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Intraflagellar transport moves proteins in and out of flagella/cilia and it is

essential for the assembly of these organelles. Using whole-genome sequen-

cing, we identified splice site mutations in two IFT genes, IFT81 ( fla9) and

IFT121 (ift121-2), which lead to flagellar assembly defects in the unicellular

green alga Chlamydomonas reinhardtii. The splicing defects in these ift mutants

are partially corrected by mutations in two conserved spliceosome proteins,

DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses

the 30 splice site mutation in IFT81, and a frameshift mutant of FRA10, which

suppresses the 50 splice site mutation in IFT121. Surprisingly, we found dgr14-1
and fra10 mutations suppress both splice site mutations. We suggest these two

proteins are involved in facilitating splice site recognition/interaction; in their

absence some splice site mutations are tolerated. Nonsense mutations in

SMG1, which is involved in nonsense-mediated decay, lead to accumulation

of aberrant transcripts and partial restoration of flagellar assembly in the ift
mutants. The high density of introns and the conservation of noncore splicing

factors, together with the ease of scoring the ift mutant phenotype, make

Chlamydomonas an attractive organism to identify new proteins involved in

splicing through suppressor screening.
1. Introduction
Pre-messenger RNA splicing, which removes noncoding introns from nascent

RNAs to produce functional mRNAs, is an important and precisely controlled

process. Some introns (Groups I, II and III), which are found in bacteria, fungi

and organelles, are self-spliced. Splicing of most introns found in eukaryotic

nuclei is facilitated by the spliceosome, which is a dynamic complex that contains

multiple uridine-rich small nuclear ribonucleoproteins (snRNPs) and proteins

associated with these snRNPs [1,2]. The major spliceosome, which is composed

of U1, U2, U4/U6 and U5 snRNPs and associated proteins, recognizes conserved

nucleotide sequences at the 50 splice donor site (GT), the 30 splice acceptor site

(AG) and the branch site. Mutations in these splice sites usually cause aberrant

transcripts and it is estimated that splice site mutations cause approximately

15% of human genetic diseases [3]. The minor spliceosome, which is composed

of U11, U12, U4atac, U6atac and U5 and many of the associated proteins found

in the major spliceosome, is responsible for the removal of only approximately

0.3% of introns. It recognizes different conserved nucleotide sequences at the

50 (AT) and 30 (AC) splice sites. A few human diseases are associated with defects

in the minor spliceosome [4]. Biochemical studies identified over 200 proteins

associated with the major spliceosome and they can be grouped into different

spliceosomal complexes. Some proteins are found to have core functions in the

spliceosome while others are considered peripheral, and are present at specific

points in the splicing process and are postulated to have noncore functions [2].

In our study described here, we focus on two peripheral proteins, DGCR14 and

FRA10AC1 [5].
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The DGCR14 (DiGeorge syndrome (DGS) critical region

gene 14) gene is located in the minimal DGS critical region on

human chromosome 22. DGS (velo-cardio-facial syndrome or

22q11 deletion syndrome) is caused by a deletion of about 46

genes within an approximately 2.5 Mb region and is associated

with heart defects, cleft palate, low levels of calcium in the blood,

poor immune system and delayed physical and social develop-

ments [6]. DGCR14 is a highly conserved protein [6–8] that

localizes to the nucleus [7–9]. In Schizosaccharomyces pombe,
deletion of the DGCR14 homologue Bis1 affects cell viability

during stationary growth but not exponential growth [7]. In

Caenorhabditis elegans, while loss of function of ESS-2/DGCR14
in wild-type worms has no obvious defects, a loss of function

ess-2 allele in mutants with splice acceptor site mutations affects

the stability of both correctly and incorrectly spliced transcripts.

DGCR14/ESS-2 was proposed to facilitate splicing [8].

When cells are exposed to partial DNA replication stress,

gaps, constrictions or breaks are likely to form at specific

sites along the chromosome. Those are considered chromoso-

mal fragile sites [10]. A rare group of chromosomal fragile

sites are induced by exposure to folate, and the most frequent

folate-sensitive human autosomal fragile site occurs at 10q23

[11]. A CCG expansion in the 50 UTR of a gene, FRA10AC1
(FRA10A associated CGG repeat 1), is proposed to create the

fragile site. The conserved FRA10AC1 (C10orf4) protein [12]

was identified as a spliceosomal protein [13,14] and it localizes

to the nucleus [15]. Yeast two-hybrid assays revealed that

FRA10AC1 interacts with DGCR14 [2]. No functional study

of the involvement of FRA10AC1 in pre-mRNA splicing has

been reported.

Pre-mRNA splicing defects can lead to accumulation of

aberrant transcripts, which can be deleterious to cells [3].

Degradation of these aberrant transcripts, which usually

harbour premature termination codon (PTC), is controlled by

the nonsense-mediated mRNA decay (NMD) surveillance

system. The NMD machinery contains three conserved core

components, UPF1, UPF2 and UPF3, which are found in all

eukaryotic cells [16]. Phosphorylation of the RNA helicase

UPF1, usually performed by the kinase SMG1, regulates

NMD in some eukaryotes. In mouse, SMG1 is required for

embryogenesis. About 9% of PTC-containing alternatively

spliced transcripts show significant increase in SMG1-depleted

mouse cells [17]. In C. elegans, transcripts with nonsense

mutations accumulate in smg1 mutants [18]. In Drosophila, a

likely null smg1 mutant has only a modest effect on NMD effi-

ciency [19]. SMG1 is present in other land plants but not in

Arabidopsis thaliana. No SMG1 gene has been identified in

either Saccharomyces cerevisiae or S. pombe [20].

Intraflagellar transport (IFT) is a process that moves pro-

teins between the cell body and the cilia/flagella, which are

microtubule-based organelles that protrude from the cell body.

This bidirectional process is essential for the formation and

maintenance of the flagellum. The unicellular green alga Chlamy-
domonas reinhardtii assembles two flagella that confer the ability

to swim in liquid medium. Mutations in IFT genes affect flagellar

assembly and the mutant phenotypes are easily detectable due to

the inability to oppose gravity by swimming [21–23].

In this study, we used whole-genome sequencing to identify

splice site mutations in two IFT genes, IFT81 and IFT121. The

missplicing events of IFT81 and IFT121, which include intron

retention, exon skipping and adoption of new splice sites, can

be corrected by mutations in either DGCR14 or FRA10AC1,

but not by mutations in SMG1. Our study provides the first
functional study of the involvement of FRA10AC1 in

pre-mRNA splicing and suggests that, like C. elegans, the

Chlamydomonas DGR14 protein is involved in pre-mRNA spli-

cing regulation. As in other organisms, the Chlamydomonas
SMG1 protein is involved in NMD. These ift mutants provide

a new resource to identify new players in RNA splicing through

suppressor screening, and Chlamydomonas serves as a tractable

model system to study RNA splicing.
2. Material and methods
2.1. Strains and culture conditions
Strains were obtained from the Chlamydomonas Resource Center

at the University of Minnesota. They include fla9, CC-1918;

LMJ.RY0402.144851; and S1D2, CC-2290. The fla9 strain was

backcrossed multiple times to wild-type cells to remove any

unlinked modifiers. These strains were routinely maintained

on Sager and Granick (R) medium agar plates. Ultraviolet

mutagenesis to isolate the ift121-2 mutant and to screen for

suppressors was performed as previously described [24].

The fla9 cells, when first obtained from the Chlamydomonas
Resource Center, displayed a temperature-sensitivity phenotype

as reported previously [25]. These cells maintained their flagella

and swimming ability at 218C and became aflagellate when cells

were shifted to 328C. Thus, we were able to analyse flagellar

phenotype from fla9 cells, described in figures 1 and 2. Approxi-

mately 2 years after these initial studies, we noted the fla9 cells

become aflagellate at all temperatures tested (218C, 258C and

328C). To exclude any putative spontaneous mutations, we per-

formed at least five rounds of meiotic crosses and analysed over

300 progeny. The identified IFT81 mutation in fla9 always cose-

gregates with the aflagellate phenotype (figure 3) and the same

splicing pattern of IFT81 persists in the aflagellate cells

(figure 2d). The fla9; dgr14-1; DGR14-TG cells, which had short

flagella similar to fla9 when first identified (figure 1a), become

aflagellate during the same period (figure 3). Missplicing of

IFT81 remains the same in fla9; dgr14-1; DGR14-TG (figure 2d).

In addition to the fla9 strain we maintained in the laboratory,

we acquired fla9 from the Chlamydomonas Resource Center. We

tested the flagellar phenotype of these two fla9 strains, fla9;

dgr14-1, and fla9; dgr14-1; DGR14-TG in both R and TAP

media, with trace elements obtained from the Chlamydomonas
Resource Center and a different Chlamydomonas laboratory, at

218C. The aflagellate phenotype persists in both fla9 strains and

in fla9; dgr14-1; DGR14-TG while fla9; dgr14-1 displays more

than 80% flagellated cells in the same media. We used EDTA

acid to prepare trace elements, which led to no precipitation in

the final product, while other trace elements were prepared

with sodium EDTA that resulted in precipitation and filtration

to obtain the final product [26]. Therefore, difference in trace

elements does not contribute to the change of the fla9 phenotype.

Given the phenotype observed, we consider the fla9 mutant in

our hands has lost its temperature-sensitive phenotype and the

aflagellate phenotype at all temperatures is the fla9 mutant

phenotype we study onward.

2.2. Meiotic mapping of fla9 and whole-genome
sequencing

A cross between fla9 and wild-type (CC-124) showed 2 : 2 seg-

regation of the aflagellate phenotype at 328C in 87 tetrads. It
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Figure 1. Flagellar assembly and regeneration defects in fla9 can be rescued by
both wild-type IFT81 gene and a suppressor mutation, dgr14-1. (a) Measurement
of flagellar length (n ¼ 100) in individual strains at both 218C (blue) and 328C
(yellow). Bars indicate the standard deviation of the mean. (b) Percentage of fla-
gellated cells (n ¼ 100) in each strain before and after flagellar amputation by
pH shock. Cells were kept at 328C during flagellar regeneration.
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suggests that the fla9 mutant contains either a single mutation

or multiple tightly linked mutations. fla9 was mated to a highly

polymorphic strain S1D2 (CC-2290) [27] and in 235 meiotic

progeny fla9 maps between 3.255 and 3.780 Mb on chromo-

some 17 in Phytozome v. 5.5 of the Chlamydomonas genome.

Chlamydomonas genomic DNA for whole-genome sequencing

was prepared as previously described [24,28]. Three micro-

grams of DNA were submitted to the Genome Technology

Access Core (Washington University) for library construction,

Illumina sequencing and initial data analysis. SNP calling

and subtraction of irrelevant SNPs/short indels were per-

formed as previously described [28]. Large indels were

identified by SOFTSEARCH [29]. Around 12 000 breakpoints

were found in strain 4c that was identified as an extragenic sup-

pressor and compared to those found in the pf27 strain [30] and

in fla11-2 [31] to identify indels unique to the 4c strain.
2.3. cDNA preparation, TA cloning and sequencing
For RNA isolation, cells from two R medium agar plates grown

for 5 days were resuspended in 40 ml nitrogen-free medium

(M-N/5) for 2 h at room temperature to allow flagellar assem-

bly. The cells were then collected and RNA extraction was

performed with the RNeasy Mini Kit (Qiagen) according to
the manufacturer’s recommendation. Two micrograms of

RNA was used in a reverse transcription reaction with Super-

Script III (Invitrogen) with random primers as previously

described [32]. Gel-purified reversed transcribed cDNA pro-

ducts generated by Phusion (New England Biolabs) at the

annealing temperature of 648C were either subjected to direct

Sanger sequencing (GeneWiz) or subjected to TA cloning.

Primer sequences used in this study are listed in the electronic

supplementary material, table S1. For TA-cloning, poly(A) tails

were added to the gel-purified PCR products with TAQ

polymerase and the fragments were later cloned into the

pCR4-TOPO vector (Invitrogen). Plasmid DNA for Sanger

sequencing was prepared by FastPlasmid Mini Kit (5 Prime)

and sequenced with both T3 and T7 primers at GeneWiz.

2.4. BAC DNA preparation and Chlamydomonas
transformation

Chlamydomonas BAC DNA was prepared using a QIAGEN

Midiprep kit as previously described [33]. For rescue of fla9,

two micrograms of isolated BAC DNA was transformed into

fla9 cells by electroporation [32]. Cells were separated into 96

tubes each containing 20 ml liquid rich medium at 328C.

Swimming cells in these tubes were enriched by transferring

the top 5 ml liquid into fresh 20 ml liquid rich medium

every two days. After five rounds of transfer, crude DNA

preparation, PCR and enzyme digestion to identify both

mutant and transformed IFT81 genes were performed from

all transformants. For rescue of 4c, the 40B10 BAC DNA was

digested with HindIII and SbfI to obtain a 7.5 kb fragment,

which includes approximately 3.5 kb upstream of the start

codon of DGR14. The fragment was then cloned into HindIII

and PstI sites of a pBlueScript SK vector (Stratagene). For

rescue of fra10, the 3.1 kb genomic DNA fragment was ampli-

fied by FRA10-1F and FRA10-1R (electronic supplementary

material, table S1) using Phusion DNA polymerase followed

by the addition of poly(A) with Taq DNA polymerase for

10 min at 728C. The amplified fragment was then cloned into

the pCR4-TOPO vector (Invitrogen).

2.5. Flagellar length measurement
To measure Chlamydomonas flagellar length, Chlamydomonas
cells were resuspended in liquid M-N/5 medium for 4 h

and treated with autolysin for 30 min at room temperature.

Cells were then resuspended in microtubule stabilization

buffer (MTSB) [34] at room temperature. Multi-well slides

(ThermoFisher) were coated with 0.1% poly-L-lysine

(Sigma-Aldrich) for 5 min before being washed with MilliQ

water once and allowed to dry completely. Cells were applied

to wells on the slides and left in the dark for 2 min at room

temperature. Excess cell suspension was removed by pipet-

ting. Lysis buffer (MTSB þ 1% Nonidet P-40) was added to

individual wells and cells were lysed for 2 min at room temp-

erature. Excess cell suspension was removed by pipetting. To

wash off the lysis buffer, MTSB was added to individual

wells and removed by pipetting. Samples were fixed with

MTSB þ 4% paraformaldehyde for 30 min at room tempera-

ture. Slides were then submerged in cold methanol (2208C)

for 2 � 5 min and left to dry at room temperature. Nucleo-

flagellar apparatuses [35] are attached to individual wells

and are visible under a phase-contrast microscope. The
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samples were blocked by 100% blocking buffer (BB, 5% BSA

and 1% fish gelatin in PBS) for 1 h at room temperature.

The samples were stained with a primary antibody (anti-

acetylated a-tubulin, Sigma) at 1 : 500 dilution with 20% BB

at 48C overnight. The samples were washed six times with

20% BB, followed by 1-h inoculation at room temperature

with a secondary antibody (Alexa-594-conjugated goat anti-

mouse, Invitrogen) at 1 : 1000 dilution with 20% BB. The

samples were washed six times with 20% BB and mounted

in Fluoromount-G (SouthernBiotech). The images were cap-

tured with an UltraVIEW VoX laser spinning disk confocal

microscope (PerkinElmer) and acquired by VOLOCITY software

(PerkinElmer). IMAGEJ was used to measure 100 flagella from

50 cells from each strain.
2.6. Flagellar regeneration
Flagellar amputation of Chlamydomonas cells was performed

by pH shock [36]. After pH neutralization, cells were pelleted

by centrifugation (1000 � g, 2 min) and resuspended in fresh

R medium. The cells were kept at 328C and a small portion of

cells was fixed in 0.2% glutaraldehyde at each time point for

visualization and cell count.

2.7. Immunoblot
Chlamydomonas flagellar isolation was performed as previously

described after dibucaine amputation [37]. Ten micrograms of

flagellar proteins were used in each strain. Immunoblots were
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performed as previously described [38]. The primary antibodies

used include IFT81.1 (a gift from Dr. Doug Cole, 1 : 350 dilution)

and anti-a-tubulin (DM1A, Sigma-Aldrich, 1 : 5000 dilution).

The secondary antibody used was HRP-conjugated goat

anti-mouse antibody (Bio-Rad, 1 : 5000 dilution).

2.8. Protein sequence alignment and prediction
of protein structures

Protein sequences were obtained from NCBI and they were

aligned by MUSCLE [39]. Colour-coded alignment of protein

sequences was obtained using COLORFY [32]. Coiled-coil

domains were predicted using COILS [40] and a-helices

were predicted by YASPIN [41].

2.9. Analysis of orthologues of DGR14 and FRA10
in eukaryotes

Orthologues of DGR14 and FRA10 were obtained from the

EggNog database [42]. To ensure that absence of an orthologue

is not due to incomplete genome assembly, we required species

used in the analysis to contain at least four out of five core spli-

cing proteins, U2AF, PRP8, PRP17, PRP19 and SLU7. The

absence of an orthologue in each species is also verified by

BLAST against proteins in the NCBI database. Intron density

was acquired from Rogozin et al. [43] and a median density is

reported when there are multiple species in a given class.

3. Results
3.1. The fla9 mutant contains a splice site mutation

in IFT81
The fla9 mutant was isolated as a temperature-sensitive

mutant in an N-methyl-nitro N-nitrosoguanidine
mutagenesis screen [25]. The cells grow flagella at 218C and

maintain their flagella at 328C for 6 h. However, the cells

fail to regenerate flagella at 328C and thus become aflagellate

once they go through cell division at 328C. When we first

obtained the fla9 strain from the Chlamydomonas Resource

Center, they displayed the mutant phenotype as expected

(figure 1). The fla9 cells had short flagella (approx. 4 mm)

when compared to wild-type (CC-125) cells (approx. 9 mm)

at 218C. While the wild-type cells maintained their flagellar

length 4 h after they were switched to 328C, the fla9 cells

had even shorter flagella (approx. 2.6 mm) (figure 1a). Pro-

longed (overnight) inoculation at 328C eventually resulted

in aflagellate cells. Only approximately 5% of fla9 cells were

capable of regenerating flagella 1 h after pH shock [36]

at 328C, compared to approximately 80% of wild-type

(CC-125) cells (figure 1b).

The fla9 allele was previously mapped to chromosome 17

[44] and we mapped it to a region between 3.255 and

3.780 Mb. Whole-genome sequencing of fla9 identified only

one change (AG to GG) in the region (table 1) and it affects

the 30 splice site of intron 7 in the IFT81 gene (figure 2a) [38].

We designed a PCR-based assay to detect this change (elec-

tronic supplementary material, table S1) and it cosegregated

with the flagellar defect in 50 meiotic fla9 progeny. Thus, it is

tightly linked to the fla9 mutant.

We transformed 1E18 BAC (chromosome 17, 3 318 187–

3 378 344) DNA into the fla9 mutant [45,46]. Ninety-six inde-

pendent transformants were recovered after enriching for

cells that regain the ability to swim at 328C. Eighty-one of

them had both mutant and wild-type alleles based on the

PCR-based assay. The remaining 15 transformants, which

still have the mutant allele, may carry suppressor mutations

occurring elsewhere, but were not studied further. Back-

crosses of nine randomly selected rescued transformants

showed the rescue event is extragenic. One of such rescued

strain ( fla9; FLA9-TG) was randomly selected for further



Table 1. Summary of mutants identified in this study.

mutant affected gene mutation position

fla9 IFT81 c. 823-2A . G chromosome_17: 3 365 104

dgr14-1 FAP208, FAL13, Cre11.g482101,

Cre11.g482150, FBB9, Cre11.g482250

33 kb deletion chromosome_11: 3 603 615 – 3 636 297

ift121-2 IFT121 c. 2754 þ1G . A chromosome_11: 2 411 434

ift121-2 rev26 IFT121 c.2748G . A, p. K916 K chromosome_11: 2 411 441

ift121-2 rev28 IFT121 c. 2820 þ 1G . A chromosome_11: 2 411 221

fra10 Cre07.g336250 c. 600delC, p. K201fs chromosome_7: 3 538 004

smg1-1 Cre13.g572050 c. 2263C . T, p. Q755X chromosome_13: 1 413 437

smg1-2 Cre13.g572050 c. 5587G . T, p. E1863X chromosome_13: 1 417 593

smg1-3 Cre13.g572050 c. 6787A . T, p. K2263X chromosome_13: 1 419 322

smg1-4 Cre13.g572050 c. 14452G . T, p. E4818X chromosome_13: 1 430 695

smg1-5 Cre13.g572050 c. 14494G . T, p. E4832X chromosome_13: 1 430 737
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analysis. This rescued strain has approximately 10 mm

flagella at both 218C and 328C (figure 1a) and it regenerates

flagella at 328C, similar to what we observe in wild-type

cells (figure 1b).
3.2. The splice site mutation in fla9 leads to alternative
splicing of IFT81

We expect the change at the 30 splice site in fla9 to affect splicing

of the IFT81 gene. PCR fragments from exons 1–4 and exons

9–11 are identical in length and intensity between wild-type

and fla9 strains (figure 2b), which shows that the stability of

the IFT81 mRNA is not affected in the fla9 strain. By contrast,

PCR fragments from exons 6–9 show differences in wild-

type and fla9 cells. In wild-type CC-125 cells, a single band,

that corresponds to the predicted length of exons 6–9, is

observed (figure 2b, band A). In fla9 cells, three bands are

amplified (figure 2b, bands B, D and C). Sanger sequencing

indicates that the predominant band B includes intron 7, and

that exon 8 is skipped in band C (figure 2b). The middle

band (D) contains a mix of wild-type and misspliced products.

This band was subcloned and nine single colonies were sub-

jected to Sanger sequencing. Two different splicing products

are found: four different single colonies contain the wild-type

cDNA and the other five colonies have a deletion of the

first nine nucleotides of exon 8. The deletion is predicted to

remove three amino acids (V275N276E277) in IFT81 protein.

The glutamic acid is conserved in all IFT81 proteins examined

(electronic supplementary material, figure S1). Nevertheless,

an immunoblot using anti-IFT81 monoclonal antibody [47]

shows that the IFT81 protein is absent in the fla9 mutant at

both 218C (figure 2c) and 328C (electronic supplementary

material, figure S2). In the fla9 strain rescued with wild-type

FLA9 ( fla9; FLA9-TG), the wild-type cDNA (band A) becomes

the predominant species but the rescued strain still shows low

levels of intron inclusion and exon skipping fragments (bands

B and C) (figure 2b and electronic supplementary material,

figure S2). Correspondingly, the IFT81 protein is expressed in

the fla9; FLA9-TG strain at a lower level than found in wild-

type cells (figure 2c and electronic supplementary material,

figure S2).
3.3. Mutations in the DGCR14 gene suppress
the flagellar defect in fla9

A fla9 strain with a spontaneous mutation (4c) shows flagellar

assembly and regeneration at 328C (figure 1, fla9; dgr14-1). By

PCR and enzyme digestion, the fla9 splice site mutation is still

present in 4c. Similar to the fla9; FLA9-TG strain, the major

RT-PCR band amplified by the IFT81 exon 6–9 primers in

the 4c strain is the wild-type product at both 218C and

328C (figure 2b and electronic supplementary material,

figure S2). We detected the IFT81 protein in 4c cells ( fla9;

dgr14-1) but the protein abundance is lower than that found

in the fla9; FLA9-TG strain at both temperatures (figure 2c
and electronic supplementary material, figure S2).

A meiotic cross between 4c and the wild-type strain shows

that 4c carries an extragenic mutation that is unlinked to the fla9
mutation (n ¼ 23). The suppressor mutant itself (dgr14-1)

has no flagellar assembly or regeneration defect (figure 1). To

identify the causative mutation in 4c, we subjected one of the

suppressed meiotic progeny to whole-genome sequencing.

With 157� coverage of the genome, we did not identify a

causative SNP or short insertion/deletion (indel) (electronic

supplementary material, table S2) [28]. Instead, we identified

a 32 682-bp sequencing gap on chromosome 11: 3 603 615–

3 636 297 by SOFTSEARCH [29] and manual examination of

aligned reads. Within this region, six genes, FAP208, FAL13,

Cre11.g482101, Cre11.g482150, FBB9 and Cre11.g482250, are

either missing or disrupted. Both FAP208 and FBB9 were ident-

ified as flagellar proteins [48,49]. Cre11.g482101, Cre11.g482150
and Cre11.g482250 are novel genes. The FAL13 gene contains

five exons and encodes a protein of 699 amino acids and

shares 30% protein sequence identity (3 � 10212) with the

human DGCR14 protein. Sequence alignment indicates that

it shares sequence similarity to DGCR14 homologues in

S. pombe, Arabidopsis, Drosophila, C. elegans, zebrafish, mouse

and human (electronic supplementary material, figure S3).

Owing to its sequence similarity and its putative function in

mRNA splicing, we renamed the FAL13 gene as DGR14.

Given that DGCR14 has been implicated in mRNA splicing

in C. elegans and the splicing pattern of IFT81 is altered in the 4c

strain, we expect introduction of the wild-type DGR14 gene

into the fla9; dgr14-1 double mutant leads to short flagella
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and missplicing of IFT81 as observed in fla9. An approximately

7.5 kb DNA fragment, which contains the full-length DGR14
gene and approximately 3.5 kb upstream of DGR14 (part of

Cre11.g482101), was transformed to the fla9; dgr14-1 double

mutant [50]. Four transformants with short or no flagella

were identified. One of these transformants does not contain

a wild-type DGR14 gene. It suggests that the flagellar pheno-

type is likely due to a random insertion event instead of

DGR14 rescue, which is known to occur [51]. The other three

transformants carry the transformed wild-type DGR14 gene.

We randomly picked one of these transformants for RT-PCR

and Sanger sequencing of IFT81 splicing products from

exons 6 to 9 (figure 2b, fla9; dgr14-1; DGR14-TG). They are iden-

tical to those found in fla9 (figure 2b). Similar to fla9, the fla9;

dgr14-1; DGR14-TG cells have short flagella (approx. 4 mm) at

both 218C and 328C (figure 1a) and they fail to regenerate

flagella after amputation at 328C (figure 1b). No IFT81 protein

is detected in fla9; dgr14-1; DGR14 -TG cells (figure 2c and

electronic supplementary material, figure S2). In contrast, the

dgr14-1 mutant has wild-type IFT81 transcript (figure 2b and

electronic supplementary material, figure S2) and wild-type

IFT81 protein (figure 2c and electronic supplementary

material, figure S2). Therefore, we conclude that the dgr14-1
deletion suppresses the fla9 mutant phenotype by modifying

the misspliced IFT81 transcripts.

In addition to dgr14-1, we obtained a Chlamydomonas
strain LMJ.RY0402.211897, which has an insertion in intron

5 of DGR14, from the Chlamydomonas Library Project (CLiP)

[52]. The insertion leads to reduced level of the DGR14 tran-

script at the 30 UTR (figure 2e). This insertional allele is

renamed dgr14-2. It was crossed to the 4c strain and all 22

independent fla9 progeny that contain the dgr14-2 allele

show normal flagellar assembly (figure 3, fla9; dgr14-2).

Examination of IFT81 exons 6–9 in one of these progeny indi-

cates that while mRNA with intron retention is observed, the

wild-type transcript is restored (figure 2d ). Therefore, both a

deletion (dgr14-1) and an insertion (dgr14-2) in DGR14 act as

suppressors of the fla9 mutant.
3.4. A splice site mutation in IFT121 causes alternative
splicing of IFT121

In a mutant screen for aflagellate mutants, we isolated a new

mutant strain, db35, that fails to assemble flagella (figure 3,

ift121-2). Whole-genome sequencing indicates that it contains

a 50 splice site (donor) mutation, GT to AT, in the intron

between exons 21 and 22 of IFT121 (table 1, figure 4a). This

mutant also contained a second mutation in a gene that is

unlinked to IFT121 (electronic supplementary material, table

S2). We designed PCR based assays to detect both SNPs (elec-

tronic supplementary material, table S1) and selected a

progeny (db35-1) that contains only the IFT121 SNP to study

further. A backcross of db35-1 showed cosegregation of the

IFT121 SNP and the aflagellate mutant phenotype (n ¼ 20).

Thus, this SNP is tightly linked to the mutant phenotype.

By RT-PCR, a single band from IFT121 exons 20–23 is

amplified in wild-type cells (figure 4b, band A), while two

bands are amplified in the db35-1 mutant (figure 4b, ift121-2).

Sanger sequencing indicates the larger band (band B) contains

intron 21 (electronic supplementary material, figure S4A) and

the smaller band (band C) contains a truncated exon 21, in

addition to exons 20, 22 and 23. This transcript is generated
by adoption of an alternative splice donor site, which is 31

nucleotides upstream of the original site, within exon 21

(electronic supplementary material, figure S4B).

To provide further evidence that the splice site mutation

in IFT121 is the causative mutation in this aflagellate mutant,

we performed UV mutagenesis on the db35-1 mutant and

identified revertants of the aflagellate phenotype of ift121.

Two new strains (rev26 and rev28) show restored flagellar

assembly (figure 3) and produce no aflagellate progeny when

backcrossed to a wild-type strain. Sanger sequencing revealed

that both mutants carry changes in the IFT121 gene. In rev26,

there is a synonymous mutation of K916 (AAG to AAA) in

exon 21 that is 7 nucleotides upstream of the original mutation

(figure 4a, electronic supplementary material, figure S4C). RT-

PCR of IFT121 in rev26 (figure 4b) reveals correct splicing of

exons 20–23 with the silent mutation (Band A0), in addition

to the alternatively spliced IFT121 transcripts found in ift121-
2 (Bands B and C). Rev28 has a donor site mutation (GT to

AT) at the beginning of intron 22 (figure 4a, electronic sup-

plementary material, figure S4D), at position 2 411 221 on

chromosome 11. It generates a complex set of IFT121 tran-

scripts (figure 4b, electronic supplementary material, figure

S4D) that includes band D (exon 20, deletion of 31 nucleotides

from exon 21, exon 22, intron 22 and exon 23) and band C0

(deletion of 31 nucleotides from exon 21, exon 22, inclusion

of 7 nucleotides of intron 22 and exon 23). The resulting

band C’ now restores an in-frame IFT121 transcript. This tran-

script replaces 32 amino acids (aa 909–940) from the IFT121

protein sequence (black box, electronic supplementary

material, figure S5) with 24 different amino acids. This

change affects a few amino acids that are conserved across

different species (electronic supplementary material, figure

S5). The secondary structure predicted by YASPIN [41] indi-

cates the C-terminus half of the IFT121 protein contains

several predicted a-helices (electronic supplementary material,

figure S5, magenta blocks). Three small a-helices (aa 899–915;

aa 919–929; aa 932–950) are predicted within the region of

replacement. Instead, now one large a-helix (aa 900–942) is

predicted in the rev28 strain. Therefore, even though amino

acid composition is changed around this region, the preserved

secondary structure appears to be sufficient to restore flagellar

assembly and motility in the ift121-2 rev28 strain. Based on the

swimming phenotype and IFT121 splicing events found in

these two intragenic revertants, we conclude the splice donor

site mutation of IFT121 is the causative mutation and renamed

the db35-1 strain ift121-2.
3.5. A frameshift mutation of FRA10 suppresses
the ift121-2 mutation

In addition to the intragenic revertants, we isolated two

extragenic suppressors of the ift121-2 mutant. One suppressor,

sup15, splices IFT121 correctly across exons 20–23 (figure 4b,

ift121-2; fra10). Thus, it is likely to be a suppressor that affects

splicing. The other suppressor, sup25, retains alternative

IFT121 splicing fragments. It is likely to be a suppressor that

affects flagellar motility/assembly or mRNA stability but not

splicing. Whole-genome sequencing of sup15 (electronic sup-

plementary material, table S1) indicates a single nucleotide

deletion (TG to T, table 1), which leads to a frameshift, in the

Cre07.g336250 gene. The sup15 strain was backcrossed to

wild-type. Fourteen meiotic progeny that contain the ift121-2
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mutation but show wild-type flagellar assembly cosegregate

with the single nucleotide deletion in Cre07.g336250.

This gene encodes a protein that shares 54% identity and

69% similarity (3 � 10255) to the human folate-sensitive fragile

site protein FRA10AC1 (electronic supplementary material,

figure S6). We named it FRA10 in Chlamydomonas.

We transformed the ift121-2; fra10 double mutant with a

3.1 kb DNA fragment that includes full-length wild-type

FRA10 gene and approximately 0.9 kb upstream DNA. It is

expected that rescue of the fra10 mutant results in aflagellate

cells as observed in ift121-2. We obtained 10 aflagellate transfor-

mants. Five of them contain the wild-type FRA10 gene (ift121-2;
fra10; FRA10-TG) while the other five may generate the aflagel-

late phenotype through random insertion [51]. The IFT121
transcript profiles in all five FRA10-TG transformants, obtained

from four independent transformations, were analysed. The

transcript products found in all ift121-2; fra10; FRA10-TG
transformants and in ift121-2 are similar (figure 4b and electronic

supplementary material, figure S8). Therefore, the frameshift

mutation of FRA10 acts as a suppressor to restore the wild-

type splicing pattern in ift121-2. The abundance of FRA10
transcripts in both ift121-2; fra10 and ift121-2; fra10; FRA10-TG
is similar to the levels in wild-type (CC-125) (figure 4c). Given

the single-nucleotide deletion, which is predicted to cause a fra-

meshift, is found in the last exon (exon 4) of the gene, the mutant

transcript is unlikely to be subjected to NMD [53].
3.6. DGR14 and FRA10 mutations can suppress both
splice donor and acceptor site mutations

The dgr14 mutations suppress the splice acceptor site in fla9
and the fra10 mutation suppresses the splice donor site in

ift121-2. Since both DGR14 and FRA10 were identified as
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spliceosomal C complex proteins [13,14] and they show

protein–protein interaction [2], we asked whether mutations

in these two spliceosomal proteins suppress both splice

donor and acceptor site mutations. Flagellar assembly is

restored in both fla9; fra10 and ift121-2; dgr14-1 strains

(figure 3). Correspondingly, the wild-type IFT81 transcript is

restored in the fla9; fra10 double mutant (figure 2d ) and the

wild-type IFT121 transcript is restored in the ift121-2; dgr14-1
mutant (figure 4b). Cells are aflagellate in fla9; fra10; FRA1-
TG and in ift121-2; dgr14-1; DGR14-TG strains (figure 3).

We conclude that a mutation in either DGR14 or FRA10 is

sufficient to suppress both splice donor and acceptor site

mutations in these IFT genes.
Biol.8:170211
3.7. Nonsense mutations in the SMG1 gene stabilize
the misspliced transcripts in the ift mutants

In an independent screen for suppressors of a paralyzed flagella

mutant, we identified five nonsense mutants in the SMG1 gene

(Cre13.g572050) (table 1; figure 5e) by whole-genome sequen-

cing. Chlamydomonas SMG1 protein shares 32% identity and

46% similarity to its human homologue (1 � 102110) (electronic

supplementary material, figure S7). Since one of the important

roles of NMD is to remove transcripts harbouring a premature

terminated codon (PTC), we asked whether the smg1 mutations

affect the misspliced IFT81 transcripts in fla9 and the misspliced

IFT121 transcripts in ift121-2.
We generated three double mutant strains ( fla9; smg1-2,

fla9; smg1-5 and ift121-2; smg1-2) and two triple mutants

( fla9; dgr14-1; smg1-2 and ift121-2; fra10; smg1-2). While

both fla9 and ift121-2 single mutant strains have very short

or no flagella, both mutants show various flagellar lengths

in the smg1 background (figure 5a,c). However, these cells

display no motility. The triple mutant cells, similar to the

fla9; dgr14-1 or ift121; fra10 double mutants, are motile and

have normal flagellar length.

Semi-quantitative RT-PCR of IFT81 (figure 5b) followed by

Sanger sequencing revealed that in the fla9; smg1-2 double

mutant, the abundance of the intron inclusion transcript

(band B), which bears a PTC, is approximately fivefold greater

than that in the fla9 mutant. In the fla9; smg1-5 double mutant,

the abundance is approximately fourfold greater. No wild-type

transcript (band A) is observed in either double mutant. This

suggests that IFT81 splicing is not altered in the smg1 mutant

background. In the triple mutants fla9; dgr14-1; smg1-2 and

fla9; dgr14-1; fra10, both the wild-type and intron inclusion

transcripts are detected. The abundance of these transcripts is

not significantly increased.

In the ift121-2; smg1-2 double mutant, the abundance of the

truncated transcript (band C), which contains a PTC, increases

approximately ninefold (figure 5d). Interestingly, no accumu-

lation of the intron inclusion transcript (band B), which also

harbours a PTC, is observed in the double mutant. A close

examination of the transcript sequence reveals that it contains

four in-frame AUG codons within 200 nucleotides downstream

of the PTC, a widespread mechanism used by human genes to

escape NMD surveillance [54]. No wild-type IFT121 transcript

(band A) is observed in the double mutant. In the ift121-2; fra10;

smg1-2 triple mutant, we detected all three transcripts and

there is about fourfold accumulation of the truncated transcript

(band C) but not in the intron inclusion transcript (band B).
The smg1-2 mutation does not affect the abundance of the

mutant fra10 transcript in the ift121-2; fra10; smg1-2 mutant

(figure 4c). This is consistent with our hypothesis that the fra-

meshift in the last exon of the FRA10 transcript is not

subjected to NMD. In contrast, the nonsense SMG1 mutant

transcripts accumulate in both the smg1-2 and smg1-5
mutant strains (figure 5f ). It indicates that the NMD pathway

is likely to be compromised in the smg1 mutants.
4. Discussion
4.1. Misregulation of RNA splicing via mutations

in cis-acting RNA sequences
RNA splicing is necessary to produce mature RNA for almost

all genes in vertebrates. Misregulation of RNA splicing, by

both cis-acting RNA sequences and trans-acting RNA splicing

factors, are linked to cancers and other human diseases [3,55].

In this study, we report mutations in the splice sites of two

Chlamydomonas IFT genes that lead to aberrant splicing of their

transcripts and defects in flagellar assembly. The isolation of

two intragenic revertants of ift121-2 shows novel ways that

cells can rescue a splice site defect. In ift121-2, the mutation

in the donor splice site in intron 21 leads to an alternative

donor site 31 nucleotides upstream (electronic supplementary

material, figure S4A). Exonic splicing enhancers (ESEs) are

short oliognucleotide sequences in exons around the splice

sites that bind to splicing factors and facilitate splicing [56]. It

is estimated that approximately 4% of synonymous changes

are deleterious to splicing by affecting ESE sequences [57].

We used the RESCUE program for human ESE prediction

[56], and it reveals nine ESEs within 12 nucleotides upstream

of the canonical splice donor site of intron 21. In the ift121-2
rev26 mutant, a synonymous change that is 7 nucleotides

upstream of the original mutation partially restores wild-type

splicing (electronic supplementary material, figure S4B). The

single nucleotide change in rev26 is predicted to change the

sequences of eight ESEs and to add a new ESE. These ESEs

may have higher affinity for splicing factors around the nonca-

nonical splice site (AT in ift121-2) and this recruitment could

facilitate splicing.

A genome-wide analysis of alternative spliced transcripts

in Chlamydomonas indicated that both constitutive splicing

and alternative splicing events use GT as the consensus splice

donor site [58]. However, in the ift121-2 rev28 mutant, the spli-

cing machinery opts for a noncanonical splice donor site (GC).

It is unclear why this site is chosen, but it results in an in-frame

reading frame. While this choice changes the primary protein

sequence, it is unlikely to change the secondary structure

based on structure predictions [41].

4.2. Correction of RNA splicing mistakes via mutations
in spliceosomal proteins

Both DGCR14 and FRA10AC1 were identified in proteomic

studies of human spliceosomes but are absent in yeast spliceo-

somes [2]. While yeast and human spliceosomes share

common core structures and proteins, human spliceosomes

contain more spliceosomal proteins that play regulatory roles

[59]. Analysis of yeast postcatalytic spliceosome structure

[60–62] revealed formation of non-Watson–Crick base
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pairings between G (þ1) of the 50 splice site and G (21) of the 30

splice site, and between A (22) of the 30 splice site and the con-

served adenine at the branch point, which is linked to G (þ1) of

the 50 splice site. While the structure of human postcatalytic

spliceosome has not been revealed yet, we expect it uses similar

base pairing mechanisms but contains more spliceosomal

proteins that may include DGCR14 and FRA10AC1. In our

study, the splice site mutations disrupt G (þ1) of the 50 splice

site and A (22) of the 30 splice site. These mutations in dgr14
and fra10 mutants show increased wild-type splicing. There-

fore, DGR14 and FRA10 are likely to be involved in

facilitating recognition/interaction among G (þ1), A (22)

and A at the branch point. However, it is unclear whether

the involvement is direct or indirect and it will require

additional assays to address their functions.

We observed no obvious defects in viability, mating effi-

ciency and motility in the single mutants of dgr14 and fra10 or

the dgr14-1; fra10 double mutant. This is consistent with the

observation that deletion of Bis1, the DGCR14 homologue

found in fission yeast, does not affect viability during expo-

nential growth [7]. We performed transcriptome analysis of

dgr14, fra10 and the double mutant but find very few changes

in RNA splicing and abundance (M Pandey, G Stormo and

SK Dutcher 2018, unpublished work). Similarly, no pheno-

typic or splicing defect has been report in the ess-2 mutant

in C. elegans [8].

Given that both DGCR14 and FRA10AC1 are not core spli-

cing proteins [2], we asked whether these two proteins are

present in different species across multiple eukaryotic kingdoms

(figure 6). The presence/absence of orthologues of each protein

in individual species was extracted from the EggNOG database

[42] and NCBI BLAST. In Saccharomyces cerevisiae, approxi-

mately 5% of genes contain introns and its spliceosome

contains fewer than 100 proteins [63,64]. The intron density

per 1 kb of coding sequence is approximately 0.1 [43]. In
contrast, approximately 43% of Schizosaccharomyces pombe
genes contain introns and its intron density is ten-fold higher

[43,64]. The DGCR14 homologue Bis1, which is proposed to

be a stress response protein [7], is present in four different

species of the fission yeasts [64], while both DGCR14 and

FRA10AC1 homologues are absent in the Saccharomycetes line-

age (n¼ 17). In addition to Saccharomycetes, DGCR14 is absent

in the oomycetes Phytophthora ramorum (Pram) and Phytophthora
capsici (Pcap). However, the genome of Phytophthora sojae con-

tains DGCR14. Therefore, the absence of DGCR14 in Pram

and Pcap may arise from incomplete genome assembly. Even

though DGCR14 is not essential to RNA splicing, it is present

in most species analysed (figure 6). FRA10AC1 is absent in

Ascomycota, a subgroup of fungi. It is also absent in Ustilagino-

mycotina, which have very low intron density (approx. 0.4)

when compared to other organisms in Basidiomycota [43].

The absence of FRA10AC1 correlates with low intron density

and we suggest that these two observations may be related.

An exception is observed in the unicellular green algae Ostreo-
coccus, in which the intron density is low (approx. 0.6) but

both FRA10AC1 and DGCR14 are present. In general, higher

intron density (greater than 3) may require additional noncore

spliceosomal proteins to recognize intron boundaries and pro-

mote splicing, therefore the presence of both proteins is

observed in these species. In Chlamydomonas, 88% of the genes

contain introns and an intron density of approximately 6.3,

which is similar to the vertebrates with an intron density of 6.9

[43,58].
4.3. The ift mutants provide new insights about
intraflagellar transport

Mutations of IFT81 in humans lead to multiple symptoms

that include polydactyly, nephronophthisis [65], asphyxiating
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thoracic dystrophy, short rib polydactyly [66] and retinal dys-

trophy [65,67]. In the fla9 mutant strain reported here, the

most prevalent transcript shows retention of IFT81 intron 7

and produces no protein that is detected by the monoclonal

anti-IFT81 antibody [47], which recognizes the C-terminus

of IFT81 (D Cole 2014, personal communication, figure 2c
and electronic supplementary material, figure S2). In the

ift81-1 mutant strain, which was generated by an insertion

in exon 7 of IFT81, no IFT81 protein was detected by immu-

noblot with the same antibody [23]. We propose that the fla9
mutant transcript produces a truncated IFT81 protein that

contains the first approximately 270 amino acids, not

detected by the antibody. It has been reported that the N-ter-

mini of IFT81 and IFT74 are crucial to flagellar assembly and

may dimerize to form a binding module for tubulin [23,68].

In the fla9; smg1 double mutant, accumulation of this tran-

script produces enough truncated IFT81 proteins to interact

with the N-terminus of IFT74 and to allow variable flagellar

assembly (figure 5a). It is worth noting that the flagella

remain immotile in fla9; smg1 cells, which suggests the C-ter-

minus of IFT81 is required for cargo needed for flagellar

motility.

Mutations in IFT121/WDR35 result in cranioectodermal

dysplasia [69–73], short rib polydactyly syndrome [74], Ellis–

van Creveld syndrome [75] and respiratory dysfunction [72].

Studies using truncation mutants indicated the N-terminus of

IFT121 (aa 1–640) is important for interactions with IFT122,

Arl13b and INPP5E while the C-terminus (aa 641–1181) is

important for its ciliary localization [76]. In the ift121-2; smg1-
2 mutant, the accumulated misspliced transcript (Band C in

figure 5d) is expected to encode a truncated IFT121 protein

that contains the first 908 amino acids with an additional 56

novel amino acids. We propose that accumulation of this trun-

cated IFT121 protein is responsible for flagellar assembly. An

insertional mutant of IFT121 (ift121-1) has been previously

reported. The exact location of gene disruption is unknown

but it is within the last one-third of the gene [77]. Similar to

our ift121-2 mutant, the ift121-1 mutant is aflagellate and it is

unclear whether ift121-1 can assemble flagella in a smg1
background.
Hypoxia has been reported to partially restore flagellar

assembly in truncated IFT46 and IFT74 mutants [78,79].

Removal of the first 196 amino acids from IFT74 in the ift74-1
mutant leads to a slight accumulation of the truncated protein

and the mutant cells assemble immotile flagella when cells are

not aerated [79]. When stressed, a truncated IFT46 protein,

which lacks the N-terminal 100 amino acids, accumulates

and the mutant cells assemble flagella with various lengths

[78]. Our study on fla9; smg1 and ift121-1; smg1 mutants pro-

vides additional evidence that over-accumulation of

truncated IFT proteins can partially rescue flagellar assembly

defects. To further understand the detailed mechanism, over-

expression of truncated constructs of IFT81 and IFT121, and

their interactions with other IFT proteins, will be necessary.
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