2.

For both the logistic regression and k-mer set-covering machine models, there were
a subset of genomes that were consistently mispredicted (whether they were in the
training set or the test set). Specifically, for the �-lactam antimicrobials (AMPICI,
AMOCLA, CEFOXI, CEFTRI, and CEFTIF), every individual model failed to correctly predict
the phenotype for isolates 3338, 3126, and 3339, with one additional misprediction in
just the CEFTRI models for 3184. These taxa are highlighted in Fig. 1 with white taxon
names and do not exhibit any clear monophyletic phylogenetic groupings, serotype-
based trend, or sampling location. It should be noted, however, that these taxa
displayed resistance phenotypes that were different from those of their closest relatives
despite similar predicted AMR gene complements; e.g., 3333 is the only S. Typhimurium
isolate with any observed resistance, and 3352 is the only S. Enteritidis isolate with clear
resistance phenotypes.

Some isolates that were predicted to be resistant to �-lactams but were found to be
susceptible in the AST showed a perfect hit for the CMY-2 �-lactamase (see Fig. 2).
Specifically, isolates 3186, 3126, and 3338 all had CMY-2 genes clearly present but were
found to be susceptible to �-lactams, with the observed MICs at the lower end of the
measured range (see Table S2 in the supplemental material). These inferred suscepti-
bilities were consistent even following multiple replications of the AST results. This
likely suggests an uncharacterized context-related expression determinant for CMY-2
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(i.e., the gene is present but not expressed) to explain why these strains had the
capacity for �-lactam resistance but did not display that phenotype during testing. This
could be tested in future work via approaches that directly measure the presence of
specific proteins such as matrix-assisted laser desorption ionization–time of flight
(MALDI-TOF) mass spectrometry (64). On the other hand, S. I:4,[5],12:i isolate 3339 and
S. Hadar isolate 3149 were both resistant to the �-lactam tested but had no detectable
CMY-2 gene. Additionally, with the exception of genes of efflux pump components,
there were no AMR genes or mutations clearly associated with �-lactam resistance
detected in these isolates. However, previous work has shown that Salmonella can
display resistance to �-lactam antibiotics without any detectable �-lactamase genes
being present (65). This suggests the presence of an undetected or uncharacterized
�-lactam resistance mechanism in these isolates. It is possible that the 18% to 23.3% of
k-mers mapping to intergenic regions for these models may play a role in this
resistance mechanism.

For the streptomycin resistance models, the most important predictor was the
presence of the phosphotransferase genes APH(6)-Id and APH(3”)-Ib. These are two
among a large number of known aminoglycoside resistance genes detected in Salmo-
nella isolates (66). They are also frequently found on mobile genetic elements such as
transposons and plasmids (66). Additionally, they have previously been associated with
resistance to streptomycin in animal isolates (67). Interestingly, there were also a
number of k-mers (21.9%) associated with a hin DNA invertase gene in the set-covering
machine model for streptomycin. This gene has been previously associated with phase
variation in Salmonella (68).

Similarly to the �-lactam models, there was a subset of isolates what were consis-
tently mispredicted for streptomycin (3322, 3323, 3352, 3353, and 1769). Among the
isolates where there was a failure to successfully predict streptomycin resistance, it was
found that these had no detectable APH(6)-Id or APH(3�)-Ib genes. However, several did
show evidence of a cryptic aminoglycoside N-acetyltransferase enzyme gene, ACC(6=)-
Iy, in their genome (isolates 3322, 3352, and 1769) but so did a large number of isolates
that displayed susceptibility to streptomycin (e.g., every S. Enteritidis, S. Heidelberg, S.
Thompson, S. Hadar, and S. Kentucky isolate). All 3 of the isolates with the cryptic
aminoglycoside N-acetyltransferase enzyme gene ACC(6=)-Iy were the lone examples of
a resistant isolate within clades that otherwise contained only susceptible isolates. In
the other direction, isolate 3323 was predicted to be resistant due to the presence of
both the APH(6)-Id gene and the APH(3�)-Ib gene but was found to be susceptible to
streptomycin in the AST. Similarly, this isolate branched within a resistant clade that
was found to be totally resistant to these antibiotics. Isolate 3353 displayed a pattern
similar to that shown by the lone S. Hadar isolate and thus was found not to be resistant
to streptomycin despite having a strict full-length hit with respect to APH(6)-Id and
100% identity and a partial (52%) hit to APH(3�)-Ib. These prediction failures were not
attributable to a failure to detect AMR genes due to poor assembly quality. All the
consistently mispredicted genomes had assembly quality metrics that were largely
representative of the assemblies overall (see Fig. S3).

The data corresponding to the tetracycline resistance model weights and k-mer
locations were more perplexing. Specifically, the learnt weights and k-mers in that
model were nearly identical to those seen with the streptomycin models despite the
differences in the drug classes and known resistance mechanisms. These phospho-
transferase genes [APH(6)-Id and APH(3�)-Ib] have never been associated with a mech-
anism through which they could convey tetracycline resistance directly. This result
renders the tetracycline model somewhat suspect and could represent overfitting to
the training data due to the strong cooccurrence of streptomycin resistance and
tetracycline resistance among isolates in our data set. While these aminoglycoside
resistance genes are frequently detected on chromosomal fragments containing the
tet(B) tetracycline resistance gene (69), this particular tetracycline gene was totally
absent in these isolates, so there is little evidence to support any hypothesis involving
colocalization. In terms of mispredicted isolates, they was largely the same isolates as
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were seen in the streptomycin testing (3322, 3323, 3352, and 3353), with the exception
of 1769 and the addition of isolate 3333.

Overall, this work shows the potential utility and pitfalls of the effective use of
genomic data for the surveillance of AMR. We demonstrate the propensity of overpre-
diction of resistance that occurs in tallying resistance directly from AMR gene predic-
tions. Additionally, we show the utility of comparing the learnt parameters of simple
machine learning models to help identify key drivers of antimicrobial resistance.
Specifically, we identify the AmpC-like �-lactamase CMY-2 gene as the primary driver of
resistance to aminopenicillins and to second- and third-generation cephalosporins in
broiler chicken nontyphoidal Salmonella enterica serovars (see Fig. 5; see also Table S4).
As this �-lactamase has been reported in human NTS isolates (63), this underscores the
importance of monitoring of CMY-2 �-lactamase prevalence and transmission in food
production both within Canada (59) and globally (60–62). This work also revealed that
APH(6)-Id and APH(3�)-Ib genes are key determinants driving streptomycin resistance in
Canadian chicken NTS isolates (see Fig. 5; see also Table S4). Reassuringly, the most
commonly clinically relevant serotype, S. Enteritidis, was shown to be susceptible to all
common antimicrobials in Canadian poultry sources. Additionally, despite previous
detection of colistin resistance genes in CMY-2-bearing poultry isolates (70) there was
no evidence of colistin resistance genes present in the genomes of these isolates based
on the Resistance Gene Identifier (RGI) analyses (see Fig. 2).

MATERIALS AND METHODS
Isolation. A total of 97 Salmonella serovar isolates obtained from 23 broiler chicken farms in British

Columbia, Canada, were sequenced in this study. Isolates were selected based on their prevalence,
pulsotype, and antibiotic susceptibility profiles as outlined previously (71).

Sequencing. Genomic DNA was extracted from overnight cultures in 5 ml of brain heart infusion
(BHI) broth (BD, NJ, USA) using DNeasy blood and tissue kits (Qiagen) as specified in the protocols (71).

The extracted DNA was stored in 10 mM Tris-HCl buffer (pH 8.0) and quantified by the use of an
Invitrogen Qubit 2.0 Fluorometer (Life Technologies). The quality of DNA was visualized by electropho-
resis on a 1% agarose gel, and the DNA was stored at �20°C until construction of the genomic libraries.
The libraries were then sequenced using a MiSeq v3 sequencer in paired-end mode to generate 2 �
250-bp reads.

Assembly and annotation. Genomes were assembled using a standardized MiSeq assembly pipeline
implemented within the Integrated Rapid Infectious Disease Analysis (IRIDA) platform of the Public
Health Agency of Canada (72). This workflow trims reads to remove low-quality sequences and then
merges overlapping paired reads with Fast Length Adjustment of SHort (FLASH) (v1.2.9) reads (73). The
merged and remaining unmerged reads were then used to generate a de novo assembly with SPAdes
(v3.9.0) (74). The resultant assembly was then filtered to remove short (�1,000-bp) contigs, repetitive
(1.75 repeat cutoff ratio) contigs, and low-coverage (0.33 coverage cutoff ratio) contigs.

Assembly metrics were calculated for the final assemblies using QUAST (v5.0.2) (75) (see Table S1 in
the supplemental material). The final assemblies were annotated with Prokka (v1.13) (76) using the
“Salmonella” genus, “enterica” species, and Gram-negative options and a 1E�5 minimum expectation
value. Additionally, assemblies were screened for plasmids using abricate (v0.8.7) (77) and the plasmid-
finder database (27 August 2018) (78). Plasmid screening results were then summarized and visualized
using the Pandas (v0.22.0) (79) and Seaborn (v0.8.1) Python libraries (80) (see Fig. S5 in the supplemental
material; see also Table S3).

Serotyping. Serotyping was performed using the assembled genomic contigs and the Salmonella In
Silico Typing Resource (SISTR) tool (v1.0.2) (81).

Code for this and all further analyses in this paper can be found in the associated Jupyter Notebook
(82) and in the relevant folder under “analyses” in the git repository (83) (i.e., in this case, “analyses/
serotyping”). This repository can be found at https://github.com/fmaguire/salmonella_ast_prediction/.

Phylogenetics. A pangenome analysis was conducted using the Prokka annotations and Roary
(v3.12.0) (84). From the identified 3,743 core genes present in �99% of genomes, an alignment was
inferred in Roary. SNPs were then extracted from this alignment using “snp-sites” (v2.4.0) (85). This
resulted in an alignment consisting of 77,795 sites.

A maximum likelihood phylogeny was then inferred in IQTree (v1.6.5) (86, 87) with UltraFast
Bootstrap support. The inference was performed under the General Time Reversible Model with
ascertainment bias correction and nucleotide frequencies (GTR�ASC�F), as this was the consensus
best-fitting model for all information criteria as determined by ModelFinder (88). Phylogeny was then
visualized and annotated with SISTR serotyping, AST results, and encoded origin using ETE3 (v3.1.1) (89).

Code used to perform this can be found in the notebook under “analyses/phylogeny.”
Antibiotic susceptibility testing. Phenotypic antibiotic susceptibility testing (AST) was conducted

for a panel of 14 standard antibiotics as described previously (71). In brief, a Sensititre automated system
(Trek Diagnostic Systems, Cleveland, OH) was used to determine MICs (Table S2), and the results were
analyzed according to Clinical and Laboratory Standards Institute guidelines for the following antibiotics:
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amoxicillin-clavulanic acid (AMOCLA), ampicillin (AMPICI), azithromycin (AZITHR), cefoxitin (CEFOXI),
ceftiofur (CEFTIF), ceftriaxone (CEFTRI), chloramphenicol (CHLORA), ciprofloxacin (CIPROF), gentamicin
(GENTAM), nalidixic acid (NALAC), streptomycin (STREPT), sulfamethoxazole (SULFIZ), tetracycline
(TETRA), and trimethoprim-sulfamethoxazole (TRISUL).

This phenotypic testing was fully repeated for all isolates to confirm the resistance status. The code
used to visualize and explore these results is available in the Jupyter Notebook under “analyses/ast.”

AMR gene identification. AMR gene identification was performed using Resistance Gene Identifier
(RGI) v4.0.3 (6) on assembled contigs. This involved Prodigal v2.6.3 (90) open reading frame (ORF) calling
and DIAMOND v0.8.36 (91)-based homology searches. Loose hits were excluded from the results, and the
reference database used was CARD (v2.0.1 release) (6). Results were further separated using RGI’s
“perfect” (the predicted gene matches a known curated resistance gene completely at the amino acid
level [including SNPs]) and “strict” (above a gene-specific threshold of bitscore-based similarity) credi-
bility levels. Predictions were then grouped and analyzed using CARD’s in-built antibiotic resistance
ontology (ARO) and the pandas (v0.22.0) (79) and seaborn (v0.8.1) (80) Python libraries.

The code used to perform this can be found in the notebook and under “analyses/rgi.”
Comparison of phenotype to genotype. AST results were compared with the “strict” and “perfect”

RGI predictions with and without efflux pump inclusion separately. This was done by using the ARO to
identify the class of antibiotics associated with resistance shown by a given detected AMR determinant.
These classes were then cross-referenced to the individual antibiotics tested in the AST. If an AMR
determinant was detected in a given genome, it was considered to represent a prediction of resistance
to the pertinent antibiotics tested. As there were so few isolates with intermediate resistances, all
intermediate resistances in the AST were classified as resistant for this and subsequent analyses.

Standard FDA criteria were then used to tally how effective the ‘perfect’ and ‘strict�perfect’ AMR
determinants were in predicting the AST as binary presence/absence indicators. These results fell into 3
types (as specific MICs were not being predicted): categorical agreement (CA; the genomic data and AST
both predicted susceptibility or resistance); major disagreement (maj; the genomic data predicted
resistance but the AST showed susceptibility); and very major disagreement (vmaj; the genomic data
predicted susceptible but the AST showed resistance).

Code used to perform this can be found in the notebook and under “analyses/prediction/direct_tal-
lying.”

Logistic regression. Antibiotics with either no resistant isolates (azithromycin, ciprofloxacin, genta-
micin, nalidixic acid, and trimethoprim-sulfamethoxazole) or an extreme imbalance of resistant/suscep-
tible isolates (chloramphenicol and sulfamethoxazole), defined as the minority class consisting of �5%
of isolates, were excluded from the machine learning analyses.

For each of the remaining antibiotics, a simple binary logistic regression model was fitted using the
RGI-detected AMR determinants as the input features and “susceptible” and “resistant” as the output
labels. Any AMR gene that was found in every isolate was removed from the data matrix. This was
performed using scikit-learn v0.20.1 (92). Each model was trained on 80% of the training data (using a
stratified test:train split) after resampling was performed using the Synthetic Minority Oversampling
Technique (SMOTE) (via imblearn v0.4.3 [93]) to improve label balance. Logistic regression models were
tuned using 3-fold cross-validation over the training set, with test-set performance evaluated using
precision-recall curves. Performance was then compared across the whole data set using the FDA criteria
as described above.

All code used to perform this analysis can be found in the “logistic_regression” folder under
“analyses/prediction.”

Set-covering machine. In order to assess whether other genomic factors not detected by RGI were
likely to contribute to AMR, a k-mer-based set-covering machine approach was applied to the whole
genomes for the balanced subset of antibiotics (with exclusion criteria used as described above for
logistic regression). This was performed using Kover v2.0.0 (49), and individual rule sets were inferred
using 10-fold cross-validation for each of the same antibiotic resistances as were used as described for
the logistic regression. The trade-off hyperparameter (p) was selected using cross-validation across a
range of possible values from 0.1 to 9999999. A maximum of 10 k-mers were allowed to be included in
each rule, and a maximum of 10,000 equivalent rules were output. To assess where the inferred k-mers
derived from in the genomes, the inferred equivalent conjunction k-mers were mapped to the genomes
using BWA-MEM (94). The resulting individual model SAM files were then analyzed using the PySAM
(v0.15.0) library to tally their mapping locations.

All code used to perform this analysis can be found in the “set_covering_machines” folder under
“analyses/prediction” in the associated git repository.

CMY-2 locus analysis. The contigs bearing CMY-2 were annotated using Rapid Annotation using
Subsystem Technology (RAST) (95), and the 20-kb regions flanking the CMY-2 gene were visualized in
SEED Viewer version 2.0 (96).

Relative risk calculation. Relative risk was calculated from chi-square tests using the SAS software
package and the whole data set. The subset of genes selected was determined using the results of the
predictive models as well as the Tet and AAC(6’)-Iy genes that have previously been associated with
resistance in the literature.

Data availability. All data used in this study are available in GenBank (BioProject identifier
PRJNA521409). The full list of accession numbers per genome can be found in Table S1. The code used
to perform all analyses is available in the git repository https://github.com/fmaguire/salmonella_ast
_prediction/.
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