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Acute kidney injury (AKI) is a critical care syndrome, which is usually associated with sepsis-related endotoxemia. Evodiamine
(EVO) is an active ingredient of many traditional medicinal formulations that possess a battery of biological activities. In the
study, we aimed to evaluate the potential protective effect of EVO against lipopolysaccharide- (LPS-) induced AKI and cytotoxicity.
LPS-resulted pathological injuries were significantly ameliorated by the administration of EVO. EVO reduced the levels of blood
urea nitrogen (BUN) and creatinine in LPS-treated rats. EVO also inhibited LPS-induced reduction of cell viability in NRK-52E
cells. LPS-resulting increase of TNF𝛼 and IL-1𝛽 in both serum and kidney of rats and NRK-52E cells was inhibited by EVO. LPS-
induced increase of P65 NF-𝜅B expression was markedly inhibited by EVO. EVO-induced reduction of TNF𝛼 and IL-1𝛽 expression
in LPS-treated cells was blocked by overexpression of P65 NF-𝜅B. Moreover, the increase of cell viability in LPS-treated cells
induced by EVO was remarkably suppressed by overexpression of P65 NF-𝜅B. LPS-resulting increase of reactive oxygen species
(ROS) production was suppressed by EVO. H

2
O
2
suppressed EVO-induced decrease of P65 NF-𝜅B expression and increase of cell

viability in LPS-treated NRK-52E cells. Moreover, the antioxidant NAC significantly promoted EVO-induced decrease of P65 NF-
𝜅B expression and increase of cell viability in LPS-treated NRK-52E cells. In conclusion, EVO had crucial protective effects against
LPS-induced AKI and cytotoxicity through the antioxidant activities and thus the inhibition of inflammation. Our data highlight
EVO as a potential candidate for the development of new strategies for the treatment of AKI.

1. Introduction

Kidney is an important organ functioning to filter blood and
acting as the defense line in the body [1]. It is unfortunate
that kidney is one of the most common and direct targets
of severe damage [2]. Acute kidney injury (AKI) is a critical
care syndrome, which is very common in the elderly with up
to 22% mortality of hospitalized patients [3–6]. AKI is usu-
ally associated with sepsis-related endotoxemia, which con-
tributes to up to 50% of mortality in ICU patients [7, 8]. The
mortality rate in septic AKI patients is higher than nonseptic
AKI individuals [8, 9]. Endotoxemia mainly resulted from
lipopolysaccharide (LPS), themajor component of endotoxin
released from the cell wall of Gram-negative bacteria [7].
The LPS-induced endotoxemic AKI in rodent animals is
one of the most commonly used animal models to study
the pathogenesis and potential treatment of endotoxemic

AKI [10]. Endotoxemia-induced AKI could occur under sev-
eral extremely physiologically stressful conditions, including
trauma, burn, and infectious diseases [11]. Renal function is
acutely and severely reduced during AKI, characterized by
an increase in serum creatinine level and decrease in urine
output [12]. AKI also shows the hallmark of renal tubular
damage and inflammation [13–15]. LPS activates a renal
inflammatory cascade, promotes the release of numerous
pro-inflammatory cytokines, and results in kidney end-organ
damage [16]. Thus, researchers highlight anti-inflammatory
agents that may be developed into drugs for the treatment of
endotoxemic AKI [17].

Evodiamine (EVO), ((+)-(S)-8,13,13b,14-tetrahydro-14-
methylindolo [2,3:3,4] pyrido [2,1-b]quinazolin-5(7H)-
one), is an important alkaloidal component extracted from
Evodia rutaecarpa. EVO is an active ingredient of many
traditional medicinal formulations, such as plant extracts
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of E. rutaecarpa (Rutaceae), root bark of Zanthoxylum
budrunga wall, and Evodiae fructus [18]. EVO has been
shown to possess the properties of analgesia, antiemesis,
vascular dilatation, and prevention of tumor growth and
metastasis [19, 20]. In particular, EVO exhibits potent
anti-inflammatory activities [21–23].

In the study, we designed experiments to evaluate the
potential protective effect of EVO against LPS-induced AKI.
We found that EVO had critical antioxidant and anti-
inflammatory effects through inhibition of ROS/NF-𝜅B sig-
naling and protected against LPS-induced AKI.

2. Materials and Methods

2.1. Chemicals and Reagents. LPS (Escherichia coli 055:B5),
N-acetylcysteine (NAC), Evodiamine, and DCFH-DA were
obtained from Sigma-Aldrich (St.Louis, MO, USA). The 𝛽-
actin and P65 NF-𝜅B antibodies were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Rat TNF-𝛼
and IL-1𝛽 ELISA kits were obtained from Thermo Fisher
Scientific (Rockford, IL, USA).

2.2. Animals and Treatment. Male SD rats (6 -8 weeks)
were purchased from the Experimental Animal Center of
the First Affiliated Hospital of Xinxiang Medical University.
Experiments with animals were conducted in accordance
with the guidelines of the National Institutes of Health and
the First Affiliated Hospital of Xinxiang Medical University.
The mice were housed in plastic cages with 24 ± 2∘C and 40-
80% humidity with access to food and water at liberty and
were kept on a 12 h light/dark cycle.

The rats were randomly allocated into the following
groups (n=10):

Control group: rats were injected with equal volume
of vehicle.
LPS group: rats were injected intraperitoneally (i.p.)
with 15 mg/kg/bw of LPS in 50𝜇L PBS.
LPS + 100 mg/kg Nerolidol group: 1 h after LPS
treatment, the rats were injected i.p. with 100 mg/kg
EVO.
LPS + 200 mg/kg Nerolidol group: 1 h after LPS
treatment, the rats were injected i.p. with 200 mg/kg
EVO.

Experiments were terminated 24 h after LPS challenge
and the blood samples and kidney tissues were collected.

2.3. Histological Analysis. The kidney tissues were fixed in
4% paraformaldehyde, embedded in paraffin, and sliced into
5 𝜇m sections. After staining with hematoxylin and eosin
(H&E), pathological changes were observed under a light
microscope (×200; Olympus, Japan).The score of histological
injury was evaluated as previously reported [24].

2.4. Cell Culture and Treatment. The NRK-52E rat proximal
tubular cell line was obtained from American Type Culture
Collection (ATCC, Manassas, VA, USA). Cells were cultured

in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% FBS and antibiotics (100 U/ml penicillin
G, 100 mg/ml streptomycin, and 0.25 mg/ml amphotericin
in an incubator with 5% CO

2
at 37∘C). Cells were cultured

in serum-free DMEM with 1 𝜇g/ml LPS in the presence or
absence of 10 and 20 𝜇M EVO for 24h. EVO was dissolved in
DMSO as stock solution and diluted in serum-free DMEM.

2.5. Transfection of Plasmids. Thesequence of P65was cloned
into pCMV vector. Transient transfection of plasmids was
performed using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocols. 4-
6 hours after the transfection, cell growth medium was
removed and incubated in media containing 5% FBS. 48
hours after the transfection, cells were incubated with 1 𝜇g/ml
LPS with or without 20 𝜇M EVO for 24h. Cell viability and
indicated gene expression were determined.

2.6. Cell Viability. The cell viability was determined by the
3-(4,5-di- methylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay. The NRK-52E cells were seeded in 96-
well plates at a density of 5 × 104 cells/ml for 24 h and then
were cultured in serum-free DMEM with1 𝜇g/ml LPS in the
presence or absence of 10 and 20 𝜇MEVO for 24h.Thereafter,
20 𝜇l of MTT was added to each well and incubated for 4 h.
After careful removal ofmedium, 150 𝜇l of DMSOwas added.
The absorbance at a wavelength of 490 nm was detected on a
spectrophotometer (Bio-Rad, CA, USA).

2.7. Biochemical Determination. Serum and kidney homoge-
nates were used for biochemical determination. The levels
of BUN were determined using ELISA kits (MyBioSource,
CA, USA) according to the manufacturer’s instructions. Cre-
atinine level was measured using colorimetric/fluorometric
assay kits (BioVision, Inc., Milpitas, CA, USA) according to
the manufacturer’s instructions. The levels of inflammatory
cytokines TNF𝛼 and IL-1𝛽 in serum and kidney homogenates
were measured by ELISA kits (R&D Systems Inc., Minneapo-
lis, MN, USA) according to the manufacturer’s protocols.

2.8. RNA Extraction and Real-Time RT-PCR. Total RNA was
isolated from the kidney by using TRIzol reagent as per
the manufacturer’s instructions (Life Technologies, Carls-
bad, CA). Then 1 𝜇g of DNA-free total RNA was reverse-
transcribed by use of a one-step RT-PCR kit (TaKaRa, Dalian,
China). Reactions were performed in a 50 𝜇L SYBR GREEN
PCR volume formatted in CFX96 detection systems (Bio-
Rad, Hercules, CA). 𝛽-actin was used as an endogenous
control for RNA quality and differences among samples. Fold
induction was calculated according to the 2-ΔΔCt values.

2.9. Western Blot. Total proteins were extracted using ice-
cold RIPA lysis buffer (Thermo Fisher Scientific, Rockford,
IL,USA) and protein concentrationswere determined using a
bicinchoninic acid (BCA) assay kit (Thermo Fisher Scientific,
Rockford, IL, USA). The extracts were run on an SDS-
PAGE gel for Western blot analysis. After electrophoresis,
the proteins were electrotransferred to a polyvinylidene
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Figure 1: Effects of EVO on pathological injury of kidney in rats treated by LPS. Rats were intraperitoneally (i.p.) injected with EVO (10 and
20 mg/kg) 1 h after LPS treatment. Hematoxylin and eosin (HE) staining was conducted to evaluate histological injury of kidney tissues.
Representative images of HE staining were shown (a). The score of tubular injury was calculated (b). #p<0.05 vs control group. ##p<0.05 vs
LPS group.

difluoridemembrane (MilliporeCorporation,MA,USA) and
non-specific binding of antibodies was blocked with 5% BSA
in tris-buffered saline (TBS) for 1 h at room temperature.The
membranes were incubated at 4∘C overnight with primary
antibody in TBST. Then, the membranes were washed four
times using TBST with 15 min each time. Membranes were
incubated with peroxidase-conjugated IgG secondary anti-
body for 30 min at 37∘C. After washing for four time with
TBST, the immune complexes were detected using an ECL kit
(Millipore Corporation, MA, USA). Target gene expression
levels were normalized to 𝛽-actin expression.

2.10. ROS Level. After the treatment, cells were harvested
and incubated with 10 𝜇M 2’7’-dichlorodihydrofluorescein
diacetate (DCFH-DA) in serum-free DMEM for 30 min at
37∘C. Analysis was performed on a flow cytometry (BD, San
Jose, CA, USA). ROS level was expressed as folds vs control.

2.11. Statistical Analysis. Data are shown as the means ±
standard error of the means (SEM). Statistical analyses were
performed using GraphPad Prism software (La Jolla, CA,
USA). Differences were analyzed by one-way analysis of
variance, followed by Dunnett’s multiple comparison test.
P<0.05 was considered to be statistically significant.

3. Results

3.1. EVO Protects against LPS-Induced Renal Injury In Vivo
and In Vitro. LPS-induced rat model of endotoxemic AKI

was established in our study. We showed that the injection of
LPS induced edema of renal tubular epithelial cells, tubular
dilation, and distortion in kidneys of rats. LPS-resulting
pathological injuries were significantly ameliorated by the
administration of EVO (Figure 1(a)).The tubular injury score
in LPS group was significantly reduced by EVO (Figure 1(b)).
In addition, LPS induced a marked increase in the levels
of blood urea nitrogen (BUN) and creatinine (Figures 2(a)
and 2(b)). The treatment of EVO notably reduced the levels
of BUN and creatinine (Figures 2(a) and 2(b)). Moreover,
NRK-52E cells were exposed to LPS to induce cytotoxicity.
In Figure 2(c), we showed that LPS resulted in a significant
decrease of cell viability in NRK-52E cells. In the presence
of EVO, the reduction of cell viability induced by LPS was
notably inhibited (Figure 2(c)). The data demonstrated that
EVO protected against LPS-induced AKI in vivo and in vitro.

3.2. EVO Inhibits LPS-Induced Inflammation In Vivo and In
Vitro. �eEffect of EVOon Inflammation under the Condition
of LPS-Induced AKI. In Figures 2(a), 2(b), 2(c), and 2(d),
we showed that serum and kidney levels of inflammatory
cytokines TNF𝛼 and IL-1𝛽 were significantly increased. The
treatment of EVO induced a marked reduction of the levels
of TNF𝛼 and IL-1𝛽 in LPS-treated rats (Figures 3(a), 3(b),
3(c), and 3(d)). In addition, the mRNA expression of TNF𝛼
and IL-1𝛽 was notably increased by LPS in NRK-52E cells
(Figures 3(e) and 3(f)). LPS-induced increase of TNF𝛼 and
IL-1𝛽 levels was blocked by EVO treatment (Figures 3(e)
and 3(f)). The data demonstrated that EVO exhibited anti-
inflammatory effects against LPS-induced AKI.
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Figure 2: Effects of EVO on functional injury of kidney in rats and cell viability in NRK-52E cells treated by LPS. Rats were intraperitoneally
(i.p.) injected with EVO (10 and 20mg/kg) 1 h after LPS treatment. Kidney functionwas evaluated by the determination of blood urea nitrogen
(BUN) (a) and creatinine (b) levels. NRK-52E cells were treated with 1 𝜇g/ml LPS in the presence or absence of 10 and 20 𝜇M EVO for 24h.
Cell viability was detected by MTT assay (c). #p<0.05 vs control group. ##p<0.05 vs LPS group.

3.3. Inhibition of NF-𝜅B Expression Is Involved in the Protective
Effects of EVO. To explore the mechanism of EVO-induced
anti-inflammatory effects, we examined the expression of P65
NF-𝜅B. In Figures 4(a) and 4(b), we showed that LPS resulted
in a significant increase of P65 NF-𝜅B mRNA and protein
expression in NRK-52E cells. This increase of P65 NF-𝜅B
expression was markedly inhibited by EVO (Figures 4(a) and
4(b)). To test whether the reduction of P65 NF-𝜅B expression
was involved in the protective effects of EVO against AKI,
the expression of P65 NF-𝜅B was upregulated in NRK-52E
cells using pCMV-P65 NF-𝜅B. As shown in Figures 4(c) and
4(d), EVO-induced reduction of TNF𝛼 and IL-1𝛽 expression
was blocked by overexpression of P65 NF-𝜅B. Moreover, the
increase of cell viability in LPS-treated cells induced by EVO
was remarkably suppressed by overexpression of P65 NF-𝜅B
(Figure 4(e)). The data demonstrated that downregulation of
P65 NF-𝜅B was responsible for the anti-inflammatory effects
of EVO and was involved in EVO-induced protective effects
against LPS-induced AKI.

3.4. Antioxidant Effect Is Involved in the Protective Effects of
EVO. In the next step, we explored the mechanism of EVO-
induced inhibition of P65 NF-𝜅B expression. The ROS level
was examined and the results showed that LPS resulted in
a significant increase in ROS generation in NRK-52E cells
(Figure 5(a)). LPS-resulting ROS production was suppressed
by EVO in a concentration-dependent manner (Figure 5(a)).
This finding indicated that EVO played an antioxidant role
under the condition of LPS-induced cytotoxicity in NRK-
52E cells. Next, we tested whether the antioxidant role
was involved in EVO-induced anti-inflammatory effects and
protective effects against LPS-induced cytotoxicity.Hydrogen
peroxide (H

2
O
2
) treatment increased P65 NF-𝜅B expres-

sion (Figure 5(b)). H
2
O
2
suppressed EVO-induced decrease

of P65 NF-𝜅B expression in LPS-treated NRK-52E cells
(Figure 5(b)). In addition, EVO-induced increase of cell
viability in LPS-treatedNRK-52E cells was inhibited byH

2
O
2

treatment (Figure 5(c)). Moreover, the antioxidant NAC

significantly promoted EVO-induced decrease of P65 NF-
𝜅B expression (Figure 5(d)) and increase of cell viability
(Figure 5(e)) in LPS-treated NRK-52E cells.The data demon-
strated that the antioxidant activity was involved in the anti-
inflammatory effects and protective effects of EVO against
LPS-induced cytotoxicity.

4. Discussion

LPS is the most common agent that is used to establish
endotoxemic AKI animal model and induce cytotoxicity in
renal cells. In the current study, we examined the effects
of EVO on LPS-induced AKI in rats and LPS-induced in
NRK-52E rat proximal tubular cells. We found that EVO
ameliorated the histological injury of kidney tissues and
improved the function of kidney, as reflected by decrease of
BUN and creatinine levels, indicating that EVO protected
against LPS-induced AKI. EVO also exhibited cytoprotective
effects against LPS in NRK-52E cells.

The kidney is bound with high flow of blood and is
sensitive to systemic inflammation. In turn, cytokines and
chemokines can be synthesized within the tubular epithelium
and released to the circulation [25]. Thereafter, the kidney
is easily subject to inflammatory injury [26, 27], resulting
in renal dysfunction [28]. EVO has been reported to exhibit
anti-inflammatory activities. For example, EVOwas found to
inhibit nitric oxide and PGE2 synthesis from lipopolysaccha-
ride or IFN-𝛾-stimulated RAW264.7 cells [22, 23, 29]. EVO
may regulate inducible nitric oxide synthase via affecting
the expression of inflammatory cytokines, such as TNF𝛼
[30]. Fan et al. found that EVO inhibited zymosan-induced
production of IL-6, TNF𝛼, and IL-1𝛽 at both mRNA and
protein levels at 6 h in RAW264.7 cells [31]. However, it was
not reportedwhether EVOhad an anti-inflammatory effect in
kidney. In the current study, we found that EVO significantly
inhibited LPS-induced increase of serum and kidney levels
of TNF𝛼 and IL-1𝛽. EVO inhibited LPS-induced increase
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Figure 3: Effects of EVO on proinflammatory cytokines in rats and in NRK-52E cells treated by LPS. Rats were intraperitoneally (i.p.) injected
with EVO (10 and 20 mg/kg) 1 h after LPS treatment. Inflammation was evaluated by the determination of serum (a and b) and tissue (c and
d) levels of proinflammatory cytokines, including TNF𝛼 (a and c) and IL-1𝛽 (b and d). NRK-52E cells were treated with 1 𝜇g/ml LPS in the
presence or absence of 10 and 20 𝜇M EVO for 24h. Relative mRNA expression of TNF𝛼 (e) and IL-1𝛽 (f) was measured. #p<0.05 vs control
group. ##p<0.05 vs LPS group.

of P65 NF-𝜅B expression and overexpression of P65 NF-
𝜅B markedly reduced the anti-inflammatory activity and the
protective effects of EVO against LPS-induced cytotoxicity in
kidney cells. We suggest that the anti-inflammatory activity
may participate in the protective effects of EVO against LPS-
induced AKI.

The NF-𝜅B signal pathway lies in the center of inflamma-
tory and immune response [32, 33]. ROS has been reported to
activateNF-𝜅B through the classical IKK-dependent pathway
and induces a positive feedback mechanism associated with
inflammation and kidney injury [34–36]. In the current
study, we also tested the role of ROS regulation in the
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Figure 4: Role of NF-𝜅B in EVO-induced protective effect against LPS-induced cytotoxicity in NRK-52E cells. NRK-52E cells were treated with
1 𝜇g/ml LPS in the presence or absence of 10 and 20 𝜇M EVO for 24h. Relative mRNA (a) and protein (b) expression of P65 NF-𝜅B were
measured. NRK-52E cells were transfected with pCMV vector or pCMV-P65 and exposed to 1 𝜇g/ml LPS with or without 20 𝜇M EVO for
24h. Relative mRNA expression of TNF𝛼 (c) and IL-1𝛽 (d) was measured. Cell viability was detected by MTT assay (e). #p<0.05 vs control
group. ##p<0.05 vs LPS group. ###p<0.05 vs LPS+EVO group.

protective effect of EVO. We showed that EVO played
an antioxidant role in the protection against LPS-induced
cytotoxicity. Addition of oxidant H

2
O
2
could reverse, but

NAC could promote EVO-induced inhibition of P65 NF-𝜅B
expression and increase of cell viability in LPS-treated cells.

The results suggested that EVO had the anti-inflammatory
and renal protective effects via its antioxidant role.

In conclusion, we showed that EVO had crucial renal
protective effects against LPS-induced AKI and cytotoxicity
through the antioxidant activities and thus the inhibition
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Figure 5: Role of ROS in EVO-induced protective effect against LPS-induced cytotoxicity in NRK-52E cells. NRK-52E cells were treated with
1 𝜇g/ml LPS in the presence or absence of 10 and 20 𝜇M EVO for 24h. Relative mRNA (a) and protein (b) expression of P65 NF-𝜅B was
measured. NRK-52E cells were transfected with pCMV vector or pCMV-P65 and exposed to 1 𝜇g/ml LPS with or without 20 𝜇M EVO for
24h. Relative mRNA expression of TNF𝛼 (c) and IL-1𝛽 (d) was measured. Cell viability was detected by MTT assay (e). #p<0.05 vs control
group. ##p<0.05 vs LPS group. ###p<0.05 vs LPS+EVO group.
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of inflammation. Our data highlight EVO as a potential
candidate for the development of new strategies for the
treatment of AKI.
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available from the corresponding author upon request.
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