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Research on pre-impact fall detection with wearable inertial sensors (detecting fall

accidents prior to body-ground impacts) has grown rapidly in the past decade due to

its great potential for developing an on-demand fall-related injury prevention system.

However, most researchers use their own datasets to develop fall detection algorithms

and rarely make these datasets publicly available, which poses a challenge to fairly

evaluate the performance of different algorithms on a common basis. Even though

some open datasets have been established recently, most of them are impractical for

pre-impact fall detection due to the lack of temporal labels for fall time and limited types

of motions. In order to overcome these limitations, in this study, we proposed and publicly

provided a large-scale motion dataset called “KFall,” which was developed from 32

Korean participants while wearing an inertial sensor on the low back and performing 21

types of activities of daily living and 15 types of simulated falls. In addition, ready-to-use

temporal labels of the fall time based on synchronized motion videos were published

along with the dataset. Those enhancements make KFall the first public dataset suitable

for pre-impact fall detection, not just for post-fall detection. Importantly, we have also

developed three different types of latest algorithms (threshold based, support-vector

machine, and deep learning), using the KFall dataset for pre-impact fall detection so

that researchers and practitioners can flexibly choose the corresponding algorithm. Deep

learning algorithm achieved both high overall accuracy and balanced sensitivity (99.32%)

and specificity (99.01%) for pre-impact fall detection. Support vector machine also

demonstrated a good performancewith a sensitivity of 99.77% and specificity of 94.87%.

However, the threshold-based algorithm showed relatively poor results, especially the

specificity (83.43%) was much lower than the sensitivity (95.50%). The performance

of these algorithms could be regarded as a benchmark for further development of

better algorithms with this new dataset. This large-scale motion dataset and benchmark

algorithms could provide researchers and practitioners with valuable data and references

to develop new technologies and strategies for pre-impact fall detection and proactive

injury prevention for the elderly.
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INTRODUCTION

The safety and health of old people have increasingly drawn
attention due to accelerated global population aging. Falling is a
serious problem faced by our society as 28–35% of the population
aged 65 or older suffer at least one fall per year (Organization
et al., 2008), and 20–30% of fall accidents lead to mild to severe
injuries or even death (Lord et al., 2007). In order to mitigate
the serious consequences of falls, multiple studies have been
conducted to develop fall detection systems.

Based on the types of sensors being used, fall detection systems
can be divided into context-aware systems and wearable systems.
Context-aware systems mainly rely on ambient sensors, such as
radar and floor sensors as well as vision-based devices (Igual
et al., 2013). One fundamental disadvantage of such systems
is that they are restricted to indoor use, so they cannot detect
the fall anywhere and anytime. In fact, up to 50% of the falls
happen outside home premises (Lord et al., 2007). Over the past
decade, wearable inertial sensor-based fall detection systems have
gained tremendous popularity among researchers because they
offer high portability (no space constraints), accurate motion
sensing, and low cost (Micucci et al., 2017). Therefore, this study
particularly focuses on wearable inertial sensors. Generally, there
are two main directions for the development of wearable inertial
sensor-based fall detection systems. The majority of existing
studies focus on post-fall detection, which is designed to rapidly
detect fall events and initiate medical alarms timely to reduce the
frequency and severity of long lies (Aziz et al., 2017). However,
this approach has an inherent drawback, that is, it cannot prevent
fall-induced injuries since fall impacts have already occurred.
Another branch of studies targets pre-impact fall detection,
which aims to detect the fall during the falling period but before
body-ground impact. Therefore, it could activate on-demand fall
protection systems, such as wearable airbags, to prevent injuries
caused by the fall impact (Hu and Qu, 2016). This method
provides a more fundamental solution for the elderly for fall
injury prevention. However, it is also more challenging than
post-fall detection because the sensor signal of body-ground
impact moment, which includes most differentiated information
(usually with peak acceleration and angular velocity), cannot be
seen by algorithms.

In recent years, researchers have begun to shift their focus
from post-fall detection to pre-impact fall detection and shed
some light on this topic. Jung et al. (2020) developed a
threshold-based algorithm, which combined multiple thresholds
(magnitude of acceleration, magnitude of angular velocity, and
vertical angle) based on inertial sensors for pre-impact fall
detection and achieved 100% sensitivity and 97.54% specificity
with an average lead time of 280ms. This algorithm was
developed based on their own simulated dataset with six types of
falls and 14 types of activities of daily living (ADLs) by 30 young
subjects. Another research conducted by Kim et al. (2019) applied
seven machine learning algorithms and two deep learning
algorithms to detect pre-impact fall, using accelerometers, and
most of the models achieved ≥98% sensitivity and specificity.
Similarly, those algorithms were based on their own dataset with
10 types of falls and 14 types of ADLs by 12 subjects. Quite

recently, one group of researchers has proposed a multisource
CNN ensemble framework for pre-impact fall detection based on
the data from four pressure sensors, one acceleration sensor, and
one gyro sensor (Wang et al., 2020). Ten subjects participated
in their experiment, and each subject performed four types of
falls and five types of ADLs. This deep learning architecture
also reached high accuracy of 99.30%, with an average lead time
of 350ms. Even though the reported results were impressive,
earlier studies only showed good performances of the developed
algorithms on their relatively small datasets (small number of
human subjects and limited types of motions), and they rarely
made those datasets publicly available. This poses a challenge
to fairly evaluate the performance of different algorithms on a
common basis and their generalizability to different datasets.
A few preliminary studies showed that algorithms based on
a specific database with good performance had poor external
validity on other databases (Sabatini et al., 2015; Jung et al., 2020).
For instance, when Jung et al. (2020) applied their thresholds
to the SisFall dataset (Sucerquia et al., 2017), both sensitivity
and specificity dropped considerably by 4 and 7%, respectively.
Similarly, Bourke et al. (2008) proposed an algorithm, using
the vertical velocity of the trunk as the threshold and achieved
100% sensitivity and specificity on a dataset, which was built
from five subjects with four types of falls and six types of ADLs.
However, the same threshold with optimized value only yielded
80% sensitivity on a comparatively larger dataset with five types of
falls and seven types of ADLs acquired from 25 subjects (Sabatini
et al., 2015). The lack of public datasets also makes it hard to
objectively compare newly developed algorithms (Noury et al.,
2008). This situation thus hinders the technology advancement
for pre-impact fall detection, which is expected to protect the
elderly from fall injuries in a proactive way.

Some public fall databases, such as SisFall, tFall, MobiFall,
and FallAllD, have been established recently. However, they are
only appropriate for post-fall detection rather than pre-impact
fall detection. The details will be discussed in the next section.
To overcome the aforementioned limitations, in this study, we
proposed and publicly provided a large-scale motion dataset
called KFall. This dataset is expected to be the first public
dataset suitable for pre-impact fall detection, not just for post-
fall detection. We also developed three benchmark algorithms,
using this new dataset, which allows researchers to fairly compare
their new algorithms for pre-impact fall detection. This large-
scale motion dataset and benchmark algorithms could provide
researchers and practitioners with valuable data and reference
to develop new technologies and strategies for pre-impact fall
detection and injury prevention for the elderly.

RELATED PUBLIC FALL DATASETS

As mentioned in the introduction, due to the limitations
of context-aware systems, the review of public fall datasets
emphasized on wearable inertial sensors and was carried out
through five major electronic databases (Scopus, ScienceDirect,
IEEE Explorer, Web of Science, and Google Scholar). Two basic
inclusion criteria were utilized for refining the search results:
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(1) datasets should be fully open to the public and published
in English; (2) there should be at least 10 subjects in the
datasets. In addition, a recent review paper, which performed
a comprehensive analysis of public datasets for wearable fall
detection systems, was also referred (Casilari et al., 2017a). The
same group of authors has reviewed public datasets again very
recently and applied CNN to those datasets for fall detection
(Casilari et al., 2020). Cross-check was implemented to prevent
missing any important references for this study. In the end, our
search yielded 16 representative datasets (Table 1).

As illustrated in Table 1, no dataset provides temporal labels
for the fall time, which annotates the fall onset moment (when a
fall begins) and the fall impact moment (when the body hits the
ground) in the sensor data sequence. Lack of temporal labels for
the fall time will not influence the development of algorithms for
post-fall detection, since sensor data in the fall impact moment
has very distinguishable patterns, which are usually with a peak
value of acceleration and angular velocity. However, for pre-
impact fall detection, it is important to detect the fall during
the body descending period but before the moment of body-
ground impact. Because of this, the algorithm for pre-impact fall
detection should learn to recognize the difference of sensor data
between the non-falling period and the falling period based on
the known dataset. Therefore, the falling period of the sensor
data, which starts from the fall onset moment and ends at the
fall impact moment, should be labeled out. Unlike the fall impact
moment, without temporal labels or synchronized video clips
published together with motion datasets, it is almost impossible
to determine the fall onset moment merely by referring to the
sensor data since there is no significant signal change from
preceding normal activities to the start of falls. Even though the
UP-Fall dataset, the CMDFALL dataset, and the TST Fall dataset
also released synchronized video references, they were at a low
frequency of 18Hz, 20Hz, and 30Hz, respectively. Since the
entire duration of common falls is very short, with an average
interval of 746ms (Tao and Yun, 2017), such low frequency
would introduce high errors when labeling the fall onset and
impact moments.

Another common drawback of publicly available datasets is
that most of them include limited types of falls and ADLs (≤10,
e.g., DLR, tFall, MobiFall, Cogent Labs, TST Fall, MobiAct,
UMAFall, UniMiB SHAR, IMUFD, CMDFALL, CGU-BES, DU-
MD, and UP-Fall) to represent complex real-life scenarios.
The number of human subjects used to build the dataset is
also relatively small (≤20, e.g., DLR, tFall, TST Fall, Ericiyes
University, UMAFall, IMUFD, CGU-BES, DU-MD, UP-Fall, and
FallAllD). In addition, we also noticed that orientation data,
which represent rich information of humanmotion (Incel, 2015),
were frequently missing among the published datasets except
MobiFall and MobiAct.

KFALL DATASET CONSTRUCTION

We set four main requirements when designing the KFall
dataset in order to complement the deficiencies of existing
public datasets. (1) High-frequency synchronized video clips

should be captured for labeling the fall time of sensor data;
(2) the dataset should include various types of falls and ADLs
with a sufficient number of subjects; (3) sensor orientation
measurement should also be provided, which allows more
flexibility to the interested researchers when designing their
algorithms; and (4) the sampling frequency and measurement
range of the inertial sensor should be sufficient (Saleh et al., 2021).

Data Acquisition System and Experimental
Setup
In order to record the sensor data together with the synchronized
high-frequency video clips, a custom data acquisition system
was designed. This system can be easily replicated since all
the components are available from the market at affordable
prices. A nine-axis inertial sensor (LPMS-B2, LP-RESEARCH
Inc., Tokyo, Japan), which includes a three-axis accelerometer
(±16G), a three-axis gyroscope (±2,000◦/s), and a three-axis
magnetometer (±16G), was used for collecting motion data.
Orientation measurement (Euler angle: roll, pitch, and yaw)
provided by the manufacturer is the integration of angular
velocity and further modified, using an extended Kalman filter
by combining the information from the accelerometer and the
magnetometer (Petersen, 2020). The sensor was configured at a
frequency of 100Hz, which was consistent with many studies for
pre-impact fall detection (Zhao et al., 2012; Wu et al., 2019). The
sensor data were transmitted through Bluetooth Dongle, which
was connected to Raspberry Pi 4 (4 GB) as the host PC. As for
synchronous video capture, a Raspberry Pi HQ camera mounted
with 6-mm 3MPWide Angle Lens, was used at themaximumFPS
of 90. Data acquisition of this research was implemented on a self-
developed GUI program, running in Raspberry Pi 4 in which data
synchronization between the sensor and the camera was handled
by the multiprocessing technique in the Python language.

The inertial sensor was attached to the low back of each subject
(see Figure 1A), which was used by many researchers for fall
detection (Kwolek and Kepski, 2014; Özdemir, 2016). In order to
capture in-depth information of human motion, which is critical
to judge the fall onset moment, the camera was set in the front
side of the main experiment area rather than directly ahead of it.
The whole experimental setup is shown in Figure 1B.

Participants and Experimental Protocol
This dataset was generated from 32 young Korean males (age:
24.9 ± 3.7 years; height: 174.0 ± 6.3 cm; weight: 69.3 ± 9.5 kg).
All of them were healthy and independent, and none of them
reported a recent history of musculoskeletal disorder, which
could affect their mobility. Every participant signed informed
consent for the experimental protocol, which was approved by
KAIST Institutional Review Board (IRB No: KH2020-068).

The experimental tasks in our dataset were majorly
formulated from the existing public datasets (Casilari et al.,
2017a). Since the SisFall dataset has the largest type of falls
and ADLs and motions in other datasets were usually a subset
of it, the majority of motions in our dataset were directly
adopted from SisFall. All types of falls and ADLs in the SisFall
dataset were chosen based on a large-scale survey among 15
independent elderly people and 17 retirement homes. For
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TABLE 1 | Wearable inertial sensor-based public datasets for fall detection.

Public dataset Types of ADLs/falls Subjects No. Sensor data type Temporal labels for the fall time

DLR Frank et al. (2010) 15/1 19 §A, G, M No

tFall Medrano et al. (2014) Not typified/8 10 A No

MobiFall Vavoulas et al. (2014) 9/4 24 A, G, O No

Cogent labs Ojetola et al. (2015) 8/6 42 A, G No

TST fall Gasparrini et al. (2015) 4/4 11 A No

MobiAct Vavoulas et al. (2016) 9/4 57 A, G, O No

Erciyes University Özdemir (2016) 16/20 14 §A, G, M No

UMAFall Casilari et al. (2017b) 8/3 17 §A, G, M No

SisFall Sucerquia et al. (2017) 19/15 38 A, G No

UniMiB SHAR Micucci et al. (2017) 9/8 30 A No

IMUFD Aziz et al. (2017) 8/7 10 §A, G, M No

CMDFALL Tran et al. (2018) 12/8 50 A No

CGU-BES Wang et al. (2018) 8/4 15 A, G No

DU-MD Saha et al. (2018) 8/2 10 A No

UP-Fall Martínez-Villaseñor et al. (2019) 6/5 17 A, G No

FallAllD Saleh et al. (2021) *44/35 15 §A, G, M, B No

KFall (Our dataset) 21/15 32 A, G, O Yes

A, accelerometer; G, gyroscope; O, orientation measurement; M, magnetometer; B, barometer.
§Complex sensor fusion algorithm should be further applied to obtain the orientation measurement.
*For the same type of a fall, the authors considered all possible directions (left, right, forward, backward) under two conditions (with and without recovery); 12 ADLs were hand motions,

and they separated one cyclic ADL into two, such as sit down and stand up.

FIGURE 1 | (A) Inertial sensor location and 3D coordinate system; (B) experimental setup.

the ADLs, SisFall covers from simple daily movements (such
as walking, sit to stand) to high-dynamic activities (jogging,
jumping) and even near-fall scenarios (such as stumbling during
walking, collapsing to a chair). As for the falls, we can divide
them into three categories based on preceding activities: a fall
from walking (such as caused by a slip, a trip), a fall from
sitting (such as caused by fainting, trying to get up), and a
fall from standing (such as trying to sit down). All the fall
activities in the SisFall dataset include preceding ADLs, which
are closer to the real-world falls. Another reason for choosing
SisFall as our major reference is that it also provides instruction
videos of each ADL and falls so that we can easily reproduce
those motions.

Aside from the activities adopted from SisFall, we further
added four common static activities, including sitting on a chair,
sitting on a sofa, standing, and lying. Those static motions could
be used as calibration postures for some fall detection algorithms
(Yu et al., 2017). Considering the practical use of this dataset
for the elderly population in Korea, two frequently observed
ADLs in daily life of older Korean were also newly introduced.
They are sitting to the ground and getting up (usually happened
in restaurants), and sitting to a sofa with inclining to the back
support and getting up (usually happened at home). For these
reasons and the data from the Korean participants, we named
our dataset as KFall. All fall activities in the KFall dataset are
the same as the SisFall. While for several specific ADLs included
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TABLE 2 | Experimental tasks of 21 types of ADLs and 15 types of falls.

Task ID Activity Trials

D01 Stand for 30 s 1

D02 Stand, slowly bendthe back with or without bending at knees, tie shoe lace, and get up 5

D03 Pick up an object from the floor 5

D04 Gently jump (try to reach an object) 5

D05 Stand, sit to the ground, wait a moment, and get up with normal speed 5

D06 Walk normally with turn (4m) 5

D07 Walk quickly with turn (4m) 5

D08 Jog normally with turn (4m) 5

D09 Jog quickly with turn (4m) 5

D10 Stumble while walking 5

D11 Sit on a chair for 30 s 1

D12 Sit on the sofa (back is inclined to the support) for 30 s 1

D13 Sit down to a chair normally, and get up from a chair normally 5

D14 Sit down to a chair quickly, and get up from a chair quickly 5

D15 Sit a moment, trying to get up, and collapse into a chair 5

D16 Stand, sit on the sofa (back is inclined to the support), and get up normally 5

D17 Lie on the bed for 30 s 1

D18 Sit a moment, lie down to the bed normally, and get up normally 5

D19 Sit a moment, lie down to the bed quickly, and get up quickly 5

D20 Walk upstairs and downstairs normally (five steps) 5

D21 Walk upstairs and downstairs quickly (five steps) 5

F01 Forward fall when trying to sit down 5

F02 Backward fall when trying to sit down 5

F03 Lateral fall when trying to sit down 5

F04 Forward fall when trying to get up 5

F05 Lateral fall when trying to get up 5

F06 Forward fall while sitting, caused by fainting 5

F07 Lateral fall while sitting, caused by fainting 5

F08 Backward fall while sitting, caused by fainting 5

F09 Vertical (forward) fall while walking caused by fainting 5

F10 Fall while walking, use of hands to dampen fall, caused by fainting 5

F11 Forward fall while walking caused by a trip 5

F12 Forward fall while jogging caused by a trip 5

F13 Forward fall while walking caused by a slip 5

F14 Lateral fall while walking caused by a slip 5

F15 Backward fall while walking caused by a slip 5

in SisFall, we made some modifications to avoid duplication or
make them more natural. For the two motions, which are sitting
in a low height chair and getting up slowly or quickly, we used the
motion of sitting to the ground and getting up with normal speed
(D05) to replace them since they have similar motion patterns.
Likewise, with regard to two motions which are standing, slowly
bending with or without bending knees and getting up, tying
shoelaces (D02) with or without bending at knees, and getting
up are the substitutes. We also removed two ADLs considered
in the SisFall dataset. One is to rotate the body when lying in a
bed since it usually occurs during sleep. Another one is to get
into and out of a car due to the facility constraint. Finally, 21
types of ADLs and 15 types of simulated falls were included in

the KFall dataset (Table 2). Except for the static tasks (D01, D11,
D12, and D17), which required only one trial, all other tasks were
designed for five trials. During the experiment, for the ADLs, the
subjects were instructed to perform them based on their daily
habits to make those motions as natural as possible. While for
the fall activities, since the young subjects usually do not have
fall experience, instruction videos from the SisFall and on-site
demos by experimenters were provided if necessary. To ensure
the subject safety, all the fall activities were performed on a 15-
cm-thick mattress. After the experiment, incomplete data caused
by Bluetooth signal disconnections or synchronization errors
were removed. Finally, KFall contains a total of 5,075motion files,
including 2,729 ADL motions and 2,346 fall motions.
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FIGURE 2 | Integrated motion video for the fall time labeling. Left: synchronized fall motion video from the camera; right: sensor data video converted from readings of
the inertial sensor (acceleration and angular velocity).

Data Labeling for Fall Time
Since the existing public fall datasets lack synchronized video
references on fall activities, it is very difficult to reliably label
the fall onset moment solely based on the sensor data for pre-
impact detection. On the other hand, because naked eyes cannot
recognize subtle motions in the graphics, only referring to the
video will also introduce large errors in the labeling process.
Therefore, we propose a new method that combines information
from both sensor and video data to reduce the labeling error.
We firstly converted the sensor data in a csv format into a video
format (avi, 100Hz) and further integrated with a fall motion
video (90Hz) from a Raspberry HQ camera as a whole video,
which was played at 90Hz (see Figure 2). The video from the
sensor data and the camera maintained the same frequency as
the original data format to avoid time distortion. Secondly, based
on the integrated video, we played synchronized fall motion and
sensor data video frame by frame to accurately label the fall onset
and fall impact moments.

The fall impact moment can be easily determined since
body-ground impact and an acceleration peak are obvious
in the integrated video. Whereas, for the fall onset moment,
there is a less obvious motion pattern, and it is hard to
define it quantitatively. For this reason, we have introduced a
semiautomatic method for labeling the fall onset moment after a
comprehensive review of the integrated fall videos (see Figure 3).
Since the fall is preceded by dynamic movements (e.g., walking,
getting up, and sitting down), the y-axis of acceleration is usually

considered as a sensitive axis. This is because the acceleration on
the y-axis shows the most obvious pattern during falling. Falls
usually have significant motion changes in the gravity direction,
which can be detected by the y-axis acceleration. However, for the
falls caused by fainting during sitting, they are less dynamic and
usually without obvious acceleration change at the beginning of
falling. Therefore, the y-axis of acceleration could not be regarded
as the sensitive axis. In such cases, the x-axis or z-axis of the
angular velocity can be considered as the sensitive axis because
there are more significant changes during rotational movements
along the sagittal plane (a forward/backward fall) or the frontal
plane (a lateral fall). Those body motion changes during different
fall activities (Bourke et al., 2010) reflect local peaks in sensor
signals along the sensitive axis. Based on the synchronized fall
motion video, we can quickly move the cursor along the timeline
to the rough period of the fall onset. Then we evaluated local
peaks in the corresponding period of the sensor data video one by
one. Those local peaks could be regarded as potential candidates
of the fall onset moment. Choosing the local peak among the
candidates involves some subjective judgments of the evaluator.
Since the proposed semiautomatic labeling method achieved a
high degree of consistency in labeling the fall onset moments
between the two independent evaluators in the pilot test, the
KFall dataset was labeled by an experienced evaluator for time
efficiency. One representative case of labeling is illustrated in
Figure 4, which is a forward fall during walking caused by a slip.
Based on the fall onset and the fall impact moments, the fall event
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FIGURE 3 | A flowchart for labeling the fall onset moment in sensor data.

could be further divided into three phases: pre-fall, falling, and
post-fall phases. Since our major focus is to detect the fall before
body-ground impact (a pre-impact fall), the post-fall phase is not
considered for the following algorithm development.

All the sensor data, labels of fall trials, and demo videos are
publicly available from the Google site: https://sites.google.com/
view/kfalldataset. The detailed data organization is summarized
in Figure 5. For each motion file (csv), it contains 11 columns,
which are TimeStamp(s), FrameCounter, acceleration (unit: g),
angular velocity (unit: ◦/s), and Euler angle (◦) along three axes.
Each label file (xlsx) includes temporal labels for the fall time of all
the fall trials from each subject, and it has six columns: task code
(task ID), description, trial ID, fall onset frame, and fall impact
frame in the sensor data. All the demo videos can be accessed
from the attached links.

BENCHMARK ALGORITHMS FOR
PRE-IMPACT FALL DETECTION

Based on our newly developed motion dataset KFall, we further
developed and tested three different types of algorithms for pre-
impact fall detection. Those algorithms cover three major distinct
categories in the literature: (i) threshold-based (ii) conventional
machine learning, and (iii) deep learning algorithms.

For the threshold-based algorithm, four thresholds
(magnitude of acceleration, pitch angle, roll angle, and vertical
velocity) were considered to detect a pre-impact fall based on
recent publications (Jung et al., 2020; Kim et al., 2020). The
magnitude of the acceleration is the L-2 norm of acceleration
readings from three axes. Pitch and roll angles are defined as
the rotations around the X-axis and Z-axis of the sensor. As for
the vertical velocity, it is calculated by integrating the vertical
acceleration, which is obtained by the Euler angle transformation
of the three-axis acceleration data (Lee et al., 2014). The optimal

threshold values were determined by the grid search method.
Finally, the threshold values of the magnitude of acceleration
(ACCM), pitch angle, roll angle, and vertical velocity (VV) were
set to 0.8 g, 25◦, 25◦, and 0.3 m/s, respectively. Figure 6 shows
the flowchart of the threshold-based algorithm for detecting
pre-impact falls.

For the conventional machine learning algorithm, support
vector machine (SVM) was applied in this study since it usually
achieved better performance in similar tasks (Aziz et al., 2017;
Qiu et al., 2018). A comprehensive set of motion features, which
encompassed acceleration, angular velocity, and orientation-
based information in both temporal and frequency domains, was
selected (Incel, 2015). The magnitude of acceleration and angular
velocity of each sliding window, with the width of 50 frames
(0.5 s) were utilized for extracting features from the acceleration
and angular velocity data (Aziz et al., 2014). Basic features include
mean, variance, and root mean square (RMS). More advanced
ones are listed as follows: (1) zero-crossing rate (ZCR): the
number of samples, which is over the mean of the window; (2)
absolute difference (ABSDIFF): the sum of the absolute difference
between each sample and the mean of the window divided by the
number of samples; (3) First 5-FFT coefficients: the first five of the
fast Fourier transform (FFT) coefficients; (4) spectral energy (SE):
the sum of the squared FFT coefficients divided by the number
of samples. With respect to the orientation-based features, they
were calculated from the pitch, roll, and yaw angles. Likewise,
mean, standard deviation, RMS, ZCR, ABSDIFF, and SE were
derived from those angles. Finally, a total of 40 features were
generated and further normalized as the input for the machine
learning model.

For the deep learning algorithm, a novel hybrid architecture,
integrating both convolution and long short-term memory
(ConvLSTM, Figure 7) was adopted from our latest publication
(Yu et al., 2020). The model consists of three sequential
convolutional blocks followed by two long short-term memory
(LSTM) cells with dropout operations and one fully connection
layer with softmax activation. Each convolutional block contains
operations of convolution, batch normalization, relu, and max
pooling. The preceding convolutional layers were designed as
automatic feature extractors to provide abstract representations
of the sensor raw data in the feature maps. Those high-level
features with short-term dependencies were further processed by
the recurrent layers, which could capture the long-term temporal
relationship of the motion data. Nine-dimensional sensor raw
data (three-axis acceleration, three-axis angular velocity, and
three Euler angles), with a window size of 50 frames (0.5 s), were
the input of the ConvLSTMmodel.

Following the general guideline, 80% of data (26 subjects) were
randomly chosen as a training set, and the rest 20% of data (six
subjects) were treated for testing purposes. Sensitivity, specificity,
and lead time were calculated to evaluate the performance of
three different algorithms. Lead time was defined as the time
interval between the fall detection moment (when a fall was
detected by the algorithm) and the fall impact moment. Sufficient
lead time is an important practical application requirement for
algorithms to be deployed to on-demand fall protection systems
(such as wearable airbags). Algorithm sensitivity and specificity
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FIGURE 4 | Illustration of fall time labeling during a fall event based on the integrated motion video.

FIGURE 5 | Organization of the KFall dataset provided in the website.
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FIGURE 6 | A flowchart of the threshold-based algorithm for pre-impact fall detection.

FIGURE 7 | The architecture of the deep learning model (ConvLSTM).

were calculated by equations 1 and 2, respectively.

Senvitivity=
TP

TP+ FN
(1)

Specificity=
TN

TN+ FP
(2)

where TP (true positive) is the number of fall files detected as falls;
FN (false negative) is the number of fall files detected as ADLs;
TN (true negative) is the number of ADL files detected as ADLs;
FP (false positive) is the number of ADL files detected as falls.

Table 3 shows the overall performance of three different
algorithms on the testing set, which contains 444 fall files
and 507 ADL files. In terms of accuracy-related measures,
conventional machine learning algorithm (SVM) and deep
learning algorithm (ConvLSTM) outperformed the threshold-
based algorithm. Particularly, ConvLSTM achieved both high
overall accuracy and balanced sensitivity (99.32%) and specificity
(99.01%). SVM also had a good performance with sensitivity of
99.77% and specificity of 94.87%. However, the threshold-based
algorithm showed relatively poor results, especially the specificity
(83.43%) was much lower than the sensitivity (95.50%). With
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respect to lead time, ConvSLTM obtained the best performance
with an average lead time of 403 ± 163ms, which was slightly
longer than SVM (385 ± 159ms) but much longer than the
threshold-based algorithm (333± 160ms).

ALGORITHM VALIDATION ON
REAL-WORLD FALL DATASET
(FARSEEING)

In order to further evaluate the feasibility of applying
trained algorithms based on our simulated fall dataset of
young volunteers to detect real-world falls in the elderly, the
FARSEEING dataset, currently, the largest real fall repository
(Klenk et al., 2016; Chen et al., 2017), was used in this study.
A total of 22 records of real-world falls are available upon
request. Each fall file contains 1,200 s of data, including data
signals of ADLs and falling. In this study, 15 falls were selected
because they were collected from the sensors with the same
location and data acquisition frequency as our KFall. Those
15 falls were collected from eight older adults (two males, six
females; age: 66.9 ± 6.5 years; height: 162.2 ± 9.3 cm; weight:
74.2 ± 10.3 kg). Since half of fall samples lack angular velocity
data and they all lack orientation data, in order to fully utilize
this dataset, only acceleration data were used. The best model
(ConvLSTM) among three benchmark algorithms was selected
for the validation purposes. Without changing the network
structure, it was retrained only based on the acceleration data
from KFall. Since the FARSEEING dataset does not have a video
reference, the fall onset moment is defined as 1 s prior to the fall
impact moment as in other studies (Shi et al., 2012; Chen et al.,
2017). The data before the fall onset moment were segmented as
an ADL file, and the data between the fall onset moment and the
fall impact moment were segmented as a fall file, resulting in 15
ADL files and 15 fall files. The data after the fall impact moment
were not considered for pre-impact fall detection as we did in the
KFall. The same window size of 50 frames (0.5 s) was also applied.
The performance of ConvLSTM on the FARSEEING dataset is
summarized in Table 4. The results showed that the ConvLSTM
model achieved a sensitivity of 93.33% (= 14/15), a specificity of
73.33% (= 11/15), and an averaged lead time of 411 ms.

DISCUSSION

Pre-impact fall detection based on wearable inertial sensors is still
a research problem to be solved. Most of papers only published
algorithms, using their own datasets but rarely made them
publicly accessible, which hinders the development of pre-impact
fall detection and proactive injury prevention. So far, there is no
open fall dataset suitable for pre-impact fall detection; therefore,
we newly established the KFall dataset and made it publicly
available for the first time. This motion dataset was developed
from the 32 Korean participants while performing 21 types of
ADLs and 15 types of falls. This dataset covers almost all typical
daily activities and falls, and it is expected to provide researchers
and practitioners with a common foundation to develop new

algorithms and technologies on pre-impact fall detection and
proactive injury prevention.

Compared with the existing public fall datasets (Casilari et al.,
2017a; Saleh et al., 2021) in the literature, the biggest advantage
of the KFall dataset is that it is constructed with the synchronized
video reference and motion sensor data. This enables accurate
temporal labels for the fall time and allows the dataset to be
further used for pre-impact fall detection, not just post-fall
detection. We also proposed a new and semiautomatic method
for reliably labeling the fall onset moment by checking local peaks
of the sensor data through the integrated motion and sensor
data video (Figures 2, 3). Even though this method still involves
some subjective judgments from human evaluators, the induced
variations should be minimal because the video is at a high frame
rate (90Hz). Musci et al. (2020) conducted an interesting study
for pre-impact fall detection based on the SisFall dataset. Due
to the lack of video references in the SisFall dataset, the authors
and their colleagues formed an expert panel to label the fall time
only based on the sensor data pattern. This approach is very
difficult to implement and tends to be less accurate, especially
for some falls with very short intervals, such as a backward fall
when trying to sit down. In order to maintain the privacy of
the participants, the synchronized videos are not open to the
public, whereas ready-to-use labels of each fall trial (a fall onset
frame and a fall impact frame) are published together with the
KFall dataset. Another strength of this dataset is that it contains
a comparable number of motion types and human subjects as the
three most comprehensive datasets (SisFall, Erciyes University,
and FallAllD) in the literature (Table 1). It covers different
physical levels of ADLs from low-activity behaviors to high-
dynamics and even near-fall scenarios, and also covers from less-
intensive falls (such as caused by fainting) to very dynamic falls
(such as caused by a slip or a trip). This dataset is closer to the
complex real-world scenarios, so it is more valuable for research
and development in the field of pre-impact fall detection and
proactive injury prevention.

In addition, three different types of algorithms for pre-impact
fall detection were implemented based on this comprehensive
motion dataset. All of them were adopted from the state-of-
the-art algorithms published recently (Jung et al., 2020; Kim
et al., 2020; Yu et al., 2020, 2021) and thus were representative
to be the benchmarks. It was expected that the threshold-
based algorithm showed poorer performance compared with
machine learning algorithms (SVM and ConvLSTM) since the
number of motion features considered for the threshold-based
algorithm was much less than the other two algorithms. It is
usually infeasible to include many thresholds for threshold-based
algorithms, which would dramatically increase the searching
space and introduce undermined results (e.g., one fall, which
satisfies some thresholds, could be against other thresholds).
With respect to machine learning algorithms, ConvLSTM had a
more balanced sensitivity and specificity (99.32 and 99.01%) than
SVM (99.77 and 94.87%). Compared with hand-crafted features
used in SVM, the automatic features generated by well-designed
deep learning neural networks had more distinguishing power
of ADLs and falls (Wang et al., 2019). As for the lead time,
it is a critical performance indicator for practical applications,
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TABLE 3 | Overall performance of three benchmark algorithms on the testing set.

Algorithm FN FP Sensitivity (%) Specificity (%) Lead time (ms)

Threshold 20/444 84/507 95.50 83.43 333 ± 160

SVM 1/444 26/507 99.77 94.87 385 ± 159

ConvLSTM 3/444 5/507 99.32 99.01 403 ± 163

FN, false alarm; FP, false positive.

TABLE 4 | Validation performance of ConvLSTM on the FARSEEING real-world fall dataset.

Algorithm FN FP Sensitivity (%) Specificity (%) Lead time (ms)

ConvLSTM 1/15 4/15 93.33 73.33 411 ± 317

FN, false alarm; FP, false positive.

such as on-demand airbags for fall injury prevention. In such
a wearable system, a short lead time may fail to prevent fall-
induced injuries since it is too short to fully inflate the airbag
before the body-ground impact. In this work, both ConvLSTM
(403 ± 163ms) and SVM (385 ± 159ms) showed a much
longer lead time than the threshold-based algorithm (333 ±

160ms), considering the very short duration of falling (∼746ms
as reported earlier). This fact also indicates that the features
used in ConvLSTM and SVM are more comprehensive and
robust to distinguish falls at the beginning stage of falling
from ADLs. Readers should be aware that, in this study, only
accuracy measures (sensitivity and specificity) and lead time
were considered to evaluate the benchmark algorithms. Other
practical issues, such as the computational resource and battery
capacity in wearable embedded devices, should be explored in
the future to have a more comprehensive evaluation of the
algorithms (Torti et al., 2018).

It is worth discussing the sampling frequency and location
of the sensor used in our KFall dataset. Since KFall is designed
for pre-impact fall detection and proactive injury prevention
rather than post-fall detection, only part of the fall data can be
seen by the pre-impact fall detection algorithms. Considering the
short period of falling (average 746ms, Tao and Yun, 2017) and
the buffer time required for the full activation of fall protection
devices, such as inflatable airbags, low-frequency sensor data may
not provide sufficient motion information and fine details for
accurate classification, especially for machine and deep learning
algorithms, because they extract features from sliding windows
of multiple frames. In a recent review paper on pre-impact
fall detection (Hu and Qu, 2016), only three out of 13 studies
set the sensor sampling frequency below 100Hz, and all of
these studies applied threshold-based algorithms. Threshold-
based algorithms are less sensitive to the sampling frequency
since their working principle is usually based on a single frame of
data, not multiple frames. Even for post-fall detection, Saleh et al.
(2021) found that the detection accuracy was always improved
by increasing the sensor sampling frequency from 20 to 40Hz in
three different sensor locations. In this study, KFall with a sensor
sampling frequency of 100Hz achieved promising accuracy and
lead time in three benchmark algorithms, which also provides

some flexibility for interested readers to evaluate the performance
of different algorithms if downsampling is required. Regarding
the sensor location, low back was chosen for the KFall dataset due
to two main reasons. First, low back has been validated as one of
the best sensor positions for fall detection (Ntanasis et al., 2016;
Özdemir, 2016), and many studies on pre-impact fall detection
have also achieved good accuracy from this position (Shan and
Yuan, 2010; Jung et al., 2020). This is understandable since the
low back position is close to the center of mass of the human
body. Therefore, the motion data collected from this location
could represent humanmotion well. The second reason is related
to practical applications of preventing fall-related injuries. Since
a hip fracture is one of the most serious fall-related injuries, it
can reduce mobility and even cause death (Lord et al., 2007; Jung
et al., 2020); the sensor in this location can be easily embedded
into a belt-shaped airbag for protecting the hip in real time (Shi
et al., 2009; Tamura et al., 2009; Ahn et al., 2018).

There is still an ongoing debate about the effectiveness of
applying algorithms trained on simulated fall datasets of the
young volunteers to real-world fall detections in the elderly.
Klenk et al. (2011) observed that, compared with simulated falls,
real-world falls have considerably larger changes in acceleration
during the falling phase. While other researchers reported similar
features in acceleration signals between two types of falls, they
also found that some fall phases detected from simulated falls
were not detectable from real falls (Kangas et al., 2012). Bagala
et al. (2012) evaluated 13 published threshold-based algorithms
on an acceleration dataset with 29 real-world falls. Their results
showed the average sensitivity and specificity were 57 and
83%, respectively, which were much worse than the results of
detecting simulated falls. On the contrary, another group of
researchers trained the SVM algorithm based on their simulated
fall dataset and further tested the model on the FARSEEING real-
world fall dataset (Chen et al., 2017); they achieved both high
sensitivity and specificity (>95%) in detecting real-world falls.
The potential reason for this conflicting result may be that the
features extracted from windows in machine learning algorithms
have more distinguishing power than the features extracted from
discrete frames in threshold-based algorithms. However, both
studies only focused on post-fall detection because they did not
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investigate whether the fall was detected before the body hit the
ground. In this study, we also used the FARSEEING real-world
fall dataset to externally validate the best trained ConvLSTM
model from our simulated fall dataset (KFall) for pre-impact fall
detection. The results showed high sensitivity since 14 out of the
15 real-world falls were successfully detected before body-ground
impact (Table 4). However, the specificity dropped sharply
compared to the performance in the simulated fall dataset, which
could be understandable since only acceleration data were used
to train the model due to the lack of angular velocity and
orientation data in FARSEEING dataset. Our validation results
demonstrated a certain potential of using the simulated dataset
for real-world pre-impact fall detection. For better validation, a
larger real-world fall dataset with more comprehensive motion
signals (including acceleration, angular velocity, and orientation)
is needed.

There are some limitations related to our current KFall
dataset. First, the current KFall only contains simulated falls
from young male adults due to safety concerns and practical
convenience. Caution is thus needed to directly apply KFall
dataset into real-world applications. Second, the current KFall
dataset does not include normal ADLs from older subjects due
to some practical limitations from the COVID-19 pandemic.
We will further expand our KFall dataset by recruiting
older and female subjects as well as evaluate false alarm
rates of benchmark algorithms on the target population in
the future.

CONCLUSION

In this paper, we proposed and publicly provided a
comprehensive motion dataset called “KFall” for pre-impact
fall detection. This new dataset was developed from 32 Korean
participants while performing 21 types of ADLs and 15 types
of falls. The motion data contain acceleration, angular velocity,
and Euler angle, which are collected from a nine-axis inertial
sensor attached at the low back of each participant. Compared
with the existing public datasets, the advantages of the KFall
dataset are 3-fold. First of all, it covers almost all typical ADLs
and falls, thus getting closer to the complex real-world scenarios.
Secondly but more importantly, the KFall dataset is constructed
together with a synchronized video camera at a high frame rate
of 90Hz, which makes it the first public dataset for pre-impact
fall detection, not just for post-fall detection. In this process,
we further introduced a practical and semiautomatic method
to label the fall onset moment by integrating information
from the sensor and video data. Thirdly, we also developed

three different types of state-of-the-art algorithms (threshold
based, a support-vector machine, and deep learning), using
the KFall dataset for pre-impact fall detection. Performance
of these algorithms could be regarded as benchmarks for
further developing better algorithms with this new dataset.
This large-scale motion dataset and benchmark algorithms
could provide researchers and practitioners valuable data and
references to develop new technologies and strategies for
pre-impact fall detection and proactive injury prevention for
the elderly.
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