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Lung cancer is the leading cause of cancer death worldwide. 
More than 80% of lung cancers are non-small cell lung 
cancer (NSCLC) and patients with early stage disease have 
the best outcomes. However, most NSCLC are diagnosed 

at an advanced stage where the median survival is 12 
months with conventional treatment of chemotherapy 
and radiotherapy (1). The recent development of immune 
checkpoint inhibitor (ICI) therapy (immunotherapy) 
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has significantly improved survival in some patients. 
Unfortunately, not all patients respond to immunotherapy 
and others who may respond initially can go on to develop 
resistance (2,3). New approaches are required to fully utilise 
the benefits of immunotherapy. In this article we review 
the use of thermal ablation modalities in NSCLC and their 
potential to enhance natural and immunotherapy anti-
tumour responses.

Thermal ablation modalities

Thermal ablation uses extreme temperatures to induce 
tissue damage and is used to treat several malignancies 
including liver, kidney and lung, as an alternative for 
curative-intent therapy in medically inoperable patients 
with Stage I NSCLC (4,5). 

The commonly used thermal ablation techniques are 
radiofrequency ablation (RFA), microwave ablation (MWA) 
and cryoablation. The mechanism by which each modality 
induces tumour destruction has been described extensively 
in the literature (6-9). Ablative modalities are delivered 
percutaneously directly into the tumour in current clinical 
practice, but bronchoscopic ablative techniques are in 
development (10,11). 

Cryoablation is the rapid cooling of tissue to a 
temperature low enough that it results in tissue damage. 
Cryoablation probes achieve this by harnessing the Joule-
Thompson effect where a drop in temperature occurs as a 
result for the rapid expansion of certain liquids to gas such 
as argon or nitrogen. Temperatures as low as −160 ℃ can be 
achieved in tissue with cryoablation, resulting in ice crystal 
formation with cell death caused by cell membrane rupture, 
cell desiccation and osmotic shock (7). 

RFA uses the heat energy that is created by high 
frequency alternating currents to cause tissue damage and 
coagulative necrosis. Tissue damage is dependent on the 
electrical conductance of tissue. Low conductance of lung, 
and close proximity to large blood vessels and airways can 
reduce the efficacy of RFA (8,9).

MWA uses the heat generated by electromagnetic waves 
between frequencies of 900–2,500 MHz to cause cell 
death. Electromagnetic energy is less dependent on tissue 
characteristics than RFA and can lead to more accurate and 
larger ablation zones (6).

Clinical outcomes of thermal ablation

Thermal ablation is reserved for patients with inoperable 

localized NSCLC. Overall survival benefit between thermal 
ablation and stereotactic ablative body radiotherapy (SABR) 
appears comparable in a few large retrospective studies 
(12-14). The ability to achieve complete ablation, and the 
progression free survival with RFA and MWA have been 
found to be comparable, particularly for those with tumours 
less than two centimetres in diameter (14-20). Five-year 
overall survival rates of 27–67% have been reported with 
cryoablation, RFA and MWA (21-23). This is comparable 
to SABR, where five-year survival is approximately 30% and 
is inferior to five-year survival rates of those who undergo 
surgical resection were rates are 48–65% depending on type 
of surgery and degree of lymph node involvement (24). 

The complications of thermal ablation techniques relate 
to route of delivery (percutaneous or bronchoscopic) and 
to consequences of tissue ablation. Pneumothorax rates 
of 30–40% are described with the percutaneous approach 
(14,23,25,26). Of these about 13% will require chest 
tube insertion (14,23,25). Complications related to the 
consequences of tissue ablation include pleural effusion 
(5.2–9.6%), haemoptysis (3.9%), pneumonia (5.7%), 
respiratory failure (3.5%) and lung collapse (4%) (26). 
Clinically significant haemorrhage is rare. In the same way 
that bronchoscopic techniques have proven far safer than 
percutaneous biopsy for diagnosis of peripheral pulmonary 
lesions (27), bronchoscopic ablative modalities are 
associated with a superior safety profile, with initial studies 
demonstrating minimal adverse events (28-32).

Cancer and the immune system

The revolutionary improvements in lung cancer treatment 
with the use of immunotherapy has highlighted the need for 
a deeper understanding of the role of the immune system in 
the evolution of cancer (1,33).

Oncogenesis requires multiple events that enable tumour 
cell survival, including multiple somatic mutations that 
activate oncogenic drivers or delete tumour suppressors. 
The accumulation of mutations can result in cancer cells 
that are genetically diverse from the patient and as such 
should be identified as foreign by the host immune system, 
resulting in an anti-cancer immune response. 

The cancer-immunity cycle illustrates the steps that 
are required to enable an anti-cancer immune response  
(Figure 1). Cancer antigens are presented via antigen 
presenting cells such as dendritic cells to T cells causing 
activation and priming of the immune response. This 
leads to trafficking and infiltration of cytotoxic T cells 
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Figure 1 The cancer immunity cycle and the effects of thermal ablation: the cancer immunity cycle demonstrates the steps needed to 
induce an anticancer immune response. Step 1: tumour antigen release; step 2: Antigen presenting by dendritic cells; step 3: Priming and 
activation of T cells; step 4: T cell proliferation and trafficking to tumour cells; step 5: infiltration of T cells into tumour; step 6: tumour cell 
recognition by T cells and step 7: Tumour cell death. Immune checkpoint inhibitors can assist with steps 3, 6 and 7. Current evidence would 
suggest that thermal ablation would upregulate steps 1 and 2 as well as augment step 5.
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into the tumour resulting in cancer cell death and further 
antigen release (34). A hallmark of tumour development 
is immunoevasion (35), which often occurs through 
upregulation of negative regulatory pathways (checkpoints) 
of immune homeostasis. Two examples are cytotoxic 
T-lymphocyte protein 4 (CTLA-4) and programmed cell 
death protein 1 (PD-1). CTLA-4 limits T cell activation by 
directly competing with the ligands of the co-stimulatory 
protein CD28, CD80 and CD86 (36). PD-1 is a cell surface 
receptor expressed on T-cells. Binding to its ligand program 
cell death ligand 1 (PD-L1) (Figure 2), results in activation 
of inhibitory signal pathways that lead to T-cell attenuation 
and exhaustion (37-41). Durvalumab, Pembrolizumab and 
nivolumab are anti-PD-L1 monoclonal antibodies that are 
currently used in current clinical practise. Ipilimumab is 
an anti-CTLA-1 monoclonal antibody that has recently 
been approved for use in NSCLC. However, despite the 

excellent response to ICI therapy in some patients with 
durable responses that can last many years, this only appears 
to occur in about 20% of those that are treated (2). Some 
patients with initial respond to PD-1 inhibitors go on to 
develop resistance as well (3).

Response to ICI therapy appears to correlate with 
types of T-cell immune response. Several studies that have 
assessed histologic samples prior to initiation of therapy 
have demonstrated several immune phenotypes that predict 
response to immunotherapy. These profiles are immune-
inflamed, immune excluded and immune-desert phenotypes. 
The immune inflamed phenotype is characterised by a 
tumour microenvironment where immune cells (especially 
CD4+ and CD8+ T cells) and cancer cells are in close 
proximity within the tumour parenchyma. These tumours 
are also associated with elevated levels of pro-inflammatory 
cytokines that promote T cell activation and expansion. 
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Figure 2 T cell interaction with antigen presenting cells and tumour cells. APC, antigen presenting cell; PD-1, programmed cell death 
protein 1; PD-L1, programmed cell death ligand 1; MHC, major histocompatibility complex; CTLA4, cytotoxic T lymphocyte protein 4; 
TCR, T cell receptor.
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The immune-excluded phenotype demonstrates abundant 
immune cells; however, these cells are found in the stroma 
and do not penetrate the tumour parenchyma. The 
immune-desert phenotype shows a paucity of T cells in 
both the stroma and parenchyma of the tumour (42,43). 

Immune-inflamed tumours have higher response rates 
to anti-PD-L1 and anti-PD-1 therapy. However, not all 
immune-inflamed tumours respond to immunotherapy, 
highlighting that immune cell infiltration on its own is 
not sufficient to induce an immune response and that 
implies cancer immunity is affected by tumour, host and 
environmental factors. These include intrinsic tumour 
properties such as cytokine release (44) and genetic 
composition (44) [including tumour mutational burden 
(TMB)]; and extrinsic factors such as the gut microbiome 
(45-49), the presence of infection (44) and the exposure 
to sunlight (50). These factors promote and suppress 
cancer immunity and sit in an equilibrium that is defined 
as the cancer-immune set point. This threshold needs to 
be surpassed for an individual with cancer to respond to 
immunotherapy (44).

Thermal ablation and the immune system

Recent pre-clinical work and some clinical studies have 
suggested that percutaneous thermal ablative therapies 
may alter the immune-profile of patients with cancer by 
activating various steps in the cancer immunity cycle. This 

would imply that thermal ablation has the potential to 
improve the efficacy of immunotherapy (51,52). We will 
explore further the current evidence that supports this for 
RFA, cryoablation and MWA.

Though evidence is limited in NSCLC, immunogenic 
changes with thermal ablation have been assessed in several 
malignancies, especially liver cancer, breast cancer, renal 
cell cancer and prostate cancer. Early studies in both 
cryoablation and RFA demonstrated tumour regression of 
untreated metastatic lesions (abscopal effect) with associated 
upregulation of immune cells in peripheral blood (53-59). 

Tumour necrosis occurs due to thermal ablation and 
results in neoantigen release from the tumour. RFA has 
been shown to increase carcinoembryonic antigen (CEA) 
levels in liver metastasis of colorectal cancer and similar 
changes in serum prostate specific antigen (PSA) in prostate 
cancer has been seen with cryoablation (60,61). Along with 
an increase in neoantigen release, an upregulation of danger 
signals is seen and together this assists in modulating the 
first step of the cancer immunity cycle. Danger signals are 
endogenous molecules that are released by damaged cells 
and have various effects on cancer immunity. Heat shock 
protein 70 (HSP70) is a danger signal that has been found 
to be elevated post cryoablation and RFA in melanoma (62). 
Heat-shock proteins assists in antigen presenting, by both 
chaperoning antigen to dendritic cells and by upregulating 
MHC class 1 expression (63,64). This induction of 
neoantigen expression and danger signal release leads 
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to increased neoantigen presentation as evidenced by 
the increased numbers of dendritic cells and enhanced 
dendritic cell maturation that has been observed with both 
cryoablation and RFA in several cancers including NSCLC 
(65,66). 

Evidence of T cell trafficking to ablated tumour as a 
result of increased neoantigen presentation has been seen 
in preclinical studies. Chemokine ligand 21 (CCL21) 
and intercellular adhesion molecule 1 (ICAM-1) are 
key molecules associated with T cell trafficking. The 
expression of CCL21 and ICAM-1 have been shown to be 
overexpressed in endothelial venules of the tumour draining 
lymph node and in CD31 positive endothelial cells of the 
tumour post RFA. As a result, ablation creates a localised T 
cell homing function causing an increase in naïve CD8+ T 
cells in ablated tumour tissue and tumour draining lymph 
nodes. The increase in T cell trafficking can be seen as early 
as 1 hour post ablation in mouse studies and appears to peak 
somewhere between 6 to 12 hours post ablation (67) leading 
to an increase in tumour infiltrating lymphocytes.

Preclinical and clinical studies have shown that the 
lymphocytes that infiltrate the tumour as a result of thermal 
ablation are predominantly CD4+ and CD8+ T cells 
(54,56,66,68-77). This response appears more robust with 
RFA and cryoablation than MWA (72,73,78). Upregulation 
of PD-L1 expression in resected tumour and PD1 expression 
in tumour infiltrating CD8+ and CD4+ lymphocytes 
have been seen post RFA in colorectal cancer (74).  
Natural killer (NK) cell and macrophage infiltration also 
appears to increase with thermal ablation (71,73). 

This increase in tumour infiltrating lymphocytes has 
been associated with elevated interferon-γ (IFN-γ) levels 
post ablation, implying an upregulation of a T helper 1 
(Th1) response that in turn would correspond with a cell 
mediated immune response (79). A Th1 response has also 
been observed in patients with liver cancer who demonstrate 
an abscopal effect with thermal ablation. Furthermore, 
the degree of the Th1 response appears to correlate with 
the observed clinical response in prostate cancer and renal 
cell carcinoma (80,81). Additionally, the pro-inflammatory 
cytokines IL-1β, IL-6 and IL-8 have been noted to be 
elevated post thermal ablation (54,82,83). These cytokines 
have been shown to assist with T cell proliferation and 
trafficking (84); as well promoting a Th1 response (85). 

Importantly, along with these changes in T (CD4+ and 
CD8+) effector cells, a reduction of immunosuppressive 
regulatory T cells (Treg) post ablation has been noted in 
studies of renal cell cancer, hepatocellular cancer (HCC) 

and prostate cancer (54,77,86-88). A higher number of 
CD4+ and CD8+ T cells and a lower number of Treg cells 
and myeloid-derived suppressor cells (MDSC) post thermal 
ablation have been shown to have a positive effect on 
tumour progression and survival (86,89).

While most of the evidence supports a robust anti-cancer 
immune response with thermal ablation it only seems to 
be transient. The immune effect appears to last about  
4 weeks, as described in a preclinical study where immune 
cells taken 4 and 8 weeks post ablation underwent a tumour 
rechallenge and anti-tumour cytolytic effect was only seen 
with immune cells from 4 weeks post ablation (90). In 
human studies, tumour antigen specific CD4+ and CD8+ 
T cells have been seen to persist in the peripheral blood 
between 2–4 weeks post ablation (54,76,77).

Thermal ablation and immunotherapy

While the anti-cancer immune response post ablation 
appears transient, there is robust evidence that it 
upregulates various steps in the cancer immunity cycle and 
could act to enhance the effect of immunotherapies. This 
has been assessed in some preclinical and clinical studies 
(Table 1).

Several types of immunotherapy have been assessed in 
combination with thermal ablation. These include dendritic 
cell injection; the use of the immune adjuvant CPG-
oligodeoxynucleotides (CpG-ODN); injection of OK432 
activated dendritic cells; IL-2 injection and granulocyte 
macrophage colony stimulating factor (GM-CSF) injection. 
All therapies in conjunction with thermal ablation appeared 
to promote a stronger immune response than either ablation 
or immunotherapy alone (Table 1) (62,69,71,74,81,91-110).

More importantly, a few studies have combined ICI 
therapy with thermal ablation in both preclinical and clinical 
settings. Similar to other immunotherapies combination, 
the addition of ICI to thermal ablation appeared to produce 
a more robust response compared to either ICI or ablation 
alone (Table 1) (74,92,97,100,105,106,109). 

One pilot study by McArthur et al. assessed patients 
with breast cancer who were treated with combined 
cryoablat ion and a  CTLA-4 antagonis t  pr ior  to 
mastectomy. Combination treatment was observed to be 
safe in this cohort. Combination treatment demonstrated 
a more sustained immune response than either ICI or 
thermal ablation alone. In peripheral blood this was 
characterised by an increase in Th1 cytokines (IFN-γ) 
and activated (ICOS+) and proliferating (Ki67+) CD4+T 
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Table 2 Studies combining thermal ablation and immunotherapy that are currently registered at clinicaltrials.gov 

Identifier Title Primary endpoint

NCT04339218 
(111)

Cryoablation in Combination (or Not) With Pembrolizumab and Pemetrexed-carboplatin in  
1st-line Treatment for Patients with Metastatic Lung Adenocarcinoma (CRYOMUNE)

1-year overall survival

NCT04201990 
(112)

Cryoablation Combined with Camrelizumab and Apatinib for Multiprimary Lung Cancer  
(CCA-MPLC)

Safety

NCT04102982 
(113)

Microwave Ablation in Combination with Camrelizumab Versus Camrelizumab in Metastatic 
Non-small-cell Lung Cancer (MWA in NSCLC)

Overall survival

NCT03769129 
(114)

Evaluating the Safety and Efficacy of Pembrolizumab Combined with MWA for Advanced 
NSCLC

Overall survival

NCT03290677 
(115)

Study of Core Needle Biopsy and Cryoablation of an Enlarging Tumour in Patients with 
Metastatic Lung Cancer and Metastatic Melanoma Receiving Post-Progression Immune 
Checkpoint Inhibitor Therapy

Cumulative incidence of 
treatment related serious 
adverse events

cells and CD8+ T cells (92). Currently further trials are 
underway to assess the synergy of thermal ablation with 
ICI in NSCLC (111-115) (Table 2).

Non thermal ablation and the immune system

Irreversible electroporation (IRE) is another ablation 
technique that exposes cells to electric pulses, which leads 
to cell wall damage and immunogenic cell death. Though 
not classified as a thermal ablative technique it has shown 
upregulation of an immune response in pancreatic cancer. 
In mouse studies with transplantation of renal carcinoma 
and pancreatic cancer cell lines, IRE lead to an increase 
in T-cell infiltration and improvements in progression 
free survival (116,117). IFN-γ increase has also been 
observed post IRE in rat models with osteosarcoma, 
this again was associated with an increase in CD4+ T 
cells in peripheral blood and tumour (118). A study of 
34 patients with locally advanced pancreatic cancer that 
underwent IRE demonstrated similar findings with an 
increase in CD4+ T cells, CD8+ T cells, NK cells and a 
reduction in regulatory T cells. This was associated with 
an increase in IL2 and a decrease in IL-6 and IL-10 (119). 
Additionally, IRE in combination with PD1 blockade has 
been found to increase CD8+ T cell tumour infiltration 
and improve overall survival in mice with pancreatic ductal 
adenocarcinoma (120). These results suggest that IRE 
also has potential to upregulate an anticancer immune 
response. Currently IRE has shown limited utility when 
delivered percutaneously to lung cancers (121-123),  
however flexible IRE catheters have been utilised 
bronchoscopically for management of airway-based 

inflammation and may be suitable for bronchoscopic IRE 
treatment of lung cancer (124). 

Tumour antigen release, dendritic cell activation and 
CD8+ T cell infiltration has also been described with 
radiotherapy. Preclinical studies where radiotherapy 
was combined with CTLA-4 blockade and anti-PD1 
antibody demonstrated improvement in tumour control 
and anti-tumour immune effect (125).  While the 
safety of combination ICI and radiotherapy has been  
established (125), clinical trials assessing the immune 
c h a n g e s  a s s o c i a t e d  w i t h  r a d i o t h e r a p y  a r e  s t i l l  
underway (126). At present there are no studies comparing 
the immune effects of radiotherapy to thermal ablation in 
NSCLC.

Could ablation be harmful?

While a majority of studies demonstrate a positive 
anticancer response the with thermal ablation, a few 
studies have suggested that RFA may promote tumour 
recurrence in HCC. Aggressive outgrowth of residual 
hepatic micro-metastasis had been seen in the surrounding 
tissue of patients undergoing RFA of HCC (127). A 
hypoxic microenvironment that occurs in HCC post RFA 
has been shown to enhance the invasive, chemo-resistant 
and metastatic abilities of the tumour cells, these changes 
had been seen in patients that underwent incomplete 
ablation (128). Perhaps in contrast to lung cancer, a 
chronic inflammatory state in HCC patients may favour 
a tumour microenvironment that would enhance tumour 
growth, as suggested by the Th2 cell dominance pre and 
post RFA in hepatocellular carcinoma in patients with 
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hepatitis C (129). 
The cytokines IL-10 and TGF-β have also been noted 

to be elevated post thermal ablation (54,70,82). IL-10 and 
TGF-β are immunosuppressive cytokines that act to inhibit 
dendritic cell maturation and block co-stimulatory pathways 
and upregulate T reg differentiation (82,130,131). Similarly, 
IL-6 which assists with T cell trafficking also has negative 
effects on anticancer immunity. It plays a role in impairing 
dendritic cell maturation, increasing MDSC proliferation 
and assisting in tumour cell proliferation (84,132,133). 

A retrospective case control study of patients with 
colorectal cancer and liver metastasis who underwent RFA 
found that those with incomplete ablation demonstrated 
significantly shorter time to new metastasis and reduced 
overall survival when compared to complete ablation (134). 
Incomplete tumour ablation could alter the balance of 
apoptotic cell death versus necrotic cell death. Apoptotic 
cell death has been found to be less immunogenic and may 
actually inhibit an immune response (135-137). 

The effects of residual tumour were further assessed 
in mice with colon cancer where It was found that when 
compared to complete RFA, incomplete RFA increased the 
amount of new metastatic lesions and tumour growth. Anti-
PD-1 treatment did not alter the rate of tumour growth 
or degree of new metastasis in this cohort. Incomplete 
RFA was associated with an increase in M2 phenotype 
macrophages, lower numbers of CD4, CD8 T cells and a 
higher number of Tregs. Tumour proliferation appears to 
be driven by residual tumour and an increase in tumour 
associated macrophages (TAMs) (134). 

While similar effects have not be seen in cryoablation 
and MWA studies, this warrants further assessment. 

The role of ablative immunotherapy

As mentioned previously percutaneous thermal ablation is 
currently used to treat localized NSCLC patient’s ineligible 
for surgery. Ablative immunotherapy, where thermal 
ablation is combined with ICI, could potentially expand this 
treatment modality to a broader patient cohort, including 
surgical patients, as well as later stage tumours. While ICI 
has significantly improved the survival in patients with 
metastatic NSCLC, utilising thermal ablation could further 
improve both rates of response and duration of efficacy. In 
addition, thermal ablation may be helpful in patients that 
develop resistance to ICI by increasing neoantigen release 
and upregulating the cancer immunity cycle. 

The current treatment of early stage NSCLC is surgical 

resection, however 5-year survival is only 55% in some 
groups, with a large proportion experiencing disease 
recurrence (138). The use of neoadjuvant ICI therapy has 
been encouraging in initial studies with complete pathologic 
response noted in some cases. However, the efficacy again 
is still limited and using this in conjunction with thermal 
ablation could improve efficacy. The utility of neoadjuvant 
ablative immunotherapy would need to be assessed in robust 
clinical trials to assess its efficacy when compared to current 
standard treatment. 

Current evidence demonstrates that thermal ablation 
can elicit a significant immune response that may be able to 
propagate the cancer immunity cycle. We hypothesise that 
this can shift tumours with an immune desert or immune-
excluded phenotype to a more immune-inflamed phenotype 
by upregulating steps 1 and 2 of the cancer immunity cycle 
(Figure 1). Furthermore, the process of ablation has the 
ability to directly disrupt the tumour stroma and upregulate 
immune cell trafficking, which would also assist in shifting 
tumours to a more immune-inflamed phenotype. 

Along with the changes in immune cell populations and 
their locations within the tumour microenvironment, the 
cytokine release that occurs with ablation has been shown 
in most circumstances to create a pro-inflammatory tumour 
microenvironment, the hope is that these changes can 
either alter the cancer immune setpoint for these patients, 
or modify the balance to a more immune stimulatory phase 
that shifts the patient/tumour over the threshold needed to 
respond to ICI. 

This hypothesis raises the exciting prospect that the 
potential of ICI therapy could be further enhanced by 
combination with ablative local therapy. Initial studies in 
other cancers would suggest that combination treatment can 
produce a more durable immune response with a reasonable 
safety profile. 

What is the next step?

At present we still need a more robust assessment of the 
immune response induced by thermal ablation. Human 
studies in NSCLC where the tumour microenvironment 
is assessed pre and post ablation would be particularly 
powerful. Assessment of immune cell populations and 
cytokines, their location and function with techniques such 
as RNA sequencing and mass cytometry and multiplex 
immunohistochemistry would allow for detailed analysis 
of changes with ablation (139-141). Investigation of CD8+ 
and CD4+ T cells would be especially important as the 
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presence and activation status of these cells appear to be 
an indicator of a strong anti-cancer immune response (43). 
Once a robust immune response has been demonstrated 
in NSCLC, performing clinical studies demonstrating 
tolerability/safety of the combination, and improved 
treatment outcomes will be needed. 

The corre lat ion between response  to  ablat ive 
immunotherapy and other suggested biomarkers predictive 
of response to ICI such as tumour mutational burden 
(TMB) would also be important. TMB is the total number 
of nonsynonymous mutations in the coding regions of 
genes, and recent evidence suggests that this is a powerful 
biomarker for selecting patients that will respond to 
immunotherapy (142). At present PD-L1 expression is 
used clinically to predict response to ICI, though more 
recent studies have demonstrated that the response to ICI 
might be independent of PD-1/PD-L1 expression (33). 
PD-1 and PD-L1 expression can be altered with ablation, 
and examining the potential effect of ablation on TMB 
would be of interest. TMB represent intrinsic tumour 
properties and alteration in TMB would provide insights 
into the possible changes to the cancer immune set point. 
Serial assessment of these biomarkers may be undertaken 
bronchoscopically to evaluate response to thermal ablation 
or ablative immunotherapy (143). Understanding responses 
within the innate intrinsic immune system (144,145) and 
how these impact responses to immunotherapy will also 
be important in integrating thermal tumour ablation into 
treatment paradigms.

Conclusions

ICI therapy has transformed treatment responses in 
NSCLC, though responses remain limited to a minority 
of patients. Immunogenic responses to tumour ablation 
are well established, and emerging evidence suggests that 
combination tumour ablation and immunotherapy may 
augment anti-tumour immune responses. Prospective 
studies are underway examining clinical efficacy of 
combination therapy, and studies should focus on both 
neoadjuvant and metastatic disease settings. Development 
of delivery systems with improved safety profiles is needed. 
Bronchoscopic thermal ablative techniques, which are 
currently under development may achieve this.
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