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Abstract Childhood stunting is a serious public health concern in Rwanda. Although stunting causes have
been documented, we still lack a more in‐depth understanding of their local factors at a more detailed
geographic level. We cross‐sectionally examined 615 height‐for‐age prevalence observations in the Northern
Province of Rwanda, linked with their related covariates, to explore the spatial heterogeneity in the low height‐
for‐age prevalence by fitting linear and non‐linear spatial regression models and explainable machine learning.
Specifically, complemented with generalized additive models, we fitted the ordinary least squares (OLS), a
standard geographically weighted regression (GWR), and multiscale geographically weighted regression
(MGWR) models to characterize the imbalanced distribution of stunting risk factors and uncover the nonlinear
effect of significant predictors, explaining the height‐for‐age variations. The results reveal that 27% of the
children measured were stunted, and that likelihood was found to be higher in the districts of Musanze,
Gakenke, and Gicumbi. The local MGWR model outperformed the ordinary GWR and OLS, with coefficients
of determination of 0.89, 0.84, and 0.25, respectively. At specific ranges, the study shows that height‐for‐age
decreases with an increase in the number of days a child was left alone, elevation, and rainfall. In contrast, land
surface temperature is positively associated with height‐for‐age. However, variables like the normalized
difference vegetation index, slope, soil fertility, and urbanicity exhibited bell‐shaped and U‐shaped non‐linear
associations with the height‐for‐age prevalence. Identifying areas with the highest rates of stunting will help
determine the most effective measures for reducing the burden of undernutrition.

Plain Language Summary Local variations exist between height‐for‐age prevalence and its related
risk factors. Global spatial regression methods, therefore, make it more difficult to locally revisit ongoing
strategies and nutrition initiatives, particularly in areas where the burden of stunting was shown to be
substantially higher. The main contribution of the present study lies in employing household‐level information
aggregated at a fine scale to model stunting using a local multiscale geographically weighted regression with
generalized additive model (GAM) as interpretable machine learning to bridge traditional global linear models'
gaps. Locally geographically weighted regressions assessed the spatial effects, and GAMs characterized the
nonlinear effect of relevant height‐for‐age risk factors to potentially satisfy the needs of all end users. These
findings revealed that low height‐for‐age has significant intra‐area local variation and uncovered positive,
negative, bell‐shaped, and U‐shaped non‐linear associations between height‐for‐age and its related risk factors.
The generated spatial maps highlight areas with a high prevalence of stunting, which can help the government
and donor organizations allocate resources efficiently.

1. Introduction
Stunting, or low height‐for‐age, is a measure of linear growth retardation and cumulative growth deficits
(UNICEF, 2017). A child is considered stunted if their height z‐score is less than − 2, and severe stunting is
defined as a z‐score less than − 3 standard deviations below the median of the distribution of normal heights for
children of the same age and sex (WHO, 2018). Child nutrition deficits have significant consequences, partic-
ularly in developing countries (UNICEF et al., 2021). Stunting is a matter of concern due to its wide‐ranging
impact on productivity and development (UNICEF, 2017). Stunting has multiple causes and is associated with
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severe short‐ and long‐term health and psychological consequences, including impaired brain and physical
development, lower school performance, and reduced future economic prospects (WHO, 2018). Globally, the
prevalence of stunting has decreased from 33.1% (203.6 million) to 22% (149.2 million) between 2000 and 2020
(United Nations, 2021). However, in sub‐Saharan Africa, 57.3% of children under the age of five are affected by
stunting, a statistic that has remained largely unchanged for the past two decades (UNICEF et al., 2021). Stunting
is a severe public health problem in Rwanda, where it affects 33% of children under the age of five, accounting for
approximately 50% of all under‐five mortality (NISR et al., 2021). The World Health Organization (WHO)
considers a prevalence of more than 30% to be a very high stunting rate (WHO, 2018). According to the Rwanda
Demographic and Health Survey (RDHS) for 2019–2020, one in three children under the age of five in Rwanda is
stunted. The nutritional health of children varies significantly by province, with the highest stunting rate in the
North (41%) and the lowest in the city of Kigali (21%) (NISR et al., 2021). While the general causes of stunting
have been documented, there is still a lack of in‐depth understanding of the local effects of its risk factors at a
more detailed geographic level (Uwiringiyimana, Veldkamp, & Amer, 2019). To achieve the targets for 2020 and
2050, aimed at ending all forms of malnutrition, it is necessary to find innovative approaches to reduce the high
prevalence of stunting (Republic of Rwanda, 2020). Rwanda has implemented significant country‐specific
nutrition strategies, including the national food and nutrition policy (MINISANTE, 2014), the one cow per
poor household program (MINAGRI, 2006), and the childhood‐based nutrition program (NECDP, 2017), to
eliminate stunting. However, despite these initiatives, there is still a significant disparity between the target and
the current prevalence (NISR et al., 2021; UN‐HABITAT, 2018). Using a robust analytical framework, it is
necessary to identify the local risk factors for stunting and understand the roles these determinants play in the
geographical variability of stunting.

In Rwanda, there is limited research exploring the association between child stunting and socioeconomic, ag-
roecological, and climate factors (Habyarimana et al., 2017; Mukabutera, Jamie, et al., 2016; Uwiringiyimana,
Veldkamp, & Amer, 2019). Although the causes of stunting are well understood, no studies have been conducted
to assess strategies that integrate both nutrition‐specific and individual environmental and agroecological de-
terminants of stunting at the local level. Some studies, such as Habyarimana et al. (2017) and Uwiringiyimana,
Veldkamp, and Amer (2019) have touched upon spatial aspects by examining stunting predictions at the national
level. Other studies have predominantly focused on the socioeconomic factors influencing child stunting, with
limited attention given to the impact of agroecological variables (Habyarimana et al., 2017). Certain studies
(Mukabutera, Thomson, Hedt‐Gauthier et al., 2016; Uwiringiyimana, Ocké, et al., 2019; Weatherspoon
et al., 2019) have utilized multivariate logistic regression models that rely on linear and parametric smooth
functions. However, most predictors and response variables do not necessarily have linear relationships
(Fotheringham et al., 2017). As a result, simple linear or traditional regression models fail to accurately capture
these nonlinear relationships due to their susceptibility to local collinearity, which can lead to unreliable results
(Li et al., 2020). These linear regression models estimate a global statistic that assumes a stationary and constant
relationship over space, resulting in the same estimated parameters for the entire study area (Brunsdon
et al., 1996). Unfortunately, they do not consider the spatial heterogeneity in the variables where relationships are
measured (Li et al., 2020). Therefore, these models do not account for the spatial dynamics of the explanatory
variables used (Fotheringham et al., 2017). In real life, the relationship between risk factors and disease incidence
is often nonlinear (Li et al., 2020). The traditional linear model, although simple, often fails in these situations
(Hastie et al., 2017). Geographically weighted regression (GWR) was developed to examine the non‐stationary
relationship between predictor and response variables (Brunsdon et al., 1996; Fotheringham et al., 2017).
However, GWR has several drawbacks. First, the uniform bandwidth specified in a standard GWR may not be
appropriate in cases where different predictors operate across different spatial scales (Li et al., 2020). Second, this
approach assumes that all predictors have a uniform spatial bandwidth (Fotheringham et al., 2017). However,
GWR overlooks the likelihood that various ecological predictors affect disease prevalence at various spatial
scales (Li et al., 2020). This could potentially introduce bias into the model's results and compromise its per-
formance (Oshan et al., 2019). The multiscale geographically weighted regression (MGWR), a derivative of
GWR, addresses this issue by calibrating the regression model using different spatial scales (Li et al., 2020).
Additionally, the MGWR model provides additional spatially weighted information about the relationship be-
tween covariates and response variables (Fotheringham et al., 2017). Most machine learning models are often
considered “black boxes,” which makes it challenging to understand the rationale behind the model, particularly
in the field of healthcare (Molnar, 2022). To uncover precise relationships in the data, a set of explainable artificial
intelligence features derived from these systems helps users understand how the model works and makes
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predictions for critical decision‐making (Hastie et al., 2017). Generalized additive models (GAMs) have proven
to be the most commonly used explainable artificial intelligence approach in the statistical community for
exploring the nonlinear effects between disease incidence and associated risk factors, owing to their ability to
model complex and nonlinear relationships (Hastie & Tibshirani, 1995). Unlike generalized linear models
(GLMs), fitting GAMs involves a straightforward and flexible backfitting process that allows for the selection of
the best fitting method for each input variable (Hastie et al., 2017).

The association between socioeconomic, agroecological, and climate variables and the low childhood height‐for‐
age is complex and non‐linear, involving both associative and causal perspectives (Molnar & Freiesleben, 2024;
Rasmussen et al., 2016; Tellings, 2017). As documented by Woodward (2013), exploring associations from
observational studies forms the starting point for causal hypothesizing, which is crucial in controlled experiments
and longitudinal studies. Socioeconomic household related factors such as parental education (Habyarimana
et al., 2017), household wealth (Weatherspoon et al., 2019), water and sanitation (Fink et al., 2011), and child
feeding practices (Uwiringiyimana, Ocké, et al., 2019), can directly influence household food security, which can
then impact dietary diversity and contribute to the low child height‐for‐age (Mukabutera, Jamie, et al., 2016).
However, the causal relationships between these variables and the childhood height‐for‐age distribution are not
uniformly discernible (Yeboah et al., 2022), as they can be influenced by multifaceted interactions and mediating
agroecological and climatic variables (Johnson & Brown, 2014). Hence, socio‐economic and demographic
factors alone are not sufficient to fully understand the intricate issue of childhood stunting (Uwiringiyimana,
Veldkamp, & Amer, 2019). Therefore, to fully understand the potential associations and causal pathways of
childhood stunting, an integrated approach complimenting these factors with climatic and agroecological con-
ditions is crucial for a more comprehensive analysis (Tusting et al., 2020; van der Merwe et al., 2022; Vilcins
et al., 2018). There is increasing evidence that climate and agroecology are directly and indirectly effecting the
health and well‐being of children (R. E. Baker & Anttila‐Hughes, 2020; Dasgupta & Robinson, 2023). However,
such influence is substantial in developing countries where a largely number of population is depending on rain
fed agriculture (Hagos et al., 2014). These metrics which have been extensively explored elsewhere (Amondo
et al., 2023; Bangelesa et al., 2023; Blom et al., 2022; Brown et al., 2014; Grace et al., 2012; Johnson &
Brown, 2014; Niles et al., 2021), play a physical, mechanical, or biological influence on animal and plant sourced
foods via crop health (Hummel et al., 2018), disease transmission or metabolically child growth and cognitive
development (Kismul et al., 2017). The climate affects the nutritional outcomes through agroecosystems path-
ways with diverse impacts on crops and diseases (Lobell & Field, 2007), livestock and aquatic food sources
(Weatherspoon et al., 2019), impacting the components of food security and diet diversity including the avail-
ability and quality of food (Dror & Allen, 2011; Murphy & Allen, 2003). Particularly in Rwanda, the agriculture
sector serves as a primary source of income and food for rural households (NISR, 2019). Each of these channels
can drastically lowering the childhood nutrition status and health (Niles et al., 2021).

A few recent studies done in Africa have underlined the importance of the local geographic location in which a
child resides (De Sherbinin, 2011). Furthermore, the evidence associating climate and child stunting, particularly
at different geographic scales, remains scarce (Lopez‐Carr et al., 2016). However, due to the scarcity of geore-
ferenced data, remote sensing indicators can serve as proxies when associated with disease data, facilitating the
extrapolation of model outputs across extensive geographical regions (Wimberly et al., 2021). To date, no
research has empirically examined the relationship between child stunting and climate determinants using spatial
machine learning at lower spatial scales. Additionally, no study has investigated the spatial scale in terms of (a)
the influential range of stunting variables at different scales, and (b) the quantitative aspect of such influence
across space. To address this gap, the present study aims to comprehend the significant spatial variations in infant
stunting at a fine scale. The primary contribution of this study is the utilization of individual‐level information
aggregated at a fine scale to model stunting, employing a local MGWR with GAM as an interpretable machine
learning approach to bridge the gaps of traditional linear parametric models. To the best of our knowledge, there is
a lack of small‐area spatial stunting modeling using more robust models like MGWR in scientific literature.
Moreover, local spatial machine learning analyses for stunting with agroecological predictors at the fine‐scale
level have not been explored in Rwanda. Notably, this study is the first to conduct an in‐depth investigation of
spatial patterns of stunting using a combination of variables at the lower scale. The findings of this study will help
identify areas that require interventions to ensure fair and effective utilization of resources in reducing all forms of
undernourishment and achieving sustainable development.
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2. Materials and Methods
2.1. Study Setting and Sample Selection

We conducted this study in the Northern Province of Rwanda, which is mainly characterized by mountains and
hills with steep slopes as well as fragile and degraded soil types as a result of the dominance of small‐scale
farming (NISR, 2018). It is composed of five districts, namely Burera, Gakenke, Gicumbi, Musanze, and
Rulindo. Most of the settlements in the Northern Province are located on hills and steep slopes (NISR et al., 2021).
This consequently triggers a high level of vulnerability to floods and landslides (NISR, 2018). This cross‐
sectional survey targeted children under 3 years of age whose mothers were 18 years of age or older. We
administered the survey questionnaire to the primary caretaker (biological mother) or guardian of the eligible
child at the household level. We used the two‐stage cluster random sampling strategy to determine the sample
population. To calculate the required sample size, according to NISR et al. (2021), we considered the estimated
under‐5 stunting prevalence in the Northern Province (41%). The mathematical formula used in prevalence
studies (Kish, 1965), is as follows:

n =
Z2 × p(1 − p)

ε2
× DEFF (1)

where n is the sample size, Z is the z‐score or the critical value associated with the 95% confidence interval (1.96),
p is the estimated proportion of stunting among children in the Northern Province (0.4), ε is the desired level of
precision or margin of error (0.05), and DEFF is the design effect of 1.5. Applying the formula, we got an n equal
to 553.19 as the estimated sample size. After considering the non‐response (NR) of 10% or 0.1, we obtained 615
households as the adjusted sample size. We chose these 615 households randomly from 137 sampling units
(villages), which represents 5% of all 2,744 villages in the study area. First, to randomly select these 137 villages,
we created a grid map overlaid on the study area map to make sure that all sampled villages were evenly
distributed across the entire study area and to get at least one sample from every grid cell. This spatial method was
applied to get lower‐scale data from household data. Next, we determined the number of individual households
selected from each village based on the population density. Villages with low and higher population density had
3–4 and 5–6 households interviewed, respectively. After that, using a list of all candidate households obtained
from community health workers, we applied systematic random sampling to obtain the eligible households in
each selected village (sampling unit). In case the first and the next selected household were flocked together, a
replacement was done for the nearest eligible household. Figure 1 illustrates the distribution of all surveyed
households in the study area. We gathered information on households' socio‐economic, demographic, and
household‐related decision‐making characteristics, the child's health status, feeding practices, dietary charac-
teristics, maternal health conditions, dietary habits, and violence experience. In accordance with the study's
purpose, we collected the location coordinates of surveyed households to be able to spatialize undernourishment
and its associated factors. We focused on height‐for‐age as the main outcome variable and other selected soci-
odemographic covariates from the data set, as shown in Table 1. The height‐for‐age z‐scores were estimated and
categorized with reference to the WHO child growth standards (WHO & UNICEF, 2021) and the Rwanda De-
mographic and Health Survey (RDHS) (NISR et al., 2021). We used four continuous variables from the surveyed
data set: the diet diversity score, the household food insecurity score, the number of times the mother has left the
child alone for more than 1 hr in the past week, and the number of days a child was left in the care of another child,
that is, someone less than 10 years old, for more than an hour during the last week, to complement a set of
agroecological, climate, and geographic risk factors obtained from multiple data sets. We calculated the dietary
diversity indicator for children based on maternal and child dietary intake information collected using 24‐hr
dietary recall information according to the WHO and UNICEF (2021) guidelines. We determined the mini-
mum dietary diversity based on the food consumed from various food groups over the past 24‐hr period. We again
calculated the household food insecurity score variable on the basis of the answers to nine questions about the
household's access to and food consumption during the preceding 7 days.

2.2. Exploratory Data Analysis and Spatial Dependency

Before performing spatial autocorrelation analysis, we first applied the grid‐based aggregation approach to
aggregate surveyed household point data to obtain fine‐scale areal data (D. M. Baker & Valleron, 2014; Hassler
et al., 2024; Souris, 2019). Areal health data is often aggregated by converting point data into continuous
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information at geopolitical zones or disease catchments due to various reasons (Nduwayezu et al., 2023). These
reasons include protecting patient confidentiality and safeguarding sensitive disease information (Moraga, 2019).
To ensure the privacy of the survey respondents and mask private health information, we adopted a grid‐based
method by aggregating households' information over a geopolitical zone in Rwanda. Then, we computed
global and local spatial autocorrelation analyses of height‐for‐age by estimating the z‐scores and p‐values for each
areal unit (Anselin, 1995). We used Moran's I to check the global autocorrelation. After that, we computed the
Getis‐Ord Gi* statistic Anselin (1995) to identify the locations of statistically significant hot spots and cold spots
in the data. Finally, to provide an in‐depth exploratory data analysis, we computed the density and violin/box plots
to characterize the concentration of height‐for‐age across districts.

2.3. Preparation of Predictors: Feature Screening and Selection

We compiled a comprehensive set of agroecological, climate, and geographic risk factors as input variables,
including socioeconomic health covariates selected from the surveyed data. We utilized multiple data sets and
joined them together to develop an integrated data set to assess child height‐for‐age outcomes. We used a
modified zonal statistics‐based approach developed by Nduwayezu et al. (2023) to record the average value of
each variable raster cell in the attribute table of the height‐for‐age areal polygons. Table 1 and Text S3 in
Supporting Information S1 provide grounds for the climatic and agroecological features used in this study to shed
light onto its inclusion relevancy in the model, while Figure 2 and Figure S2 in Supporting Information S1 depict
the spatial distribution of variables utilized in the modeling process.

Prior to standard GWR and multiscale GWR models, we fitted multilinear regression models to examine the
multicollinearity between the predictor variables, which might introduce redundancy into the model. We used the
variance inflation factor (VIF) to assess multicollinearity, which is a problem in spatial regression modeling

Figure 1. Study area location with the administrative boundary and surveyed household data.
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(Cheng, 2003). VIF is a measure of how much the variance of the estimated regression coefficient increases if the
explanatory variables are correlated. From the modeling perspective, any correlated variable can be selected as a
predictor without significantly affecting the model's predictive performance. Once one of the correlated variables
is used, the importance of the others is reduced. The higher the value of VIF, the greater the degree of collinearity.
With a VIF greater than 10, there is strong evidence that collinearity is affecting the regression coefficients.
During analysis, variables with a VIF higher than 10 were removed from the model. Later, to ensure that there is

Figure 2. Spatial distribution of variables used.
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no strong correlation between predictors, we computed the Pearson correlation coefficient between the variables
retained by the VIF test. The Pearson correlation coefficient describes the linear correlation between two features.

2.4. Multiscale Geographically Weighted Regression Model

Prior to GWR and MGWR, the ordinary least squares (OLS) model was fitted as baseline model for analyzing the
data to examine the multicollinearity between the predictor variables and to detect the presence of spatially
autocorrelated residuals, implying that local geographically weighted models may be appropriate. The MGWR
algorithm calibrates the regression model using different spatial scales as opposed to GWR, which calibrates the
regression model at the same spatial scale, and OLS, which estimates the global statistic that assumes a stationary
and constant relationship over space. Further, OLS and GWR mask interesting spatial variations in the way that
predictors influence the spatial distribution of relevant variables (Fotheringham et al., 2017). However, the
MGWR model provides additional spatially weighted information about the relationship between covariates and
response variables. The locally created MGWR model only uses a limited number of neighboring data points to
train the model. The maximum distance between a data point and its kernel is called the bandwidth, and the area in
which the local model operates is the neighborhood (or kernel) (Brunsdon et al., 1996). In essence, either the
number of nearest neighbors (adoptive kernel) or a distance threshold value (bandwidth‐fixed kernel) is used to
build the neighborhood or kernel (Oshan et al., 2019). Its model is expressed mathematically as:

yi = β0 (ui, vi) +∑
m
j=1βbwj (ui, vi) xij + ϵi (2)

where β0(ui, vi) is the intercept; βbwj is the local coefficient at location iwith coordinates (ui, vi), xij is the jth feature
at location i, m is the number of predictor variables, and ϵi is the random error at location i. Variables resulting
from OLS with a p‐value less than 0.05, indicating variables with a statistically significant relationship with
height‐for‐age were fed into the GWR and MGWR models. First, for approximating the kernel bandwidth for
GWR and MGWR models, we employed the adaptive bi‐square spatial kernel weighted method (Fotheringham
et al., 2017). Next, we chose the default golden bandwidth search approach for computing uniform (GWR) and
locally varying (MGWR) bandwidths. Then, we considered Akaike’s Information Corrected Criterion (AICc)
metric as an optimization criteria for model bandwidth selection (Fotheringham et al., 2017). After that, we
computed the Monte Carlo tests to examine the variability of the parameter estimates for the local regression
models (Oshan et al., 2019). If the p‐value was lower than 0.05, then the variability of the influence of the
dependent variable was confirmed, and that variable was identified as a local variable for the given type of
experience; if not, then the parameter estimates indicated a relatively stationary pattern across the space, and
accordingly, the independent variable could be interpreted as a global variable. Finally, we measured the
bandwidth confidence intervals at different levels of probability to ensure reliable spatially varying bandwidths
derived from both GWR and MGWR (Fotheringham et al., 2017). Bandwidth can also be seen as an indicator that
reflects spatial scale. A higher bandwidth value indicates a broader spatial scale of influence. We used the AICs
and the coefficients of determination to assess the goodness of fit of the MGWR model (Oshan et al., 2019). For
these parameter estimates, a higher R2 and a smaller AIC indicated the best fit of the model. In addition, we
mapped and compared the spatial distribution of the standardized residuals for all models to better understand
how local GWRmodels addressed spatial heterogeneity (Li et al., 2020). We also estimate spatial autocorrelation
through local Moran's I to trace potential clustering in the residuals for OLS, GWR, and MGWR's residuals, with
its associated z‐score and residual p‐values, for assessing the model's performance. A model with random pattern
residuals is better. Another metric to evaluate the model's goodness of fit in regression models is the model
parameter's estimates. The value of the parameter estimates indicated the intensity of the influence of the predictor
on the response variable. We used MGWR2.2 software to calibrate all of the GWR and MGWR models (Oshan
et al., 2019). These models were then imported into the Python 3.12 and ArcGIS Pro 3.2 environments for analysis
and visualization.

2.5. GAMs

The GAM is a nonparametric interpretable machine learning model developed by Hastie and Tibshirani (1995) as
an extension to the conventional GLMs that allow for nonparametric relationships between a response variable
and predictors (Hastie et al., 2017). The approach uses regression splines to provide a flexible way of approxi-
mating the underlying regression functions with polynomials. Splines are often centered around the mean
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prediction, so a point on the curve represents the deviation from the mean prediction (Hastie & Tibshirani, 1995).
Backfitting is a method used to fit GAMs using smoothing splines. This approach utilizes a cross‐validation
approach to fine‐tune a smoothness parameter that is commonly used to control the flexibility of the curve
(Molnar, 2022). GAMs offer a general framework for extending a standard linear model by enabling non‐linear
functions of each of the variables while maintaining additivity (Hastie & Tibshirani, 1995). First, GAMs allow to
automatically model non‐linear relationships that normal linear regression neglects by fitting a non‐linear fj to
each xj. The non‐linear fits could potentially make more accurate predictions for the response y. Second, due to the
additive nature of the model, the effect of each xj on y could be examined individually while keeping all other
variables fixed. Finally, the smoothness of the function fj for the variable xj can be summarized via degrees of
freedom. The GAM model is expressed mathematically as follows:

yi = β0 + f1 (xi1) + f2 (xi2) +… + fp (xip) + ϵi (3)

where, β0 is the intercept; fp(xip) is a (smooth) nonlinear function, and ϵi is the random error at location i. This is
known as an additive model because we calculate a separate fp for each xp and then add together all of their
contributions. Because of the observed non‐linear trends in height‐for‐age variations, the GAM algorithm was
implemented. Subsequently, we used a GAM to examine the nonlinear and spatial effects of the potential height‐
for‐age risk factors. We plotted the relationship between height‐for‐age with its relevant variables obtained from
the MGWR model, taking into account their probability values. A detailed outline of the study's methodological
framework is depicted in Figure 3.

3. Results
3.1. Exploratory Data Analysis and Spatial Dependency

The results obtained from the exploratory data analysis suggest that there are variations in the height‐for‐age rate
within the study area. Out of the 601 observations on height‐for‐age among households that were retained, it was
found that 27% of the children were stunted. The district with the highest prevalence of stunting was Musanze,
whereas Rulindo District had the lowest stunting prevalence rate (refer to Figure 4a). Furthermore, the analysis
conducted using the Getis‐Ord Gi* Hot Spot method revealed a high clustering of height‐for‐age rates in the
western sectors of Musanze District and the middle sectors of Gakenke and Gicumbi districts. On the other hand,
the southern part of Rulindo District and the northern part of Gicumbi District exhibited cold (low) clusters of
height‐for‐age. In Burera Districts, there was mainly no significant relationship observed (refer to Figure 4b).

Figure 5a shows a density plot, while Figure 5b displays violin/box plots, depicting the height‐for‐age distribution
across five districts of the Northern Province. The figures reveal that Musanze District has a high density of
individuals with low height‐for‐age, whereas Rulindo District exhibits a high prevalence of individuals with high
height‐for‐age. The height‐for‐age pattern in the remaining districts is characterized by heterogeneity.

3.2. Local Geographically Weighted Regression Spatial Effects

The final OLS model was fitted using 17 variables, after removing the minimum and maximum air temperature
variables to address the issue of multicollinearity. Figure S1, Tables S1, and S2 in Supporting Information S1
reveal that the VIF values for all selected variables were lower than 10, indicating the absence of severe mul-
ticollinearity. However, the model fit was found to be unsatisfactory, as evidenced by an adjusted R2 of 0.25. The
AIC for the linear model was 1065.672. Notably, the OLS residuals exhibited strong spatial clustering, as
indicated by the results of Moran's I test: Moran's I = 0.893, z‐score = 4.016, and p‐value < 0.000 (Table 4). The
presence of autocorrelated residuals in the OLS violates the assumption of independence of errors, necessitating
caution in the interpretation of the estimated coefficients. Eight variables resulting from OLS regression analysis
with a p‐value less than 0.05, including the number of days a child was left alone, elevation, rainfall, soil fertility,
LST, NDVI, slope, and urbanicity, were included in the GWR and MGWR models. We adopted this approach to
ensure that only statistically significant variables are included in the regression models, thus avoiding the dilution
of the significance of important variables and maintaining the overall accuracy of the models (Brunsdon
et al., 1996). The selected bandwidths for the GWR and MGWR models are presented in Tables 2 and 3,
respectively. The GWR model had a universal bandwidth of 59, whereas the bandwidths selected by the MGWR
model varied for different variables. Notably, the bandwidths for most variables, except for the number of days a
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child was left alone and slope, were smaller than the GWR bandwidth. This suggests that the influence of these
variables on height‐for‐age is highly localized. On the other hand, the association between the number of days a
child was left alone, slope, and height‐for‐age ratio is less localized. Based on the parameter estimates from the
GWRmodel shown in Table 2, the variables such as the number of days a child was left alone, elevation, rainfall,
and soil fertility exhibited a local negative association with height‐for‐age. Conversely, the findings from this

Figure 3. Methodological framework of this study.

Figure 4. (a) Spatial distribution of height‐for‐age aggregated from household data at the sector level; (b) Geographical clusters of sectors from Getis‐Ord Gi* statistics
of height‐for‐age. The geographical clusters of sectors with significant‐high (hot spot‐statistically significant positive z scores, red color) or low (cold spot‐statistically
significant negative z‐scores, dark blue color) values of the Getis‐Ord Gi* statistics for the height‐for‐age.
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local model revealed a positive local relationship between height‐for‐age and LST, NDVI, slope, and urbanicity.
However, the MGWRmodel yielded slightly different results. It indicated that the variables including the number
of days a child was left alone, elevation, rainfall, slope, soil fertility, and urbanicity had a localized negative
association with height‐for‐age, while NDVI and LST showed a local positive relationship with height‐for‐age.
This difference could be attributed to the complex relationship between height‐for‐age and its risk factors within
specific ranges, as illustrated in Figure 11. Furthermore, a p‐value less than 0.05 was obtained from Monte Carlo
tests conducted on the GWR and MGWR models, thus confirming the significance of the observed spatial
variability of coefficients at a 95% confidence level.

Figure 5. Density plot (a) and violin/box plots (b) of height‐for‐age prevalence distributed according to districts, geopolitical
administrative zones in Rwanda. The horizontal line inside the box displays the cutoff height‐for‐age mean.
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In comparison to OLS, both GWR and MGWR have achieved better fits with improved adjusted R2. The local
models explain 84% (GWR) and 89% (MGWR) of the variance in the height‐for‐age rate. Table 4 and Figure 6
demonstrate that the adjusted R2 and RSS from GWR and MGWR are very similar, suggesting that the local
regression models successfully describe the relationships between height‐for‐age and its risk factors. In terms of
AIC,MGWR is more parsimonious than OLS and GWR.Moreover, MGWR achieves the lowest Residual Sum of
Squares (RSS), followed by GWR and OLS. However, GWR exhibits lower performance in explaining height‐
for‐age variability in some sectors (0.29) compared to MGWR (0.53). Therefore, the MGWR model should be
used to test local variations in these relationships. Figure 6 displays the predicted height‐for‐age for both GWR
and MGWR. The study findings reveal that the MGWR model‐based estimates are more accurate in predicting
height‐for‐age than the direct survey‐based estimates shown in Figure 4. Concerning the spatial distribution of
residuals in Figures 7 and 8, the OLS model produces a statistically significant (p < 0.05) spatially clustered
pattern of residuals, while both GWR and MGWR produce a random distribution of residuals (p > 0.05). This
suggests that GWR andMGWR effectively address the spatial autocorrelation or clustering of residuals in height‐
for‐age. Consequently, GWR and MGWR have successfully accounted for spatial heterogeneity in most
locations.

Figures 9 and 10, as well as Tables 2 and 3, display the intercepts of GWR and MGWR coefficient estimates,
along with the predominance of coefficient estimates for each covariate. Comparing coefficient surfaces can
enhance our understanding of spatial and scale variations. It can be observed that the covariate coefficient es-
timates for all GWR and MGWR models transition from negative (dark purple) to positive (yellow), suggesting
the existence of both local negative and positive associations with height‐for‐age. This implies that the coefficient
estimates for the majority of variables exhibit both positive and negative relationships with height‐for‐age. In
relation to the MGWR model, the coefficient estimates indicate a negative relationship between the number of
days a child was left alone and height‐for‐age in Gicumbi, the southern part of Burera, and the western part of

Table 2
Summary Statistics for Geographically Weighted Regression Parameter Estimates

Variable Mean STD Min Median Max Bandwidth Bandwidth confidence interval (95%) Monte Carlo test for spatial variability

Intercept 0.02 0.666 − 2.156 0.043 1.556 59 (59, 61) 0.000

Days left alone − 0.191 0.284 − 0.998 − 0.133 0.304 59 (59, 61) 0.000

Elevation − 0.363 0.587 − 2.236 − 0.277 1.462 59 (59, 61) 0.000

Rainfall − 0.082 0.854 − 3.281 − 0.036 2.17 59 (59, 61) 0.000

LST 0.048 0.605 − 2.879 0.057 1.703 59 (59, 61) 0.000

NDVI 0.154 0.493 − 0.997 0.14 2.325 59 (59, 61) 0.000

Slope 0.017 0.429 − 1.48 0.013 1.13 59 (59, 61) 0.000

Soil fertility − 0.053 0.248 − 1.656 − 0.05 1.298 59 (59, 61) 0.000

Urbanicity 0.18 0.473 − 1.179 0.115 1.673 59 (59, 61) 0.000

Table 3
Summary Statistics for Multiscale Geographically Weighted Regression Parameter Estimates

Variable Mean STD Min Median Max Bandwidth Bandwidth confidence interval (95%) Monte Carlo test for spatial variability

Intercept 0.231 0.349 − 0.545 0.178 0.937 43 (43, 45) 0.000

Days left alone − 0.169 0.196 − 0.636 − 0.135 0.156 63 (55, 68) 0.030

Elevation − 0.263 0.312 − 1.113 − 0.172 0.285 43 (43, 47) 0.000

Rainfall − 0.02 0.497 − 0.956 − 0.076 1.525 45 (44, 50) 0.000

LST 0.145 0.204 − 0.495 0.132 0.632 43 (43, 47) 0.000

NDVI 0.103 0.239 − 0.505 0.12 0.727 43 (43, 50) 0.000

Slope − 0.059 0.197 − 0.787 − 0.016 0.235 78 (63, 96) 0.001

Soil fertility − 0.078 0.123 − 0.509 − 0.087 0.179 43 (43, 50) 0.004

Urbanicity − 0.004 0.271 − 0.711 0.004 0.637 45 (44, 50) 0.013
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Gakenke. The median coefficient value is − 0.169. However, in Musanze District, Rulindo, and the northern part
of Burera, there is a positive relationship. Similarly, there is a negative relationship between elevation and height‐
for‐age in all districts, with a median coefficient value of − 0.263. In contrast, there is a positive association in the
southern part of Gicumbi District, the eastern part of Rulindo, and the eastern part of Gakenke districts. On the
other hand, the MGWR coefficient estimate for LST shows a positive relationship with height‐for‐age, with a
median coefficient value of 0.145. This positive relationship is observed in Gicumbi (except its middle regions),
Burera, Gakenke, Rulindo, and Musanze. The coefficient estimates for the NDVI variable in the MGWR model
are positive, with a median coefficient value of 0.103, indicating a local positive variation with height‐for‐age in
all districts. The findings suggest that rainfall has both negative and positive correlations with height‐for‐age, with
a median coefficient value of − 0.02. The spatial variation is significant, with an acceptable bandwidth of 45. The
median coefficient of − 0.059 demonstrates a clear pattern of primarily negative association between height‐for‐
age and slope. However, there is a portion of positive relationship between height‐for‐age and slope with high
variability in Musanze, Burera, the northern part of Gicumbi, and the southern part of Rulindo, but a negative
association in Gakenke. The MGWR results in Table 3 and Figure 10 reveal that soil fertility has a moderate

Figure 6. Predicted HAZ along with the distribution of the local coefficient of determination for both geographically weighted regression and multiscale geographically
weighted regression models.

Table 4
Comparison of the Models in Terms of Goodness‐Of‐Fit and Residual Dependency

Evaluation metric AIC Adj. R2 RSS Log‐likelihood Moran's I z score Residuals p‐value Residuals pattern

OLS 1065.672 0.25 304.478 − 523.836 0.893 4.016 0.000 Clustered

GWR 496.552 0.848 44.552 − 125.993 − 0.125 − 0.551 0.581 Random

MGWR 328.631 0.898 30.515 − 47.66 0.033 0.162 0.871 Random

Note. RSS: residual sum of squares; AIC: corrected Akaike's information criterion; OLS: ordinary least squares; GWR: geographically weighted regression; MGWR:
multiscale geographically weighted regression.
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relationship with height‐for‐age, with a median coefficient estimate of − 0.078. The relationship is localized, with
a bandwidth of 43. There is a negative relationship in Gakenke and Gicumbi, while the rest of the study area
regions show a positive association. Similarly, urbanicity shows a weak negative correlation with height‐for‐age,
with a negative median coefficient estimate of − 0.004. This negative association is significant in Burera,
Gakenke, and the southern part of Rulindo and Gicumbi districts. In contrast, the rest of the districts exhibit a
positive association with height‐for‐age.

3.3. GAMs Non‐Linear Effects

We conducted an analysis using GAM plots to assess the nonlinear relationship between predictor variables and
height‐for‐age. The findings indicated that all predictors exhibit a curvilinear relationship with height‐for‐age.
While a nonlinear effect between height‐for‐age and its risk factors exists, it is limited to specific intervals. The
results for the non‐linear effects of different factors on height‐for‐age, such as days a child was left alone,
elevation, rainfall, LST, NDVI, slope, soil fertility, and urbanicity, are presented in Figure 11. Each figure dis-
plays the posterior means and 95% credible intervals. The results depicted in Figure 11a show a downward pattern
for the days a child was left alone, suggesting that as the number of days a child was left alone increased, the
height‐for‐age values decreased. This implies a higher likelihood of stunting. In the case of elevation (Figure 11b),
the findings show that as elevation increases up to approximately 2,200 m, the likelihood of stunting increases.
However, after reaching around 2,500 m, the height‐for‐age starts to decrease. Figure 11c demonstrates the non‐
linear effects of rainfall on height‐for‐age. The results indicate that the likelihood of stunting is highest as rainfall
increases up to around 110 mm. Thereafter, the likelihood of stunting decreases up to around 130 mm, before
gradually rising again. Height‐for‐age decreases when rainfall is either below 110 mm or above 130 mm.
Regarding LST (Figure 11d), the study findings reveal a positive association between higher LST values and
greater height‐for‐age. This implies that as LST increases, the likelihood of stunting decreases. The U‐shaped
functions displayed in Figure 11e indicate that as NDVI rises to 0.4, the chances of stunting increase. Howev-
er, between 0.4 and 0.6, the chances of stunting decrease before rising again. Figure 11f illustrates the non‐linear
effects of slope on height‐for‐age, showing a somewhat bell‐shaped curve. This suggests that as slope values

Figure 8. Local Moran's I of residuals; ordinary least squares in panel (a), geographically weighted regression in panel (b) and multiscale geographically weighted
regression in panel (c).

Figure 7. Spatial distribution of the standardized models' residuals; ordinary least squares, geographically weighted regression, and multiscale geographically weighted
regression. A smaller standardized error indicates higher model performance.
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Figure 9. Spatial distribution of coefficients of the geographically weighted regression model. A positive sign denotes that the explanatory variable increases the
probability of the outcome, whereas a negative sign indicates that the variable lowers the likelihood of the outcome.
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increase up to 15°, height‐for‐age also increases. However, there is a downward pattern between 15 and 25°. In a
similar fashion, as soil fertility increases up to 1.0, the likelihood of a child being stunted decreases. However, the
likelihood starts to increase thereafter, reaching its highest point at around 1.2. The credible interval widens

Figure 10. Spatial distribution of coefficients of the multiscale geographically weighted regression model. A positive sign denotes that the explanatory variable increases
the probability of the outcome, whereas a negative sign indicates that the variable lowers the likelihood of the outcome.
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Figure 11. Generalized additive model plots of the nonlinear effects of relevant risk factors on height‐for‐age. The solid line is the estimated effect, with a 95%
confidence limit as a dashed line. A declining curve signifies increasing stunting prevalence, and a rising curve signifies lowering stunting prevalence.
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toward the end of the graph (Figure 11g). Lastly, the results for Figure 11h indicate that as average urbanicity
values increase, the likelihood of stunting reduces until it reaches around 30. After that point, the likelihood of
stunting starts to increase again.

4. Discussion
The aim of the current study was to analyze the spatial variability of height‐for‐age rates using fine‐scale level
data from a cros‐sectional household survey, in conjunction with agroecological and climate data sets, in the
Northern Province of Rwanda. The approach used combined spatial, linear, and non‐linear effects to provide
realistic estimates of the coefficients of various covariates. Local geographically weighted regressions were
employed to assess spatial effects, while GAMs were utilized to characterize the non‐linear impact of relevant
height‐for‐age risk factors. The results indicated that the local MGWR model outperformed all other models in
terms of prediction accuracy and generated residuals with a significant degree of randomness. The local MGWR
model explained 89.8% of the total variance of height‐for‐age, compared to 84.8% and 25.0% for GWR and OLS,
respectively. These findings suggest that, similar to previous spatial epidemiological studies (Chen et al., 2023;
Lotfata & Tomal, 2022; Oshan et al., 2020), MGWR has the potential to capture local variability by identifying
risk factors that influence the local variation of height‐for‐age. The analysis of spatial effects revealed significant
intra‐area variation in low height‐for‐age within the Northern Province region. The areas experiencing significant
variations in stunting among children under the age of three are primarily located in the northern part of the study
area, particularly in Musanze, Gakenke, and Gicumbi districts. Our findings align with those of Sekiyama
et al. (2020), who suggested that the persistent stunting observed in the Northern Province may be mainly
attributed to a reliance on starchy and plant‐based protein foods, with limited consumption of nutrient‐dense
animal‐source foods that provide high‐quality proteins. Additionally, the increased prevalence of stunting
among children under the age of three may also be linked to the higher rate of multiple pregnancies in the
Northern Province of Rwanda (NISR, 2022), which could potentially lead to decreased parental caregiving for
infants. Furthermore, the findings from the GAMs indicate that an increased number of days when a child is left
alone is associated with a higher likelihood of nutritional deficiencies among children under the age of three.
Among the climate variables examined, rainfall was found to be associated with a higher risk of stunting, while
LST showed a positive association with height‐for‐age. Conversely, elevation had a detrimental impact on the
nutritional status of children under three years of age, as evidenced by its negative association with height‐for‐age.
However, variables such as NDVI, slope, soil fertility, and urbanicity exhibited both negative and positive re-
lationships with height‐for‐age. These findings are largely consistent with existing literature (Balk et al., 2005;
Lieber et al., 2022; Sununtnasuk, 2013; Tusting et al., 2020; Westerterp, 2001).

The variable, the number of days a child was left alone, which was not previously used in any undernourishment
research, was found to be significant with low height‐for‐age. This association may be attributed to variations in
traditional living habits, cultural differences, and agricultural practices within the study area. Numerous studies
conducted in North America have shown that children who are left home alone often experience feelings of
loneliness, worry, fear, and are susceptible to engaging in antisocial behaviors such as truancy, stealing, and
drinking (Aizer, 2004; Ruiz‐Casares et al., 2012; Ruiz‐Casares & Rousseau, 2010). In their study, Doi
et al. (2018) revealed that leaving children home alone was linked to higher total difficulty scores, particularly in
the areas of conduct problems, hyperactivity, and difficulties in peer relationships. Similarly, Mertens
et al. (2015), discovered that middle school students in the United States who were left alone for 3 hr or more
exhibited higher levels of depression, behavior problems, low self‐esteem, and reduced academic efficacy.
Furthermore, Matsuyama et al. (2023) found that leaving children alone at home for less than an hour each week
was a risk factor for dental caries among 6‐7‐year‐old children. Additionally, Zhou et al. (2021) found that the
absence of parents is associated with lower psychological resilience and related behavioral issues. On the other
hand, allowing a mature and well‐prepared child to stay home alone can be a positive experience, fostering their
confidence and promoting independence and responsibility. Nevertheless, it is important to acknowledge that
unsupervised children face real risks (Child Welfare Information Gateway, 2018). Numerous studies have
established that from a very early age, infants seek interaction with the adults who care for them. If this interaction
is lacking, it can hinder the child's brain development, potentially impacting their future educational experiences
(Foley, 2017).

Consistent with findings from previous studies conducted in Uganda and Nepal (Dang et al., 2004), our research
also found a higher prevalence of stunting among children aged 1–36 months living in hilly areas within the study
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location. The correlation between living in highland areas and childhood stunting in Rwanda has been previously
documented by Uwiringiyimana, Veldkamp, and Amer (2019) and Weatherspoon et al. (2019). Dang
et al. (2008), similarly found a negative relationship between height‐for‐age and households residing in higher‐
altitude regions. Uwiringiyimana, Veldkamp, and Amer (2019) further revealed that children living in lowlands
are less likely to experience stunting compared to those raised in hilly areas. However, it is possible that this
relationship is closely tied to the remoteness of these regions, which often face higher levels of dietary insecurity
and limited access to healthcare services. Physiologically, populations in these areas lack the capacity to maintain
energy balance at high altitudes due to the disparity between energy intake and expenditure. As a result, living at a
high altitude slightly accelerates metabolism, leading to increased calorie expenditure (Westerterp, 2001). Our
findings align with the research conducted by Egan (2013), who identified the optimal altitude range for human
habitation as between 2,100 and 2,500 m. Additionally, our findings found a positive association between height‐
for‐age and lower slope values (>15), followed by a subsequent negative relationship with a bell‐shaped graph.
Although there is no direct relationship between slope and stunting, previous studies have linked steep slope
terrain with soil erosion, which can lead to reduced agricultural production (Sununtnasuk, 2013), increased risk of
flooding and landslides (Siswanto & Sule, 2019), and limited access to essential health infrastructure (Lieber
et al., 2022), all of which contribute to lower rates of height‐for‐age. Research conducted in rural India has
provided evidence that children from households affected by flooding are more likely to experience stunting
compared to those from non‐flooded households (Gaire et al., 2016). Due to the challenges related to limited
infrastructure and services, areas situated on steep slopes are characterized by inadequate healthcare facilities,
poor sanitation, and restricted access to safe and clean water, all of which contribute to a higher stunting prev-
alence in comparison to areas on moderate slopes (Kismul et al., 2017).

Furthermore, when examining the NDVI and its impact on height‐for‐age rates, a negative relationship is
observed between lower values of the NDVI (less than 0.4) and subsequent positive relationships. This influence
is illustrated in the graph, which displays a distinct U‐shaped pattern. Similar findings have been reported in the
literature (Bangelesa et al., 2023; Galway et al., 2018; Lopez‐Carr et al., 2016; Sununtnasuk, 2013). For example,
Lopez‐Carr et al. (2016) showed that crop production may decline in areas experiencing a negative change in
vegetation index, despite potentially favorable climate conditions, resulting in infant stunting. Limited agricul-
tural productivity is associated with low vegetation index cover, which in turn leads to an increase in childhood
stunting (Balk et al., 2005). Particularly in rural areas where forests are in close proximity to most people, forest
ecosystems serve as the primary source of local food (Richardson, 2010). This finding aligns with Bangelesa
et al. (2023), who found that children living in areas with higher leaf area index (LAI) values have a lower risk of
stunting compared to those in areas with lower LAI values. Additionally, Sununtnasuk (2013) revealed that the
NDVI significantly decreases the likelihood of stunting in Nepal. Our findings have revealed a positive asso-
ciation between average rainfall and HAZ, but a negative association between HAZ and both low and high
rainfall. These findings are consistent with previous studies conducted by Lieber et al. (2022), Mukabutera, Jamie,
et al. (2016), Sununtnasuk (2013), and Yeboah et al. (2022). In their study, Boah et al. (2022) found that younger
children who are more vulnerable are more likely to be negatively affected by increased rainfall, while older
children tend to cope better with such conditions. Lieber et al. (2022) also found a significant association between
rainfall as a proxy for climate change and child health and nutrition. Specifically, they found that children,
especially those under the age of two in Burkina Faso, are more likely to have stunted growth when exposed to
above‐average rainfall. Moreover, extreme rainfall and vegetation density in Rwanda have been linked to a higher
prevalence of vector‐borne diseases like malaria, which contributes to the mortality of under five of the age
children due to the favorable conditions created for disease vectors (Nduwayezu et al., 2023). Previous research
conducted in Rwanda has also shown that heavy rainfall can contaminate surface water by carrying waste and
sediment into drinking water sources (Mukabutera, Thomson, Murray, et al., 2016). The Northern Province, with
its steep‐sloped landscape, is particularly susceptible to floods and landslides, which result in fatalities during the
rainy season (Bizimana & Nduwayezu, 2021). However, it is important to acknowledge the significant role that
average rainfall plays in agricultural productivity (Sununtnasuk, 2013).

In line with previous studies, the results of this study also show a positive correlation between LST and height‐for‐
age (Sarker et al., 2012; Serrat, 2014; Tusting et al., 2020). A study conducted on children living in hotter regions
of sub‐Saharan Africa found that warm temperatures are associated with stunting (Tusting et al., 2020). Similarly,
a study carried out in Bangladesh revealed that higher temperatures have a positive influence on rice growth,
potentially leading to increased food productivity in that specific area (Sarker et al., 2012). These findings are
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further supported by various potential biological explanations (Mora et al., 2022; Patz et al., 2005; Serrat, 2014;
Tusting et al., 2020). Research has shown that individuals raised in warmer climates have permanently longer
limbs and bones compared to their siblings raised in cooler environments (Serrat, 2014). Tusting et al. (2020) also
suggest that genetic factors may contribute to the decline in stunting associated with higher temperatures. They
further propose the possibility of unknown epigenetic factors interacting with environmental temperature to
impact height in African populations. However, this hypothesis still requires confirmation through additional
research. In areas prone to drought, where poor agricultural production exacerbates hunger and extreme poverty,
the detrimental effects of consistently warm climates cannot be underestimated. For instance, extreme temper-
atures influence the lifecycle of malaria mosquitoes, increasing the transmission of the disease (Mora et al., 2022).
Frequent illness from malaria hampers child well‐being and nutritional status, which can consequently impair
child growth and development (Patz et al., 2005).

This study also uncovered a positive correlation between height‐for‐age and soil fertility (<1.0), followed by a
negative correlation. These findings align with previous studies (De Sherbinin, 2011; Weatherspoon et al., 2019).
Weatherspoon et al. (2019) found significantly lower rates of stunting in households located in areas with more
fertile soils. Although this study established a positive relationship between areas with soil fertility less than 1.0
and height‐for‐age, it is perplexing that soil fertility greater than 1.0 has a detrimental impact on height‐for‐age.
De Sherbinin (2011) found that mountainous regions in Africa possess temperate climates and potentially vol-
canic soils, resulting in high agricultural productivity. Conversely, other areas exhibit lower productivity,
particularly in steep slope areas, leading to persistent soil erodibility (Weatherspoon et al., 2019). These findings
may be supported by the steep terrain of the northern region, which experiences fragile and damaged soils due to
the prevalence of small‐scale farming (NISR, 2018). However, further research is necessary to investigate the
mediating effect of this association on childhood stunting.

This study has further revealed a positive association between height‐for‐age and areas with a moderate urbanicity
rate (less than 30), and a negative association onwards. Our findings indicate higher low height‐for‐age rates in
rural areas compared to urban areas, supporting existing literature (Balk et al., 2005; Jones et al., 2016; Van de
Poel et al., 2007). Urban areas are associated with better living conditions, such as improved healthcare access,
which lowers the likelihood of infectious disease contraction compared to rural areas (Balk et al., 2005). The
higher population density in urban areas facilitates the sharing of health‐related information and resources (Jones
et al., 2016). Conversely, rural areas in most developing countries are characterized by higher poverty rates, poor
healthcare systems, and a lack of household hygiene (Van de Poel et al., 2007). The negative relationship between
height‐for‐age and urbanicity rate may be explained by the prevalent informal urban morphology in many
developing cities (Nduwayezu et al., 2021). Previous studies conducted in Rwanda have shown a high prevalence
of stunting in informal urban settlements (NISR, 2018; NISR et al., 2021). It is understandable that informal
settlements in developing cities have limited access to healthcare services, poor sanitation, and inadequate hy-
giene, resulting in a higher risk of diseases like malaria, pneumonia, and diarrhea (Balk et al., 2005). However,
further investigations are necessary to empirically verify these findings.

The strength of this study lies in its state‐of‐the‐art machine learning framework, which simultaneously considers
various predictors to facilitate the analysis of the linear, nonlinear, and spatially heterogeneous relationships
between height‐for‐age and its relevant risk factors. This study is the first to examine the geographic variation in
height‐for‐age at a fine‐scale level in response to socioeconomic, agroecological, and climate determinants, using
locally weighted regression combined with interpretable machine learning. It is essential to note that this study
focused on identifying association rather than proving the causality, which is important when interpreting the
findings of this cross‐sectional study (Cofield et al., 2010). In essence, cross‐sectional studies limited in their
ability to ascertain causality (Tellings, 2017), are carried out during a short interval at a specific time
(Levin, 2006; Mann, 2003), which help in estimating the prevalence of the outcome and identifying its key risk
factors and potential areas for intervention and formulating causal hypotheses for further in‐depth analysis
(Molnar & Freiesleben, 2024). However, longitudinal studies, which track changes over time and identify causal
associations (Levin, 2005) could be further designed to investigate the effects of spatial and seasonal risk factors
on height‐for‐age variability, and to compare these associations more closely at the household level (Setia, 2016).
This can help to better elucidate the driving factors of the variability in low height‐for‐age distribution in the
Northern province of Rwanda. Furthermore, future studies should consider additional factors such as household
violence, maternal health conditions, and socio‐cultural practices, which play a significant role in influencing
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childhood stunting, in addition to the socio‐economic, agro‐ecological, and climate‐related factors considered in
the current study.

5. Conclusion
This study aimed to analyze the impact of socioeconomic, agroecological, and climate factors on the spatial
variations of height‐for‐age using locally geographically weighted regressions with the GAMs algorithm as a
spatial analysis approach in the Northern Province of Rwanda. Identifying areas with the highest rates of stunting
will help determine the most effective measures for reducing the burden of undernutrition. The maps generated for
the height‐for‐age risk variables have identified specific areas with high and low likelihoods of stunting preva-
lence, which may assist policymakers in understanding the undernourishment status and needs of each area and
enable tailored policy measures. Additionally, by comparing these maps to socioeconomic and epidemiological
indices, further explanations for the observed spatial patterns could potentially be uncovered. For example, based
on the maps, areas with high stunting prevalence may be associated with their respective levels of agricultural
production, educational attainment, or wealth levels. These significant findings about undernourishment in the
study area would not have been known without refined spatial data on infant nutritional status. To our knowledge,
there has been a lack of small‐area spatial modeling of height‐for‐age in Rwanda. Therefore, the results from this
study will help revisit ongoing strategies and nutrition initiatives, particularly in areas where the burden of
stunting was shown to be substantially higher. A finer‐scale assessment helps accurately identify the effects of
relevant variables on height‐for‐age, paving the way for more in‐depth analysis and the formulation of effective
nutrition initiatives in Rwanda to precisely address childhood undernourishment.
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