
fcell-09-739079 November 10, 2021 Time: 14:49 # 1

REVIEW
published: 01 November 2021

doi: 10.3389/fcell.2021.739079

Edited by:
Michelle S. Itano,

University of North Carolina at Chapel
Hill, United States

Reviewed by:
Adam Glaser,

University of Washington,
United States
Shaoli Song,

Fudan University, China

*Correspondence:
Holly C. Gibbs

hgibbs@tamu.edu

Specialty section:
This article was submitted to

Cell Growth and Division,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 10 July 2021
Accepted: 16 September 2021
Published: 01 November 2021

Citation:
Gibbs HC, Mota SM, Hart NA,

Min SW, Vernino AO, Pritchard AL,
Sen A, Vitha S, Sarasamma S,

McIntosh AL, Yeh AT, Lekven AC,
McCreedy DA, Maitland KC and

Perez LM (2021) Navigating
the Light-Sheet Image Analysis

Software Landscape: Concepts
for Driving Cohesion From Data

Acquisition to Analysis.
Front. Cell Dev. Biol. 9:739079.
doi: 10.3389/fcell.2021.739079

Navigating the Light-Sheet Image
Analysis Software Landscape:
Concepts for Driving Cohesion From
Data Acquisition to Analysis
Holly C. Gibbs1,2* , Sakina M. Mota1, Nathan A. Hart1, Sun Won Min3, Alex O. Vernino3,
Anna L. Pritchard1, Anindito Sen2, Stan Vitha2, Sreeja Sarasamma4, Avery L. McIntosh2,
Alvin T. Yeh1, Arne C. Lekven5, Dylan A. McCreedy1,3, Kristen C. Maitland1,2 and
Lisa M. Perez6

1 Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States, 2 Microscopy
and Imaging Center, Texas A&M University, College Station, TX, United States, 3 Department of Biology, Texas A&M
University, College Station, TX, United States, 4 Department of Neurology, Baylor College of Medicine, Houston, TX,
United States, 5 Department of Biology and Biochemistry, University of Houston, Houston, TX, United States, 6 High
Performance Research Computing, Texas A&M University, College Station, TX, United States

From the combined perspective of biologists, microscope instrumentation developers,
imaging core facility scientists, and high performance computing experts, we discuss
the challenges faced when selecting imaging and analysis tools in the field of light-sheet
microscopy. Our goal is to provide a contextual framework of basic computing concepts
that cell and developmental biologists can refer to when mapping the peculiarities of
different light-sheet data to specific existing computing environments and image analysis
pipelines. We provide our perspective on efficient processes for tool selection and review
current hardware and software commonly used in light-sheet image analysis, as well as
discuss what ideal tools for the future may look like.

Keywords: light-sheet, image analysis, parallel processing, multiview deconvolution, tool selection

INTRODUCTION

Since light-sheet microscopy was introduced to the life and biomedical science communities
in 1993 (Voie et al., 1993) and more broadly in 2004 (Huisken et al., 2004), there has been a
virtual Cambrian explosion of light-sheet instrumentation and image analysis tools [see here for
recent reviews (Reynaud et al., 2015; Albert-Smet et al., 2019; Wan et al., 2019)]. Science and
technology has always been a moving target, but the pace of light-sheet instrumentation and
software development has been staggering. Researchers have adapted the basic light-sheet body
plan to different applications with different lens geometries (Huisken and Stainier, 2007; Dunsby,
2009; Wu et al., 2011, 2013; Tomer et al., 2012; Kumar et al., 2014, 2018; Voleti et al., 2016, 2019;
Sapoznik et al., 2020), beam shaping strategies (Keller et al., 2008; Planchon et al., 2011; Chen et al.,
2014; Vettenburg et al., 2014; Liu et al., 2018; Chang et al., 2019), sample mounting and scanning
techniques (Bouchard et al., 2015; Royer et al., 2016; Wu et al., 2017; Fadero et al., 2018; Glaser
et al., 2019), and contrast mechanisms (Truong et al., 2011; Di Battista et al., 2019). The ability
to image intact tissues, now made possible with advances in clearing protocols (Richardson and
Lichtman, 2015; Matryba et al., 2019; Ueda et al., 2020; McCreedy et al., 2021), and also the desire to

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.739079
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.739079
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.739079&domain=pdf&date_stamp=2021-11-01
https://www.frontiersin.org/articles/10.3389/fcell.2021.739079/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 2

Gibbs et al. Navigating the Light-Sheet Software Landscape

image naturally dynamic 3D biological systems with live-
cell imaging are the two main forces driving this unusual
technological variety. This variety stands in comparison to the
more purely performance driven development of, for example,
confocal microscopy where samples are typically uniformly thin
layers, sections, or cell cultures on a slide.

All of these species of light-sheet microscopes result in
large data acquisitions with unique, context-specific image
processing considerations requiring savvy compression or
computation strategies and often high-performance computing
(HPC) hardware. Potential solutions in both the commercial
and open-source software space employ a variety of strategies
for managing the flow of data through a given image
analysis pipeline. Light-sheet imaging hardware developments
are overviewed in Figure 1 alongside the development of relevant
software. Initially, microscope developers cobbled their own
image analysis solutions together, typically made available upon
request but not commonly actively maintained as they were
iteratively improved. However, as broader interest in light-
sheet microscopy increased, research groups employing or led
by software developers have worked to make light-sheet image
visualization and analysis tools more stable and accessible to
biologists through web browser tools (Saalfeld et al., 2009),
the java-based ImageJ/FIJI community (Preibisch et al., 2010,
2014; Pietzsch et al., 2012, 2015; Wolff et al., 2018; Hörl et al.,
2019; Haase et al., 2020; Tischer et al., 2021), packaged C++
applications (Amat et al., 2014; Peng et al., 2014; Stegmaier
et al., 2016), MATLAB code, and python libraries (Campagnola
et al., 2015; Crist, 2016; Dask Development Team, 2016; Napari
Contributors, 2019; Swaney et al., 2019; Harris et al., 2020;
AICSImageIO Contributors, 2021). Likewise, instrumentation
research groups have made light-sheet hardware more accessible
through open-source DIY projects such as OpenSPIM (Pitrone
et al., 2013) and UC2 (Diederich et al., 2020) as well as sharing
initiatives such as the Flamingo (Power and Huisken, 2019).
Given these investments, there is high motivation to enable the
cell and developmental biology community to utilize these tools.

With this brief overview, it is easy to appreciate that biologists
seeking to newly utilize light-sheet microscopy in their scientific
investigations are faced with an overwhelming number of
hardware (both optical and computing) and software choices.
Without a background in computer science, many biologists
find existing image analysis options difficult to distinguish, let
alone choose between, in part for technical reasons and in
part due to hype in the fields of “accelerated computing,” “big
data,” and “deep learning.” Often scientists excited about a
“visualization” tool only later are disappointed to appreciate the
fact that “visualization” is just being able to visually examine the
raw data and may not encompass any processing/computational
functionality. In institutions, departmental IT staff may or may
not be aware of the unique computational needs demanded by
light-sheet datasets for visualization or analysis and thus not
understand the justification for the cost of high-end analysis
workstations, fast network transfer, or access to on-premises and
cloud computing resources. Bringing to bear biological insight
from light-sheet microscopy data is such a multidisciplinary
endeavor that typically no single person has a clear and

comprehensive understanding of the requisite steps, creating
potential pitfalls and further exacerbating this challenge. To
help biologists communicate with software developers, sales
representatives, IT professionals, and HPC experts about their
image processing needs, we attempt to provide structure and
context to relevant basic computing concepts and a process for
selecting analysis tools.

CONSTANTLY FLUCTUATING
LANDSCAPE OF TOOLS

By the time one has surveyed the landscape of light-sheet analysis
tools it has already changed. Once the hardware is purchased,
arrived, and tested, it is out of date. Software dependencies are
difficult to keep compatible. While these common issues can feel
overwhelming, they are not insurmountable once one is familiar
with the nature of this development process. Since the light-sheet
imaging and analysis landscape is a multifaceted, rapidly moving
target, we believe familiarity with a few basic computing concepts
will help biologists keep up with this moving target and be able to
confidently provide invaluable feedback to software developers.

Creating a robust image analysis pipeline was already
a difficult task as one had to sort through the different
processing steps and order them in a way to produce the
most reliable outcomes compared to ground truth annotations.
However, with light-sheet data we are now confronted with
the possibility that the data do not easily fit in the pipes
we choose. At which point of handling light-sheet data
do we need to think more carefully compared to typical
confocal microscopy data sets? For most light-sheet microscopy
applications, we should adapt our thinking with respect to
the items listed in Figure 2. If a good strategy is laid out
from end to end of this data-handling continuum, from
acquisition to analysis, bottlenecks in processing and excessive
data wrangling/resaving may be avoided.

COMMON DATA SETS AND
COMPUTATIONAL TASKS FOR
LIGHT-SHEET MICROSCOPY

Light-sheet data must first be acquired before any analysis can be
performed, and beforehand it is useful to understand the expected
size of the data, the computational environments available in
a given lab or institution to process the data, and the typical
components of a light-sheet data processing pipeline.

Raw data size can be estimated with a combined
understanding of the biological system in question and the
type of light-sheet imaging planned. Figure 3A shows a set
of example data across a wide spectrum of sizes along with
computing environments that are generally useful at a given
scale. The examples we provide are 16-bit encoded, meaning
each voxel takes 2 bytes of memory to store in the absence
of some compression scheme, and the samples are imaged
with either 5× 0.16 NA objective or 20× 1.0 NA objective
on a Zeiss Z.1 light-sheet microscope. On the smaller end of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 3

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 1 | Timeline of sampled light-sheet microscopy optical hardware development and processing software across a variety of applications. As unique species
of light-sheet microscopes have been developed, unique analysis solutions have been created.

the scale, we show a multi-channel data set of a cleared adult
zebrafish brain imaged at relatively low resolution resulting
in a dataset typically tens of gigabytes (GBs). The purpose of
this experiment was to simply map the anatomical distribution
of a developmentally important reporter gene in the central
nervous system, and since this investigation does not require
single-cell resolution, a higher-resolution data set would make
visualization and analysis more difficult than necessary. The
quality of the clearing is also such that only a single view is
required, further reducing the data size. In general, it is desirable
to try to use the minimum sampling in any dimension that
can address a particular biological question, meaning higher
resolution is not always better. However, if illumination is

decreased across the specimen due to light scattering, or if more
isotropic resolution is desirable, it is possible to utilize several
image volumes acquired from different illumination angles to
create a more faithful representation of the original specimen.
These additional acquisitions increase the initial amount of data
needing to be visualized and processed by a factor of the number
of views and can begin to approach 100’s of GBs. Here we show
an example of a passive clarity technique (PACT) cleared mouse
spinal cord imaged from five different angles so that the views
can be deconvolved and fused into a single isotropic dataset for
improved tracing of spinal neural tracts. This approach increases
the data size needing to be handled in pre-processing steps but
for downstream processing yields comparable size data to a single

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 4

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 2 | Data handling steps that require special attention with light-sheet image data. If possible, it is advantageous to select a compressed file format that can
be utilized by the requisite analysis software. Unfortunately, not all analysis software can read all image formats and often data must be resaved or restructured as it
travels through an analysis pipeline.

volume (depending on how anisotropic the original data volumes
were, and if the deblurred data is saved at higher bit-depth). For
measurement of features at cellular and potentially sub-cellular
scale, however, higher resolution volumes tiled across a region
of interest may be acquired, increasing the data size by a factor
of the number of tiles. This approach typically yields larger data
sizes in both the pre-processing and the processing steps of image
analysis as the datasets are both high-resolution and over a large
spatial scale and can easily fall in the terabyte (TB) range. For
dynamic processes, live specimens add the temporal dimension,
with data size scaling according to the number of time points as
shown in our example of the time-lapse of zebrafish embryonic
brain development. Such datasets can approach the petabyte
(PB) scale. These examples illustrate the usual fundamental
dimensions of what is often referred to as “n-dimensional”
imaging in light-sheet microscopy including spatial dimensions
x, y, z, spectral channels, illumination angles (can also have
different detection angles), tile numbers, and timepoints. To
keep data sets of manageable size, balancing the data size in each
of these dimensions is wise but also requires detailed knowledge
of the biological system in question.

A computing environment is the combination of hardware
and software used for a particular computing task. Figure 3A
shows how these computing environments can scale to
accommodate increasingly larger sizes of light-sheet image data
from nominal laptops or desktops, to analysis workstations of
various sizes, to local servers, to high performance computing
clusters (whether on-premises or through cloud computing
services). We provide a range of usual specifications of
the hardware along this spectrum, though machines with
specifications outside of these ranges can of course be
constructed. One of the most important things to consider early
on is what computational resources are available for a given
project, which will guide the software approach implemented. It

is usually the case that non-computer scientists find single shared
memory systems easier to interface with, so there has been a
strong drive to create workstations with larger shared memory
that can accommodate the dataset and intermediate calculations
during a processing algorithm. Such high-end workstations
with TBs of shared memory can be quite expensive. Also,
understanding how much memory will be required for a given
analysis task, even when the data size is known, can be difficult
because such algorithmic and software details are often not
specified in a way that is accessible to the end user. This situation
is a relic of the days when biologists could take for granted that
the computational resources they were familiar with and had
easy access to would be more than sufficient to process their
image data. Since it is now frequently not the case that the entire
data set can be loaded into computer memory, efforts have been
made to create visualization and analysis tools that handle data-
intensive computation by feeding smaller parts of the data to
the memory at a time so as not to exceed the system memory
(“lazy” load/process) or on heterogeneous distributed memory
systems (that typically require more computer science expertise
to interact with). In both approaches, graphics processing unit
(GPU) acceleration may be employed, requiring transfer of data
between system and GPU memory for external GPU boards.

In enumerating common tasks in a light-sheet image analysis
pipeline in Figure 3B, the “visualization” step is drawn across
all other individual “pre-processing” and “processing” tasks. It is
difficult to understate how important visualization at every step
of any image processing pipeline is, especially for quality control,
tuning processing parameters (such as various threshold values,
kernel sizes, etc.) efficiently, and to detect processing artifacts.
The ability to quickly preview the data and computational results,
especially when an analysis pipeline is being drafted or an existing
one is applied to a new kind of image data, should be non-
negotiable. The reality that most bioimage analysis pipelines,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 5

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 3 | Range of light-sheet data sizes, computing environments, and processing tasks. (A) As data size increases, increasingly parallel computation helps to
prevent bottlenecking during image analysis. (B) Components of a light-sheet image analysis pipeline have highly variable pre-processing steps dependent on the
particular type of light-sheet microscope used and more uniform processing steps depending on the biological measurement of interest.

including those applied to light-sheet data sets, often need to
be adapted or modified from project to project and are more
frequently semi-automated than fully-automated, underscores
the importance of previewing results step-by-step.

The term “pre-processing” typically refers to computational
effort put toward accounting for measurement artifacts and
reconstructing an even more fiducial representation of the object
being imaged (that could potentially be compressed with out
loss of important information). The geometric peculiarities of
the type of light-sheet microscope being used, the particular
imaging parameters, and the optical quality of the sample will

affect the kinds of pre-processing steps one must consider. For
those light-sheet acquisitions where the sample or light-sheet
move relative to each other at a tilted angle to the detection
objective (for some modes of lattice light-sheet microscopy,
open-top light-sheet microscopes, and single objective light-
sheet microscopes), the first step will typically be to deskew the
data so that visualization and analysis software can interpret
the voxels from each volumetric acquisition on a common
global three-dimensional coordinate space. Next, if there are
multiple volumetric acquisitions (different channels, angle views,
tiles, or time-points), interpolation and registration algorithms

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 6

Gibbs et al. Navigating the Light-Sheet Software Landscape

will be used to put these onto a common global coordinate
system. This step is necessary because of imprecision in stage
coordinates, sample motion relative to the microscope stage
system, and spherical and chromatic aberrations. Inclusion of
fiducial markers such as fluorescent beads are often utilized
to register views to each other. At this point in the pipeline,
the data at a given spatial location are all still separate
unique values. To reconcile these differences into a coherent
single spatial representation of the data at a given time, some
type of fusion algorithm is applied, often in concert with a
deblurring/deconvolution step to improve image contrast and
resolution if possible. Another aspect to consider, which may be
done prior to, after, or in the absence of deconvolution/fusion
is illumination correction. It is sometimes possible to correct
for uneven illumination (such as vignetting in the case of some
larger FOV acquisitions) or striping artifacts (occurring when
angular spread of the illumination light is low and/or parts of
the sample or other objects scatter or absorb the light, casting a
shadow through the image). In the case of time-lapse data sets,
photobleaching correction can be applied.

Once a reasonable representation of the object is created,
the object may be registered anatomically to an existing atlas,
such as the Allen Brain Atlas for the adult mouse (Lein et al.,
2007), or the “processing” component of the analysis pipeline
begins. Processing typically refers to computations applied to the
image data to extract specific features of interest. The “extraction”
can refer to providing a spatial coordinate where the feature
is located (as in spot detection algorithms) or enumerating a
volume in the image where a particular feature is located (as
in segmentation algorithms). The type of information extracted
could also be a property of the object at a certain location in
space, such as identifying anisotropy of features and orientation
of objects or structures in the space. In the temporal regime, it
will be useful to track objects and their properties over time. If
we think of our example data sets, it would be useful to segment
anatomical brain regions, follow axonal tracts, segment cells and
examine their morphology, or identify cell nuclei and track their
movements and divisions, to name a few biologically relevant
aims. It is useful at this point of the analysis pipeline to perform
an assessment of the quality of the results of the computationally
derived objects compared to those produced by expert annotation
(Taha and Hanbury, 2015). With these types of objects we can
then compute further measurements, such as the relative reporter
expression in different brain regions, connectivity in different
regions of the spinal cord, variability of cellular morphologies
within a particular tissue, or cellular velocities. Typically these
measurements are acquired for replicate groups, a control and
experimental group in the simplest case, and the experiment is
performed multiple times to ensure repeatability. But what sort
of indication is there that the experiment is repeatable? Statistical
analysis of the measured outputs is used to look at the distribution
of the data sets and test for significant differences. It is certainly
also desirable that when an image analysis pipeline is developed
using one experimental data set and the experiment is repeated,
that the same analysis pipeline can be employed without tinkering
with parameters, and produce the same results. When there is
confidence in the results, they may be used as parameters in

computational models of biological processes or they could serve
as an experimental result to compare with a theoretical result.

THE JOURNEY OF A VOXEL

Having provided an overview of different scales of computing
infrastructure and common image analysis pipeline components,
we turn to enumerate computer hardware in finer detail. An
integrated overview of basic computing hardware is shown in
Figure 4. In the same way that understanding the compartments
of a cell and their functions is important for thinking about
different types of signal transduction pathways in cells and
tissues, understanding the basic compartments of computing
infrastructure is important for thinking about different pathways
for scaling an image processing pipeline on an individual
workstation or high performance cluster, which is still generally
a unique composition for each research project involving light-
sheet microscopy data.

Camera to Peripheral Component
Interconnect Express Bus
A voxel is the three-dimensional unit of a digital image that
arises from the design of modern digital cameras and the physical
spacing between acquired image frames. The most popular
cameras for light-sheet microscopy are sCMOS cameras with low
read noise (<2.0 electrons), high quantum efficiency (>80%),
with sensor architectures trending toward larger, faster chip
sizes for capturing larger, dynamic, diffraction-limited fields of
view or for multiplexing smaller fields of view (from different
channels or image planes) projected to different areas of a
single chip. Back-thinned illumination for better sensitivity is
increasingly desirable when read noise can remain comparably
low. Other camera options include CCDs, EM-CCDs, and
intensified cameras. The key overarching concept to understand
is that photons hitting the discrete pixel elements of the camera
sensor are transduced into electrical energy that flows under
the control of electronic circuits built into the camera itself
to an analog-to-digital converter (ADC). The purpose of the
ADC, which in most systems is now on the camera itself,
is to assign a binary-encoded value to each individual voxel
proportional to the number of photons that were captured at
each location. These values can be transferred to an electronics
board called a frame grabber through a specific protocol,
typically camera link for high-speed imaging in many light-
sheet microscopes. The frame grabber has its own hardware
and software that connects the device to the motherboard of
a computing system with a peripheral component interconnect
express (PCIe) interface and relays acquisition instructions to the
camera from the acquisition software run within the operating
system. An important component on the frame grabber is the
direct memory address (DMA) controller that can relay image
frames to GPUs to be rendered to the computer screen or for
computational pre-processing, to computer memory to buffer
for storage, or directly to disk without having to use central
processing unit (CPU) resources for each voxel. The extent of
these different DMA functionalities will depend on the design of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 7

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 4 | The journey of a voxel. Hardware components and interfaces for transferring data between them on one example of a typical image analysis workstation.

the peripheral device and the architecture of the motherboard.
Real estate of PCIe lanes is in short supply when multiple devices
need to communicate on the PCIe bus, which is the electronics
of the motherboard that voxels must flow through. In addition to
frame grabbers, GPUs, RAID controllers, fast read/write storage,
and network cards may occupy this space. Complicating matters,
the total number of pins present on the PCIe slots may exceed
the number of lanes available for simultaneous use, so care
must be taken that components are selected to allow for near
optimum performance. Devices plugged into a PCIe ×16 slot, if
not provided enough lanes on the bus, will not be able to perform
to specification.

Peripheral Component Interconnect
Express Bus to Central Processing Unit,
Memory, Graphics Processing Unit
PCIe bus traffic is directed by the computer’s operating system
with the help of the CPU and several smaller processors built
into the motherboard. For light-sheet acquisitions including
multiple cameras operating at high frame rates, the rate of

data generation can exceed the typical write speed of many
storage devices and so the data is often buffered in system
memory. System memory refers to the random access memory
(RAM) storage that operates only when a computer is powered
on (as opposed to persistent storage that can retain values
when power is off) that holds instructions and data that will
be accessed directly by the CPU. Acquisition software for
light-sheet microscopes can be incorporated with on-the-fly
image pre-processing and processing steps that utilize GPU
or CPU computational resources prior to data storage. This
approach can reduce overall analysis time significantly but also
runs the risk of loss of information from the raw data. The
limitations of pre-processing steps that involve interpolation
(e.g., deskewing) and assumption of point spread function shape
(e.g., deconvolution) are still debated. Additionally, registration
results are not always optimal and fusion of the data under these
circumstances significantly degrades image quality. Finally, some
funding and state agencies have requirements for preservation
of raw data for a certain period of time, in which case one
must be careful to consider what is a reasonable definition
of “raw” data.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 8

Gibbs et al. Navigating the Light-Sheet Software Landscape

The core of a computer is the CPU which must be running
a program to trigger the acquisition of frames from the
microscope camera(s). Not long ago, processors contained a
single computational core, often referred to as an arithmetic logic
unit (ALU) that takes two binary inputs (data) and an instruction
(also translated from higher-level programming languages
into a binary-encoded input) and performs a rudimentary
operation resulting in a binary-encoded output. These inputs
are progressively moved from system memory through a series
of on-processor memory stores called caches (e.g., L3, L2, and
L1) until they can be loaded into the registers operated on
by the ALU. More complex operations are combinations of
rudimentary calculations. Modern CPUs have increased the
number of cores up to tens of cores per processor, with most
of these cores having multi-threading capabilities (discussed
later). In this modern configuration, several software can operate
in parallel as their processes can be assigned to different
cores. Additionally, motherboards that support more than one
CPU are now commonly used. Most of the major computer
programming languages people are familiar with (e.g., C++,
java, and python) are abstractions to interface a human-language
computer user or programmer with the binary language of a CPU
to accomplish image processing and data analysis tasks (and of
course emails, gaming, etc.).

Most motherboards have an on-board GPU that prepares data
to be rendered to a computer screen, but the capabilities of these
GPUs can be minimal compared to the PCIe-based GPU boards
that have space for more dedicated memory and GPU cores.
GPU architecture is different from CPU architecture in that there
are orders of magnitude more computing cores (ALUs) on a
GPU. The field of computer graphics encompasses some standard
operations, especially those involving manipulation of matrices
(which are a common way to represent n-dimensional light-
sheet data). However, giving software developers access to these
functions is not accomplished through the standard computing
languages but rather graphics-specific application programming
interfaces (APIs) (e.g., CUDA developed by NVIDIA, OpenGL,
and OpenCL). When needing to interactively display large data
acquisitions or rapidly render 2D representations of a three-
dimensional object, one will benefit greatly from a GPU. The
larger the on-board memory of the GPU, the better it can be
utilized for other computational image pre- and processing tasks
as well. The data must be first loaded into the GPU’s dedicated
memory, computed on, then returned to system memory. Since
these memory allocation processes take time, computation is
best accelerated when several computing operations are chained
together before a final result is delivered back to system memory.
One of the most popular types of image processing performed
primarily on GPUs are the training of deep-learning networks
and their use for prediction of objects and other types of
image properties.

To Data Storage
Voxels waiting in system memory will be short-lived unless they
are written to one of a wide variety of long-term, non-volatile
data storage devices. This writing process involves software
instructions concerning where the data will be stored, how the
data should be efficiently organized on disk, whether, or more

likely, which compression scheme should be applied, how long
the data will need to be stored, and how accessible it should be.

Generally, the farther voxels must travel, the slower the write
speed will be. However, multiple factors along the way have
significant impact on write performance. It is important to
consider the speed of data reading (and writing) by the storage
drive controller (a small computer chip that lives on the drive
itself), the speed of the connectivity between the drive and the
computer, the size of the drive, and the ways in which such a drive
can be combined with others into a larger unit. Solid State Drives
(SSDs) are typically built on a floating transistor technology called
NAND flash memory and, having no mechanical moving parts
like their older disk-spinning counterparts Hard Disk Drives
(HDDs), are orders of magnitude faster at reading and writing
data (microseconds compare to milliseconds). SSDs can connect
to the motherboard using SAS or serial ATA ports (SATA), as the
HDDs these ports were designed for typically do; however, the
SATA interface controller is not fast enough to keep up with
the data read and write speeds achievable by SSDs. To take full
advantage of the speed of SSDs, faster interfaces such as non-
volatile memory express (NVMe) were created that use PCIe
protocols to interface with permanent storage devices. Size of the
drive is often referred to as the form factor, which is relevant
when configuring workstations or servers to ensure efficient use
of space and heat dissipation. For workstations, motherboards
will usually have one or two M.2 slots, which accommodate small
SSDs that have PCIe ×2 or ×4 connectors, as well as PCIe slots
for E3 form factor SSDs that have larger bandwidth and storage
(PCIe×8 or×16). Additionally, there will be connections on the
motherboard for SAS or SATA cables to transfer U.2 drives (2.5′′
SSDs), though these can also be NVMe capable.

Going up from the level of the individual disk, it is important
to understand how multiple disks can be utilized together to
improve data read and write speed, as well as data stability, using
Redundant Array of Independent Disks (RAID) controllers.
Moderate performance raid controllers can be found already
built-in to motherboards or such functionality provided by RAID
software applications, however, it is likely the data streaming
demands of light-sheet microscope acquisition will require an
external RAID controller card installed into a PCIe slot. Common
RAID configurations are RAID 0, RAID 1, and RAID 10. In
a RAID 0 configuration, the RAID controller spreads the data
across separate disks simultaneously (called striping), which
parallelizes and thus speeds up data writing. While this sounds
immediately useful, this approach puts the data at risk since if
one drive fails, the entire data set is unrecoverable. Alternatively,
in a RAID 1 configuration, the RAID controller sends the same
data to all the disks (called mirroring), writing the same data
on multiple drives as backups. RAID 1 protects against drive
failure but provides no speed-up and decreases effective storage
size by half. Both speed and redundancy, however, are design
components of a RAID 10 configuration, where data is both
striped and mirrored to a minimum of four drives. The effective
storage of RAID 10 configurations is still cut in half, however,
which is expensive. RAID 5 is a popular alternative that reduces
the excess amount of space required for data redundancy by
using a strategy called parity, which is a logic calculation between
two bits of data striped to different disks. Rather than both

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 9

Gibbs et al. Navigating the Light-Sheet Software Landscape

bits being also mirrored, instead the and/or logic between the
bits is encoded as a single bit that stored on a third disk. This
strategy requires an extra calculation and care to keep the bit
pairs together, but if one disk fails the missing data can be
reconstructed from the parity bit that has been striped to either
of the other two disks.

On-board drives are common for acquisition and short-term
storage, but ultimately data is often sent to be stored on an
external device such as a local storage server, HPC cluster, or
the cloud for sharing, computing, and/or long-term storage.
Recommendations for networked device solutions depend on
available resources and data size (Andreev and Koo, 2020).
Consulting with department IT or institutional HPC colleagues
will help to identify the best solution given available resources,
but for those labs without such support, DIY direct-attached
storage [such as Just a Bunch Of Disks (JBOD)] that connect
with a SAS connection may be a good option, or if the
acquisition computer has a high-speed network port (10–100
Gb/s), a network-attached server can also be assembled or
purchased. These longer-term, larger storage solutions are still
often composed of HDDs due to cost. These external devices can
then be accessed remotely, networked to other HPC resources on
premises or to the cloud. One counter-intuitive point is that cloud
resources are most reliable for mid-range data sizes (∼10 GB) as
larger data transfers can trigger slow-downs by service providers,
require specialized file transfer software, and even under the best
of conditions may still result in impractical file transfer times.
In the future, development of edge computing workflows that
aim to minimize network travel by providing computational
and storage resources to an edge device (in this case a light-
sheet microscope) at the most physically proximal node of a
provider network (edge node), could address some cloud service
constraints. Intelligent pre-processing, compression, and/or data
abstraction at such edge nodes could also limit the data size
subsequently sent to cloud storage.

While many scientists that routinely use microscopy tools are
familiar with the TIFF file as a reliable data storage format, this
file specification is not well-suited for large image data. Given the
size of most light-sheet data, the type and structure of the file the
voxels will be stored in is important to consider in advance to
reduce the need to perform “data wrangling,” that is, to re-save
or modify the structure of the data so it can be computed on
by a given analysis software and to improve data access speeds.
Such considerations can also be very important for speedy data
visualization. Recall in the discussion of RAID configurations
that data sent to multiple disks was called “striping.” This is the
case because, even though we think of image data as 2D, 3D, or
ND arrays, on disk they are by default stored as a single stripe of
bits ordered into a line that must be accessed sequentially. Now
consider these bits are lined up on disk row-by-row so that the
last voxel of one row is next to the first voxel of the next row. If
one was interested to access the voxel physically below the last
voxel of a row, it would be necessary to search an entire extra
row. However, if the image is split into smaller 2D “chunks” and
each chunk is stored row-by-row, the time to access the related
voxels is reduced. Useful file formats also frequently support
image “pyramids” that store the chunked multi-dimensional data
at full resolution and increasingly lower resolution versions.

In combination, multi-resolution chunks enable the most rapid
access to spatially relevant subsets of image data. When browsing
the data with visualization software that supports these file types,
lower resolution data rapidly give the impression of the sample
structure while the high-resolution data are quickly read and
displayed, providing a real-time experience. Multi-resolution
chunks can also be useful for speeding certain computations
that may not require full resolution. When using commercial
microscopes and software, it is often not possible to write data to a
more generally open chunked pyramid file type (e.g., HDF5, zarr,
OME-TIFF, and N5), but companies are increasingly utilizing
these techniques along with lossless compression techniques. In
addition to the values of the voxels in which we are primarily
interested, it is usually the case that important metadata about the
microscope and camera settings are stored with the image data
and keeping these pieces of information together is an important
aspect of scientific reproducibility. Unfortunately, there is not a
single consensus on the overall best file structure and therefore
some conversion and data wrangling is likely (Moore et al., 2021).

Out of Storage for Processing
Having seen the path that a voxel must traverse to be stored, one
has already seen the relevant paths that would be traversed for
additional processing. Data must be available in system memory
to be operated on, so the data will be loaded from storage to RAM.
Then, if the computation is to be carried out on the CPU, the data
will be sent to the processor as requested, or if the computation is
to be carried out on the GPU, the data will travel on the bus from
system memory to the GPU’s dedicated memory and operated
on by the GPU. Computational results are temporarily stored as
variables in either system memory or GPU memory and at some
point, written back to permanent storage. One important thing to
consider when putting together an image processing pipeline is to
try to minimize the effort put toward transferring data and only
do so (for example load the data into GPU memory) if the speed-
up in computation outweighs the data transfer time. Another key
consideration is whether the data fits in the relevant memory
storage space and if not, what can be done to split the data into
usable chunks for a given processing task.

Computing hardware and software changes have been slow
and steady but could change drastically in the near future,
creating an ever-bigger challenge requiring more computing
literacy and even better communication across disciplines. We
hope this brief overview of computing hardware is empowering
to biologists and microscopists so they can consider the steps
of designing and implementing demanding image processing
workflows in a more concrete and less abstract way.

WHAT CAN PARALLEL COMPUTING
MEAN?

We have observed that scientists who are unfamiliar with
larger data intensive computing workloads often assume that
computational hardware resources available will be automatically
utilized by a given software. However, as discussed in the previous
section, data that is to be processed must be in an accessible
location to the given computing hardware, whether CPU or

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 10

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 5 | Computing concepts for scaling up and scaling out. Computation requires data and instructions to be loaded into registers directly accessible by an
arithmetic logic unit (ALU). Multi-threading makes computations parallel by taking advantage of dead time when data are being fetched. Multi-processing is when the
computation can be spread to multiple cores (ALUs), whether on a CPU or GPU, that have access to the same memory (GPU’s typically having their own smaller
on-board memory). If the data and/or computations do not fit in shared memory, a message-passing interface must help coordinate the broadcasting of data and
computations across a distributed memory system. (gray, core; yellow, CPU; green, motherboard).

GPU cores, and these directions must be explicit. If multiple
nodes of a computational cluster are to be utilized, the software
also has to make this explicit. Thus, it is regrettably possible
to select software that fails to take advantage of all available
computing resources, especially when hoping to scale across a
distributed memory system.

Parallel computing is often a good solution for light-sheet
image analysis, but to best utilize the power of parallel computing
one must appreciate the different types of hardware approaches
to parallel computing and the algorithmic nature of a particular
task-specific parallel computing problem. The former is shown
in Figure 5. One approach to parallel computing, called
multi-threading, takes advantage of the extra time required to
retrieve data and deliver it to a cache to await a particular
computing instruction. On a given computing core, instructions
are threaded through the ALU as data become available. It is
worth noting that this is not truly parallel computing. Multi-
threading is programmed at the level of the standard libraries
of a given software language that will most likely relate to a
C++ compiled code. The next level of parallelism is to compute
on multiple cores on a given processor chip, which is typically
referred to as multi-processing and relies on particular software
libraries that direct data and instructions to different cores
of one or more processor chips on a single mother board.
For certain types of computations, using the cores of a GPU
is highly advantageous but requires the data be sent to the
GPU’s on-board memory which may be significantly limited
compared to the overall system memory. Light-sheet data thus
typically requires some cropping, compression, or thoughtful
chunking to be processed on a GPU. Finally, if even more
computational power is required, a “master” computer will
pass instructions and data to different computing nodes, each
operating as independent computers with their own isolated
memory, which will execute computations that will be sent
back to be compiled by the master node. The “nodes” can be
comprised of CPUs and GPUs depending on the nature of the
computational task.

It is easiest to implement parallel computing when the nature
of the computational step is “embarrassingly parallel,” meaning
the data can be cleanly and arbitrarily split into convenient sizes
to spread across available computational cores and/or nodes. An
example of this type of parallel problem would be having many
timepoints in a dataset that are each small enough to be handled
by a single node. Instances of the image analysis software can
be created on as many nodes as available, in the case there are
as many nodes as timepoints one could process each time point
simultaneously. However, the spatial dimensions of many light-
sheet data volumes make it possible that a single time point may
not fit on a single workstation or computational node. In this
case, one must divide the data into chunks that can fit on a given
node (this will also sometimes be the case for fitting data into
GPU memory). While the chunk size that is specified by the file
structure of the data may be a natural choice, this is not always the
case. We again must assess the nature of the parallel problem. For
example, convolutional filters that are commonly used in image
analysis calculate a new voxel value using voxels surrounding the
voxel in question, meaning that the chunks distributed across
available nodes or to GPU memory must be overlapping and in
some cases how to best recombine the spatial volume is unclear.
The overlap has the effect of increasing the overall data size, but
if these already exist from tiled acquisition they could be useful.

EVOLUTION OF COMPUTING
ENVIRONMENTS FOR LIGHT-SHEET
IMAGE VISUALIZATION AND ANALYSIS

Computing hardware components have the potential to be
utilized in a light-sheet image processing workflow provided the
communication between the parts is supported by the requisite
software. Table 1 provides an overview of the hardware/software
solutions employed by several research groups referred to in
Figure 1, where such details are available in the literature.
From these specifications, one can see that light-sheet image

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079
N

ovem
ber10,2021

Tim
e:14:49

#
11

G
ibbs

etal.
N

avigating
the

Light-S
heetS

oftw
are

Landscape

TABLE 1 | Sampling of light-sheet computing environments.

Paper Data size Data storage CPU resources RAM GPU resources Software File Type Performance (volume <5 GB)

Huisken et al., 2004 <100 GB – 1.8 GHz, single-core – – Matlab 6.1 fusing one volume took 24 h

Swoger et al., 2007 – – 2.8 GHz, dual-core Matlab 7.0.4, C# Weiner MVD on one volume
overnight

– – 10 CPU cluster 20 GB Python MAPPG MVD on one volume in 1 h

Keller et al., 2008 3.5 TB 2 RAID 0 (6 TB
total storage)

5000 CPU cluster – – Matlab 48 h to track single time-lapse

Preibisch et al., 2010 – – 2.8 GHz, quad-core 64 GB – Java/FIJI constellation bead-based
registration in 2.5 min

Planchon et al., 2011 – – – – – Amira 5.3 iterative max liklihood deconv. in
12–15 iterations

Truong et al., 2011 – – – – – Matlab, Imaris –

Tomer et al., 2012 <100 TB 100 TB SATA
drives (separate
server)

2x 3.3 GHz, 6-core,
12-thread

96 GB Quadro FX 5800, 4GB Matlab R2011b, C++ single timepoint fused on a
multi-threading core in 180 s

up to 12 time points in parallel
across 12 cores

Wu et al., 2011 ˜260 GB – – – – Matlab, StarryNite,
AceTree

semi-automated C.Elegans lineage
tracing

DeconvolutionLab
(ImageJ)

Wu et al., 2013 – 2.4 GHz, 6-core,
12-thread

6 GB – MIPAV, python, matlab registration, joint deconvolution of
1000 volumes in 7 h

Kumar et al., 2014 – 2 TB SATA
drives

2x 2.3 GHz, 6-core,
12-thread

64 GB Quadro K5000, 4 GB ImageJ, MIPAV joint deconvolution 6
volumes/minute

Chen et al., 2014 – 2x 3.33 GHz, 6-core,
12-thread

96 GB GeForce GTX TITAN, 6
GB

Matlab, CUDA, ImageJ,
Amira

deskew, deconvolution,
photobleach correction

Preibisch et al., 2014 GB-TB – 4 node cluster 128 GB 2x Quadro 4000, 2 GB Java/FIJI, CUDA .xml/HDF5 Bayesian joint multiview
deconvolution

2x 2.7 GHz, 8-core,
16-thread

4x Tesla depending on implementation, 1
volume in ≤15 min

Bouchard et al., 2015 – – – – – Matlab, Amira –

Pietzsch et al., 2015 up to 60 GB 750 GB SSD 2.8 GHz, 8-core,
16-thread

16 GB – Java 1.6/FIJI .xml/HDF5 convert 60 GB to .xml/.HDF5 in
less than an hour

Royer et al., 2016 – 1 TB SSD, 12
TB HDD

2x 3.1 GHz, 8-core,
16-thread

256 GB autopilot control, image quality
estimations

Liu et al., 2018 3 TB/h – cluster, 16-32 cores 120-240 GB presumed Matlab, CUDA, FIJI, ITK deskew, deconvolution, illumination
correction,

per node per node ITK-SNAP, Amira,
Imaris, Aivia

segmentation of cell, nucleus, and
trans-Gogli apparatus

u-track cell tracking

Hörl et al., 2019 GB->2TB RAID 0 SSD 2x 3.2 GHz, 8 core,
16-thread

512 GB variable Java/FIJI, CUDA .xml/HDF5 stitching, fusion of 300 Gb in <9 h

(Continued)

Frontiers
in

C
elland

D
evelopm

entalB
iology

|w
w

w
.frontiersin.org

11
N

ovem
ber

2021
|Volum

e
9

|A
rticle

739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 12

Gibbs et al. Navigating the Light-Sheet Software Landscape

TA
B

LE
1

|(
C

on
tin

ue
d)

P
ap

er
D

at
a

si
ze

D
at

a
st

o
ra

g
e

C
P

U
re

so
ur

ce
s

R
A

M
G

P
U

re
so

ur
ce

s
S

o
ft

w
ar

e
Fi

le
Ty

p
e

P
er

fo
rm

an
ce

(v
o

lu
m

e
<

5
G

B
)

G
la

se
r

et
al

.,
20

19
˜1

TB
51

2
G

B
M

.2
,

16
TB

S
S

D
,9

6
TB

H
D

D

2x
3.

2
G

H
z,

8-
co

re
,

16
-t

hr
ea

d
38

4
G

B
Ti

ta
n

XP
,1

2
G

B
py

th
on

,B
ig

S
tit

ch
er

,
.x

m
l/H

D
F5

w
/

B
3D

co
m

pr
es

si
on

,.
tif

f
1

TB
of

til
es

fu
se

d
an

d
re

-s
av

ed
12

–2
4

h

Q
ua

dr
o

P
60

00
,2

4
G

B
A

iv
ia

,I
m

ar
is

Vo
le

ti
et

al
.,

20
19

G
B

-T
B

–
–

–
–

M
at

la
b,

B
ig

S
tit

ch
er

,
Tr

ac
kP

y
16

-b
it

.ti
ff

re
gi

st
ra

tio
n,

de
sk

ew
,s

tit
ch

in
g

H
aa

se
et

al
.,

20
20

20
0

M
B

x
30

0
–

1.
9

G
H

z,
4-

co
re

,
8-

th
re

ad
–

In
te

lU
H

D
62

30
FI

JI
/C

LI
J,

O
pe

nC
L

sp
ee

d-
up

of
co

m
m

on
an

al
ys

is
ta

sk
s

2-
18

8X

2x
2.

1
G

H
z,

8-
co

re
,

16
-t

hr
ea

d
–

Q
ua

dr
o

P
60

00
,2

4
G

B

C
ha

ng
et

al
.,

20
19

–
2

TB
S

S
D

3.
1

G
H

z,
10

-c
or

e,
20

-t
hr

ea
d

12
8

G
B

–
FI

JI
,M

at
la

b
20

17
a

O
M

E
-T

IF
F

de
co

nv
ol

ut
io

n,
sh

ea
rin

g

S
ap

oz
ni

k
et

al
.,

20
20

–
16

TB
S

S
D

R
A

ID
0

2x
2.

2
G

H
z,

8-
co

re
,

16
-t

hr
ea

d
12

8
G

B
Ti

ta
n

R
TX

,2
4

G
B

py
th

on
(N

um
py

,
N

um
ba

)
de

sk
ew

in
g,

de
co

nv
ol

ut
io

n
on

a
vo

lu
m

e
in

12
5

s

B
ig

S
tit

ch
er

processing has evolved over time from computations executed
on a single thread of a single CPU core to computations that
can be scheduled in parallel to multiple multi-threaded CPU
cores and GPU cores on a single or across several computer
nodes. Storage solutions have shifted from uncompressed TIFF
files on standard HDDs to multi-resolution chunked pyramid
file types with lossless compression on SSDs. These examples are
from academic research, but commercial light-sheet acquisition
software (e.g., Zeiss Zen) and other image analysis softwares
(Imaris, Vision4D, and Amira) have similarly been adapting their
computing environments to accommodate larger image data files.

One area that highlights the special difficulties with light-
sheet microscopy data is that of multiview image reconstruction.
As we have emphasized, there are frequently multiple views of
the sample in question that could theoretically be combined in
any number of ways. What is especially interesting to biologists
is the possibility of increasing the spatial resolution of the
resulting image by utilizing information coming from views with
complementary spatial frequency information. Computational
work toward this goal preceded the first SPIM microscope
in a successful attempt to improve widefield fluorescence
microscopy resolution by acquisition and fusion of multiple
views (Swoger et al., 2003). This work was extended to include
deconvolution (Swoger et al., 2007). Deconvolution is a signal
processing concept recognizing that any measurement of an
object by an instrument is the convolution of the object with the
instrument’s impulse response. Thus, if one has a measurement
of a given instrument’s impulse response, one can attempt
to computationally recover a higher-resolution version of the
object in question by deconvolving the measurement with the
impulse response. In the case of a fluorescence microscope,
the impulse response is the microscope’s point spread function
(PSF) which can be theoretically computed and experimentally
measured (often from the fluorescent beads embedded with
the sample in agarose for fiducial markers) and has its Fourier
transform produced counterpart in the frequency domain as
the optical transfer function (OTF). This fact is of interest as a
convolution in the spatial domain becomes multiplication in the
frequency domain, so operations are often less computationally
expensive in the frequency domain despite the requisite Fourier
transform. A variety of different deconvolution algorithms take
different approaches to estimate the underlying image in the
spatial domain or frequency domain, often as an iterative process
with or without the PSF (as in blind deconvolution algorithms)
(Sibarita, 2005).

There have been many efforts to apply these different
deconvolution algorithms to light-sheet microscopy data, the
simplest of these being ones that deconvolve the individual
views prior to fusing the images together. However, due to the
computational cost of this approach, even with GPU acceleration,
more effort has been made to adapt the iterative steps in
these different approaches to incorporate the information from
different views in a single joint deconvolution. The Richardson-
Lucy (R-L) algorithm has been adapted to switch between one
of two orthogonal views as it iterates progressively toward a
maximum likelihood estimation of the underlying image, which
is implemented in a combination of MATLAB and python

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 13

Gibbs et al. Navigating the Light-Sheet Software Landscape

(Wu et al., 2013). Using an unmatched back projector (the
function that maps from the measurement to the underlying
object) was shown to produce similar results in tenfold fewer
iterations (Guo et al., 2020). R-L has also been adapted to a
Bayesian/Probabilistic algorithm implemented as a FIJI plugin
that can reduce computation time on a CPU by two orders of
magnitude when 5 or more views are considered in the estimation
(Preibisch et al., 2014). A clever plane-wise deconvolution
algorithm allows more efficient GPU acceleration (Schmid and
Huisken, 2015). In all implementations, using the views jointly
for deconvolution appears to provide superior reconstruction.
Whether a more accurate space-variant PSF algorithm would
be useful is unclear. Several reports implement spatially varying
PSFs that typically are theoretically modeled based on the
species of the light-sheet microscope (as the PSF calculation
depends on the optics of both the illumination and the detection
paths) (Temerinac-Ott et al., 2011; Chen et al., 2018), but these
improvements appear to be modest (Becker et al., 2019).

Deep-learning neural networks (DNNs) trained on
traditionally deconvolved images have also been used to
infer the underlying object in an image (Weigert et al., 2018; Bai
et al., 2019; Guo et al., 2020). Once trained, such networks can
use basic linear algebra operations to quickly predict a desired
outcome. Care must be taken to validate such approaches,
however, since training data sets for such models are never
comprehensive. Another appealing aspect of this approach, in
addition to incomparable computational speed, is that it may no
longer be necessary to embed fluorescent beads with specimens
(provided a performant non-bead-based registration algorithm
is available), which is desirable as it can be difficult to find
compatible fluorescent beads for certain clearing solutions and
the beads often must be computationally extracted for other
visualization and image processing steps.

Deep learning techniques are increasingly popular for light-
sheet image analysis and frequently implemented as python
scripts utilizing libraries that build on GPU APIs (e.g., PyTorch
and TensorFlow). Some examples include detecting bacteria in
larval zebrafish intestine with 3D convolutional neural network
(CNN) (Hay and Parthasarathy, 2018), puncta segmentation
in sub-cellular lattice light-sheet microscopy volumes with 3D-
UNET architecture (Schoneberg et al., 2019), high-content
screening of mitotic phenotypes in spheroid cultures using
diSPIM and deep learning (Eismann et al., 2020), and Deep-
SLAM, an add-on device for inverted microscopes for light-sheet
imaging and DNN deblurring (Zhao et al., 2020).

TOOL SELECTION PROCESS AND
LEARNING TO DRAFT AND TEST IMAGE
ANALYSIS PIPELINES

Having discussed the relevant concepts, we now present an
outline to follow when drafting and testing light-sheet image
analysis pipelines shown in Figure 6. The first step in the
tool selection process is to understand the size of data that
will be generated and to what extent the data can be cropped
or compressed without loss of detail relevant to the biological

question at hand. The next step is to survey the computational
resources that are available and connect with the personnel
responsible for maintenance of those resources (IT staff and
HPC staff). With information about the limits of computational
resources and data size, it is possible to predict if software
capable of lazy loading/processing will be required. It is good,
if one has familiarity with typical image analysis pipelines, to
draft an initial image analysis pipeline with theoretical steps
and without committing to any particular software or algorithm.
Once the general steps are enumerated from end-to-end, one
can search for candidate softwares that can handle the entire
pipeline from end-to-end, or more likely, to identify a handful
of software packages that best address different components
of the pipeline and minimize the amount of data resaving or
data wrangling required. In this endeavor, it is useful to pay
attention to the quality of customer service if one is searching
the commercial software space and assess the developmental
trajectory of a given software (is it actively maintained, used by
a variety of similar researchers) if searching the open software
space. If time allows, it can be beneficial to construct several
candidate pipelines to test side-by-side. During this drafting,
it will benefit one greatly to keep notes in a lab book or
some other documentation on the details of different software,
where they are available, how to overcome any installation
issues experienced, available details of algorithmic processes
and computational performance, specific parameters and step-
by-step execution of processing. Ideally during this testing, a
manually annotated ground truth is available to quantify the
accuracy of a pipeline under slightly different configurations
(order of operations) or with different parameters. Without
rigorous note-taking, as one would maintain in the wet lab
to go back and refer to for troubleshooting, informing future
experiments, and communicating results, it is easy to lose
track of what has already been tried for a given computational
task. Worse, one may strike on a satisfactory pipeline and
combination of parameters but fail to record what was the
exact implementation that gave such accurate results. Once a
reasonable result is produced, write a protocol. Depending on
the makeup of a given research group that seeks to utilize light-
sheet microscopy data, it is also useful to consider whether
collaboration is a more viable option in the case no one in
the group is interested in developing the expertise required for
light-sheet image analysis. Increasingly more computer scientists
are drawn to the specific computational challenges associated
with big image data and collaborations with them could lead
to interesting new advances. Increasingly more core facilities
are harboring light-sheet microscopes and the researchers there
may be able to assist on-boarding students, post-docs, and
investigators to the field or serve as collaborators themselves.

DISCUSSION

We have presented a high-level overview of computing concepts
we find relevant to navigating the existing software available
for analysis of light-sheet microscopy data. More detailed
information is easily available online and in the cited literature. In

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 14

Gibbs et al. Navigating the Light-Sheet Software Landscape

FIGURE 6 | Outline of software tool selection process.

reviewing these concepts, we have also discussed the progression
of light-sheet microscopy development from optical hardware to
computing hardware and analysis software.

We also want to point out some features to strive for
when designing future software solutions, from the end-
user’s perspective. Many biologists would say it is desirable
to have analysis tools that work quickly and easily. This
statement is often related to difficulties encountered when
installing open source software and difficulties with learning
the scope of functionality of a given software that may or
may not include some basic scripting/programming. In the
recent past, efforts toward providing better support for open
source software through receptive developers patiently helping
scientists wanting to use their software have been increasing
(see image.sc forum), as well as efforts made to create better
software documentation and tutorial videos. Communities like
the NEUBIAS group, with their seminars broadcast online now,
as well as conferences like the Images 2 Knowledge Janelia
conference that went virtual during the pandemic, have made
quality tutorials more accessible. We hope such efforts will
continue and will make it easier for scientists to use and
provide feedback to active software development teams. While
on one hand end-users can be overwhelmed with too many
customizable options and functionality, it is also very powerful
to be able to tune parameters interactively with tightly coupled
computation and visualization [e.g., FIJI’s CLIJ assistant (Haase
et al., 2021)]. Having the ability to access/write data stores from
a variety of software packages without resaving data would be
tremendously useful. Currently, depending on the format and
size of the existing data, a search for software solutions is usually
confined to those that can handle the data in its existing form.
Software that can enumerate memory needs clearly in advance
(such as BigStitcher does for some functions) and potentially
detect available computing hardware and automatically scale
computation up as needed would be very powerful. Alternatively,
acquisition systems that can incorporate more processing steps

on-the-fly, provided they are clearly described and accepted
by the scientific community, could reduce the image and
data analysis bottleneck. Rather than collecting a dataset that
takes years to analyze, analysis could be finished the same
day. Having more application context from instrument and
software developers and less hype, with software benchmarked
against existing techniques with a variety of standard data sets
is also desirable.

From the perspective of developers, it is helpful to enumerate
these computational concepts to drive better appreciation among
biologists for the need to value software maintenance and to
invest in proper analysis pipeline development. Biologists can
value these endeavors by citing open-source software, hiring
bioimage analysts and including them as authors on papers, and
advocating to funding agencies and institutions for support for
software maintenance. While we have focused mostly on the
world of open-source software solutions for light-sheet image
analysis, it will be important to better engage the commercial
sector so that more light-sheet specific analysis functions can be
incorporated in powerful analysis environments like Imaris and
Arivis. It would also be helpful for commercial software to be
more compatible with HPC systems.

FIGURE 7 | Community of researchers that help to turn light-sheet image
data into scientific insight.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 November 2021 | Volume 9 | Article 739079

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 15

Gibbs et al. Navigating the Light-Sheet Software Landscape

The nature of HPC systems will continue to evolve to
support composable virtual machines and software containers,
driving the need for more diverse communities of researchers
with the right expertise to extract biological insights from
light-sheet data sets, as shown in Figure 7. Incentives for
collaborative multidisciplinary research will require more holistic
storytelling, and a scientific culture that is more conscientious
about sharing credit so that all parties can be equally invested in a
multidisciplinary question. Consider how the story of light-sheet
microscopy (Siedentopf and Zsigmondy, 1902; Néculcéa, 1903) is
told, often focusing on just one name, Zsigmondy, or Siedentopf,
chemist and optical physicists, respectively, depending on which
field the report is from Masters (2020). Multi-disciplinary
science will be benefited by increased tolerance for more nuance
and complexity where recognition of scientific contributions
is concerned, hopefully resulting in better communication and
quicker time to biological insight.

AUTHOR CONTRIBUTIONS

HG and KM devised the figures. HG wrote the initial manuscript
and performed all imaging. HG, SMM, NH, AP, SV, SS, AM, AY,

AL, DM, KM, and LP provided revisions based on their different
expertise. HG, SWM, and AV prepared samples. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Chan Zuckerberg Initiative
through the Silicon Valley Community Foundation (CZI
Imaging Scientist Program, 2019-198168), National Institutes
of Health (R01 NS088564 and R21 NS109504), and
TIRR Foundation.

ACKNOWLEDGMENTS

We would like to acknowledge the Microscopy and Imaging
Center and High Performance Research Center at Texas A&M
University for providing access to the Zeiss Z.1 light-sheet
microscope and computing clusters, respectively. We would also
like to thank Bruce Riley and Jennifer Dong for zebrafish care
and maintenance.

REFERENCES
AICSImageIO Contributors (2021). AICSImageIO: Image Reading, Metadata

Conversion, and ImageWriting forMicroscopy Images in Pure Python [Computer
software]. GitHub. Available online at: https://github.com/AllenCellModeling/
aicsimageio (accessed October 7, 2021).

Albert-Smet, I., Marcos-Vidal, A., Vaquero, J. J., Desco, M., Muñoz-Barrutia, A.,
and Ripoll, J. (2019). Applications of Light-Sheet Microscopy in Microdevices.
Front. Neuroanat. 13:1.

Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson, K.,
et al. (2014). Fast, accurate reconstruction of cell lineages from large-scale
fluorescence microscopy data. Nat. Methods 11, 951–958. doi: 10.1038/nmeth.
3036

Andreev, A., and Koo, D. E. S. (2020). Practical guide to storing large amounts of
microscopy data. Microsc. Today 28, 42–45. doi: 10.1017/s1551929520001091

Bai, C., Liu, C., Yu, X., Peng, T., Min, J., Yan, S., et al. (2019). Imaging Enhancement
of Light-Sheet Fluorescence Microscopy via Deep Learning. IEEE Photon.
Technol. Lett. 31, 1803–1806. doi: 10.1109/lpt.2019.2948030

Becker, K., Saghafi, S., Pende, M., Sabdyusheva-Litschauer, I., Hahn, C. M.,
Foroughipour, M., et al. (2019). Deconvolution of light sheet microscopy
recordings. Sci. Rep. 9:17625.

Bouchard, M. B., Voleti, V., Mendes, C. S., Lacefield, C., Grueber, W. B.,
Mann, R. S., et al. (2015). Swept confocally-aligned planar excitation (SCAPE)
microscopy for high speed volumetric imaging of behaving organisms. Nat.
Phot. 9, 113–119.

Campagnola, L., Klein, A., Larson, E., Rossant, C., and Rougier, N. (2015). VisPy:
Harnessing The GPU For Fast, High-Level Visualization. Proc. Python Sci. Conf.
2015:25080. doi: 10.25080/majora-7b98e3ed-00e

Chang, B.-J., Kittisopikul, M., Dean, K. M., Roudot, P., Welf, E. S., and Fiolka, R.
(2019). Universal light-sheet generation with field synthesis. Nat. Methods 16,
235–238. doi: 10.1038/s41592-019-0327-9

Chen, B.-C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W.,
et al. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at
high spatiotemporal resolution. Science 346:1257998.

Chen, Y., Chen, M., Zhu, L., Wu, J. Y., Du, S., and Li, Y. (2018). Measure and
model a 3-D space-variant PSF for fluorescence microscopy image deblurring.
Opt. Exp. 26:14375. doi: 10.1364/oe.26.014375

Crist, J. (2016). Dask & Numba: Simple libraries for optimizing scientific python
code. IEEE Internat. Conf. Big Data 2016:7840867. doi: 10.1109/bigdata.2016.
7840867

Dask Development Team (2016). Dask: Library for Diynamic Task Scheduling.
Available online at: https://dask.org (accessed October 7, 2021).

Di Battista, D., Merino, D., Zacharakis, G., Loza-Alvarez, P., and Olarte, O. E.
(2019). Enhanced Light Sheet Elastic Scattering Microscopy by Using a
Supercontinuum Laser. Methods Protoc. 2:2030057. doi: 10.3390/mps2030057

Diederich, B., Lachmann, R., Carlstedt, S., Marsikova, B., Wang, H., Uwurukundo,
X., et al. (2020). A versatile and customizable low-cost 3D-printed open
standard for microscopic imaging. Nat. Comm. 11:5979.

Dunsby, C. (2009). Optically Sectioned Imaging by Oblique Plane Microscopy.
Adv. Microsc. Tech. 2009:7367. doi: 10.1364/ecbo.2009.7367_0h

Eismann, B., Krieger, T. G., Beneke, J., Bulkescher, R., Adam, L., Erfle, H.,
et al. (2020). Automated 3D light-sheet screening with high spatiotemporal
resolution reveals mitotic phenotypes. J. Cell Sci. 133:245043. doi: 10.1242/jcs.
245043

Fadero, T. C., Gerbich, T. M., Rana, K., Suzuki, A., DiSalvo, M., Schaefer, K. N.,
et al. (2018). LITE microscopy: Tilted light-sheet excitation of model organisms
offers high resolution and low photobleaching. J. Cell Biol. 217, 1869–1882.
doi: 10.1083/jcb.201710087

Glaser, A. K., Reder, N. P., Chen, Y., Yin, C., Wei, L., Kang, S., et al. (2019). Multi-
immersion open-top light-sheet microscope for high-throughput imaging of
cleared tissues. Nat. Commun. 10:2781.

Guo, M., Li, Y., Su, Y., Lambert, T., Nogare, D. D., Moyle, M. W., et al. (2020).
Rapid image deconvolution and multiview fusion for optical microscopy. Nat.
Biotechnol. 38, 1337–1346. doi: 10.1038/s41587-020-0560-x

Haase, R., Jain, A., Rigaud, S., Vorkel, D., Rajasekhar, P., Suckert, T., et al. (2021).
Interactive deisng of GPU-accelerated Image data flow graphs and cross-
platform deployment using multi-lingual code generation. bioRxiv [Preprint].
doi: 10.1101/2020.11.19.386565v1

Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., et al.
(2020). CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17,
5–6. doi: 10.1038/s41592-019-0650-1

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 November 2021 | Volume 9 | Article 739079

https://github.com/AllenCellModeling/aicsimageio
https://github.com/AllenCellModeling/aicsimageio
https://doi.org/10.1038/nmeth.3036
https://doi.org/10.1038/nmeth.3036
https://doi.org/10.1017/s1551929520001091
https://doi.org/10.1109/lpt.2019.2948030
https://doi.org/10.25080/majora-7b98e3ed-00e
https://doi.org/10.1038/s41592-019-0327-9
https://doi.org/10.1364/oe.26.014375
https://doi.org/10.1109/bigdata.2016.7840867
https://doi.org/10.1109/bigdata.2016.7840867
https://dask.org
https://doi.org/10.3390/mps2030057
https://doi.org/10.1364/ecbo.2009.7367_0h
https://doi.org/10.1242/jcs.245043
https://doi.org/10.1242/jcs.245043
https://doi.org/10.1083/jcb.201710087
https://doi.org/10.1038/s41587-020-0560-x
https://doi.org/10.1101/2020.11.19.386565v1
https://doi.org/10.1038/s41592-019-0650-1
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 16

Gibbs et al. Navigating the Light-Sheet Software Landscape

Hay, E. A., and Parthasarathy, R. (2018). Performance of convolutional neural
networks for identification of bacteria in 3D microscopy datasets. PLoS Comput.
Biol. 14:e1006628. doi: 10.1371/journal.pcbi.1006628

Hörl, D., Rojas Rusak, F., Preusser, F., Tillberg, P., Randel, N., Chhetri, R. K., et al.
(2019). BigStitcher: reconstructing high-resolution image datasets of cleared
and expanded samples. Nat. Methods 16, 870–874. doi: 10.1038/s41592-019-
0501-0

Huisken, J., and Stainier, D. Y. R. (2007). Even fluorescence excitation by
multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett.
32, 2608–2610. doi: 10.1364/ol.32.002608

Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E. H. K.
(2004). Optical sectioning deep inside live embryos by selective plane
illumination microscopy. Science 305, 1007–1009. doi: 10.1126/science.
1100035

Keller, P. J., Schmidt, A. D., Wittbrodt, J., and Stelzer, E. H. K. (2008).
Reconstruction of Zebrafish Early Embryonic Development by Scanned Light
Sheet Microscopy. Science 322, 1065–1069. doi: 10.1126/science.1162493

Kumar, A., Wu, Y., Christensen, R., Chandris, P., Gandler, W., McCreedy, E.,
et al. (2014). Dual-view plane illumination microscopy for rapid and spatially
isotropic imaging. Nat. Protoc. 9, 2555–2573. doi: 10.1038/nprot.2014.172

Kumar, M., Kishore, S., Nasenbeny, J., McLean, D. L., and Kozorovitskiy, Y. (2018).
Integrated one- and two-photon scanned oblique plane illumination (SOPi)
microscopy for rapid volumetric imaging. Opt. Express 26, 13027–13041. doi:
10.1364/oe.26.013027

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.
(2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature
445, 168–176.

Liu, T.-L., Upadhyayula, S., Milkie, D. E., Singh, V., Wang, K., Swinburne,
I. A., et al. (2018). Observing the cell in its native state: Imaging subcellular
dynamics in multicellular organisms. Science 360:1392. doi: 10.1126/science.aaq
1392

Masters, B. R. (2020). Richard Zsigmondy and Henry Siedentopf ’s
Ultramicroscope. Spr. Ser. Opt. Sci. 2020, 165–172. doi: 10.1007/978-3-
030-21691-7_10

Matryba, P., Kaczmarek, L., and Golab, J. (2019). Advances in ex situ tissue optical
clearing. Laser Phot. Rev. 13:1800292. doi: 10.1002/lpor.201800292

McCreedy, D. A., Jalufka, F. L., Platt, M. E., Min, S. W., Kirchoff, M. A., Pritchard,
A. L., et al. (2021). Passive clearing and 3D lightsheet imaging of intact and
injured spinal cord in mice. Front. Cell Neurosci. 15:684792.

Moore, J., Allan, C., Besson, S., Burel, J.-M., Diel, E., Gault, D., et al. (2021). OME-
NGFF: scalable format strategies for interoperable bioimaging data. BioRxiv
2021:437929. doi: 10.1101/2021.03.31.437929

Napari Contributors (2019). Napari: A Multi-Dimensional Image Viewer for
Python. Available online at: https://doi.org/10.5281/zenodo.3555620 (accessed
October 7, 2021).

Néculcéa, E. (1903). II. SIEDENTOPF et R. ZSIGMONDY. — Ueber
Sichtbarmachung ultramikroskopischer Teilchen, mit besonderer
Anwendung auf Goldrubingläser (Méthode permettant de voir les particules
ultramicroscopiques et d’en évaluer les dimensions; application spéciale aux
verres rubis à l′or). — Drude’s Annalen der Physik, t. X, p. 1-39. J. de Physique
Théorique et Appliquée 2, 692–702. doi: 10.1051/jphystap:019030020069201

Peng, H., Bria, A., Zhou, Z., Iannello, G., and Long, F. (2014). Extensible
visualization and analysis for multidimensional images using Vaa3D. Nat.
Protoc. 9, 193–208. doi: 10.1038/nprot.2014.011

Pietzsch, T., Preibisch, S., Tomančák, P., and Saalfeld, S. (2012). ImgLib2—
generic image processing in Java. Bioinformatics 28, 3009–3011. doi: 10.1093/
bioinformatics/bts543

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:
visualization and processing for large image data sets.Nat.Methods 12, 481–483.
doi: 10.1038/nmeth.3392

Pitrone, P. G., Schindelin, J., Stuyvenberg, L., Preibisch, S., Weber, M., Eliceiri,
K. W., et al. (2013). OpenSPIM: an open-access light-sheet microscopy
platform. Nat. Methods 10, 598–599. doi: 10.1038/nmeth.2507

Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith,
C. G., et al. (2011). Rapid three-dimensional isotropic imaging of living cells
using Bessel beam plane illumination. Nat. Methods 8, 417–423. doi: 10.1038/
nmeth.1586

Power, R. M., and Huisken, J. (2019). Putting advanced microscopy in the hands of
biologists. Nat. Methods 16, 1069–1073. doi: 10.1038/s41592-019-0618-1

Preibisch, S., Amat, F., Stamataki, E., Sarov, M., Singer, R. H., Myers, E., et al.
(2014). Efficient Bayesian-based multiview deconvolution. Nat. Methods 11,
645–648. doi: 10.1038/nmeth.2929

Preibisch, S., Saalfeld, S., Schindelin, J., and Tomancak, P. (2010). Software for
bead-based registration of selective plane illumination microscopy data. Nat.
Methods 7, 418–419. doi: 10.1038/nmeth0610-418

Reynaud, E. G., Peychl, J., Huisken, J., and Tomancak, P. (2015). Guide to light-
sheet microscopy for adventurous biologists. Nat. Methods 12, 30–34. doi:
10.1038/nmeth.3222

Richardson, D. S., and Lichtman, J. W. (2015). Clarifying Tissue Clearing. Cell 162,
246–257. doi: 10.1016/j.cell.2015.06.067

Royer, L. A., Lemon, W. C., Chhetri, R. K., Wan, Y., Coleman, M., Myers, E. W.,
et al. (2016). Adaptive light-sheet microscopy for long-term, high-resolution
imaging in living organisms. Nat. Biotechnol. 34, 1267–1278. doi: 10.1038/nbt.
3708

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID:
collaborative annotation toolkit for massive amounts of image data.
Bioinformatics 25, 1984–1986. doi: 10.1093/bioinformatics/btp266

Sapoznik, E., Chang, B.-J., Huh, J., Ju, R. J., Azarova, E. V., Pohlkamp, T., et al.
(2020). A versatile oblique plane microscope for large-scale and high-resolution
imaging of subcellular dynamics. Elife 9:57681. doi: 10.7554/eLife.57681

Schmid, B., and Huisken, J. (2015). Real-time multi-view deconvolution.
Bioinformatics 31, 3398–3400. doi: 10.1093/bioinformatics/btv387

Schoneberg, J., Raghupathi, G., Betzig, E., and Drubin, D. (2019). 3D
Deep Convolutional Neural Networks in Lattice Light-Sheet Data Puncta
Segmentation. IEEE Internat. Conf. Bioinform. Biomed. 2019:8983012. doi: 10.
1109/bibm47256.2019.8983012

Sibarita, J.-B. (2005). Deconvolution microscopy. Adv. Biochem. Eng. Biotechnol.
95, 201–243.

Siedentopf, H., and Zsigmondy, R. (1902). Uber sichtbarmachung und
Größenbestimmung ultramikoskopischer† teilchen, mit besonderer
anwendung auf Goldrubingläser. Ann. Phys. 315, 1–39.

Stegmaier, J., Amat, F., Lemon, W. C., McDole, K., Wan, Y., Teodoro, G.,
et al. (2016). Real-Time Three-Dimensional Cell Segmentation in Large-Scale
Microscopy Data of Developing Embryos. Dev. Cell 36, 225–240. doi: 10.1016/
j.devcel.2015.12.028

Swaney, J., Kamentsky, L., Evans, N. B., Xie, K., Park, Y.-G., Drummond, G.,
et al. (2019). Scalable image processing techniques for quantitative analysis of
volumetric biological images from light-sheet microscopy. bioRxiv doi: 10.1101/
576595

Swoger, J., Huisken, J., and Stelzer, E. H. K. (2003). Multiple imaging axis
microscopy improves resolution for thick-sample applications. Opt. Lett. 28,
1654–1656. doi: 10.1364/ol.28.001654

Swoger, J., Verveer, P., Greger, K., Huisken, J., and Stelzer, E. H. K. (2007). Multi-
view image fusion improves resolution in three-dimensional microscopy. Opt.
Express 15, 8029–8042. doi: 10.1364/oe.15.008029

Taha, A. A., and Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMCMed. Imag. 15:68. doi: 10.1186/
s12880-015-0068-x

Temerinac-Ott, M., Ronneberger, O., Nitschke, R., Driever, W., and Burkhardt, H.
(2011). Spatially-variant Lucy-Richardson deconvolution for multiview fusion
of microscopical 3D images. IEEE Internat. Symp. Biomed. Imag. 2011:5872549.
doi: 10.1109/isbi.2011.5872549

Tischer, C., Ravindran, A., Reither, S., Chiaruttini, N., Pepperkok, R., and Norlin,
N. (2021). BigDataProcessor2: A free and open-source Fiji plugin for inspection
and processing of TB sized image data. Bioinformatics 2021:106. doi: 10.1093/
bioinformatics/btab106

Tomer, R., Khairy, K., Amat, F., and Keller, P. J. (2012). Quantitative high-speed
imaging of entire developing embryos with simultaneous multiview light-sheet
microscopy. Nat. Methods 9, 755–763. doi: 10.1038/nmeth.2062

Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., and Fraser, S. E. (2011). Deep
and fast live imaging with two-photon scanned light-sheet microscopy. Nat.
Methods 8, 757–760. doi: 10.1038/nmeth.1652

Ueda, H. R., Erturk, A., Chung, K., Gradinaru, V., Chedotal, A., Tomancak, P., et al.
(2020). Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci.
21, 61–79. doi: 10.1038/s41583-019-0250-1

Vettenburg, T., Dalgarno, H. I. C., Nylk, J., Coll-Lladó, C., Ferrier, D. E. K., Čižmár,
T., et al. (2014). Light-sheet microscopy using an Airy beam. Nat. Methods 11,
541–544. doi: 10.1038/nmeth.2922

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 November 2021 | Volume 9 | Article 739079

https://doi.org/10.1371/journal.pcbi.1006628
https://doi.org/10.1038/s41592-019-0501-0
https://doi.org/10.1038/s41592-019-0501-0
https://doi.org/10.1364/ol.32.002608
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1162493
https://doi.org/10.1038/nprot.2014.172
https://doi.org/10.1364/oe.26.013027
https://doi.org/10.1364/oe.26.013027
https://doi.org/10.1126/science.aaq1392
https://doi.org/10.1126/science.aaq1392
https://doi.org/10.1007/978-3-030-21691-7_10
https://doi.org/10.1007/978-3-030-21691-7_10
https://doi.org/10.1002/lpor.201800292
https://doi.org/10.1101/2021.03.31.437929
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.1051/jphystap:019030020069201
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.2507
https://doi.org/10.1038/nmeth.1586
https://doi.org/10.1038/nmeth.1586
https://doi.org/10.1038/s41592-019-0618-1
https://doi.org/10.1038/nmeth.2929
https://doi.org/10.1038/nmeth0610-418
https://doi.org/10.1038/nmeth.3222
https://doi.org/10.1038/nmeth.3222
https://doi.org/10.1016/j.cell.2015.06.067
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.7554/eLife.57681
https://doi.org/10.1093/bioinformatics/btv387
https://doi.org/10.1109/bibm47256.2019.8983012
https://doi.org/10.1109/bibm47256.2019.8983012
https://doi.org/10.1016/j.devcel.2015.12.028
https://doi.org/10.1016/j.devcel.2015.12.028
https://doi.org/10.1101/576595
https://doi.org/10.1101/576595
https://doi.org/10.1364/ol.28.001654
https://doi.org/10.1364/oe.15.008029
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1109/isbi.2011.5872549
https://doi.org/10.1093/bioinformatics/btab106
https://doi.org/10.1093/bioinformatics/btab106
https://doi.org/10.1038/nmeth.2062
https://doi.org/10.1038/nmeth.1652
https://doi.org/10.1038/s41583-019-0250-1
https://doi.org/10.1038/nmeth.2922
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

fcell-09-739079 November 10, 2021 Time: 14:49 # 17

Gibbs et al. Navigating the Light-Sheet Software Landscape

Voie, A. H., Burns, D. H., and Spelman, F. A. (1993). Orthogonal-plane
fluorescence optical sectioning: three-dimensional imaging of macroscopic
biological specimens. J. Microsc. 170, 229–236. doi: 10.1111/j.1365-2818.1993.
tb03346.x

Voleti, V., Li, W., Greaney, M., Lacefield, C., Schoppik, D., Bruno, R., et al. (2016).
SCAPE microscopy for high-speed volumetric functional imaging of the awake,
behaving brain. Biomed. Optics 2016:3. doi: 10.1364/brain.2016.btu2d.3

Voleti, V., Patel, K. B., Li, W., Campos, C. P., Bharadwaj, S., Yu, H., et al. (2019).
Real-time volumetric microscopy of in vivo dynamics and large-scale samples
with SCAPE 2.0. Nat. Methods 16, 1054–1062. doi: 10.1038/s41592-019-0579-4

Wan, Y., McDole, K., and Keller, P. J. (2019). Light-Sheet Microscopy and Its
Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev.
Biol. 35, 655–681.

Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., et al.
(2018). Content-aware image restoration: pushing the limits of fluorescence
microscopy. Nat. Methods 15, 1090–1097. doi: 10.1038/s41592-018-0216-7

Wolff, C., Tinevez, J.-Y., Pietzsch, T., Stamataki, E., Harich, B., Guignard, L., et al.
(2018). Multi-view light-sheet imaging and tracking with the MaMuT software
reveals the cell lineage of a direct developing arthropod limb. Elife 7:34410.
doi: 10.7554/eLife.34410

Wu, Y., Ghitani, A., Christensen, R., Santella, A., Du, Z., Rondeau, G., et al. (2011).
Inverted selective plane illumination microscopy (iSPIM) enables coupled cell
identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans.
Proc. Natl. Acad. Sci. U. S. A. 108, 17708–17713. doi: 10.1073/pnas.1108494108

Wu, Y., Kumar, A., Smith, C., Ardiel, E., Chandris, P., Christensen, R., et al. (2017).
Reflective imaging improves spatiotemporal resolution and collection efficiency
in light sheet microscopy. Nat. Commun. 8:1452.

Wu, Y., Wawrzusin, P., Senseney, J., Fischer, R. S., Christensen, R., Santella, A.,
et al. (2013). Spatially isotropic four-dimensional imaging with dual-view plane
illumination microscopy. Nat. Biotechnol. 31, 1032–1038. doi: 10.1038/nbt.
2713

Zhao, F., Zhu, L., Fang, C., Yu, T., Zhu, D., and Fei, P. (2020). Deep-learning super-
resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic
volumetric imaging of large biological specimens. Biomed. Opt. Express 11,
7273–7285. doi: 10.1364/boe.409732

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gibbs, Mota, Hart, Min, Vernino, Pritchard, Sen, Vitha,
Sarasamma, McIntosh, Yeh, Lekven, McCreedy, Maitland and Perez. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 November 2021 | Volume 9 | Article 739079

https://doi.org/10.1111/j.1365-2818.1993.tb03346.x
https://doi.org/10.1111/j.1365-2818.1993.tb03346.x
https://doi.org/10.1364/brain.2016.btu2d.3
https://doi.org/10.1038/s41592-019-0579-4
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.7554/eLife.34410
https://doi.org/10.1073/pnas.1108494108
https://doi.org/10.1038/nbt.2713
https://doi.org/10.1038/nbt.2713
https://doi.org/10.1364/boe.409732
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Navigating the Light-Sheet Image Analysis Software Landscape: Concepts for Driving Cohesion From Data Acquisition to Analysis
	Introduction
	Constantly Fluctuating Landscape of Tools
	Common Data Sets and Computational Tasks for Light-Sheet Microscopy
	The Journey of a Voxel
	Camera to Peripheral Component Interconnect Express Bus
	Peripheral Component Interconnect Express Bus to Central Processing Unit, Memory, Graphics Processing Unit
	To Data Storage
	Out of Storage for Processing

	What Can Parallel Computing Mean?
	Evolution of Computing Environments for Light-Sheet Image Visualization and Analysis
	Tool Selection Process and Learning to Draft and Test Image Analysis Pipelines
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

