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Abstract: Bone growth during childhood and puberty determines an adult’s final stature.
Although several prior studies have reported that fermented oyster (FO) consisting of a high
amount of gamma aminobutyric acid can be attributed to bone health, there is no research on the
efficacy of FO on growth regulation and the proximal tibial growth plate. Therefore, in this study,
we investigated the effect of FO oral administration on hepatic and serum growth regulator levels
and the development of the proximal tibial growth plate in young Sprague-Dawley rats. Both oral
administration of FO (FO 100, 100 mg/kg FO and FO 200, 200 mg/kg FO) and subcutaneous injection
of recombinant human growth hormone (rhGH, 200 µg/kg of rhGH) for two weeks showed no
toxicity. Circulating levels of growth hormone (GH) significantly increased in the FO 200 group.
The expression and secretion of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor
binding protein-3 (IGFBP-3) were enhanced by FO administration. FO administration promoted the
expression of bone morphogenic proteins IGF-1 and IGFBP-3 in the proximal tibial growth plate.
This positive effect of FO resulted in incremental growth of the entire plate length by expanding the
proliferating and hypertrophic zones in the proximal tibial growth plate. Collectively, our results
suggested that oral administration of FO is beneficial for bone health, which may ultimately result in
increased height.

Keywords: fermented oyster; gamma aminobutyric acid; insulin like growth factor-1; recombinant
human growth hormone; tibial growth plate

1. Introduction

The Crassostrea gigas oyster is the most widely cultivated shellfish and industrially important
seafood in Asia and Europe because it is easy to grow and spread and is environmentally tolerant [1,2].

Molecules 2020, 25, 4375; doi:10.3390/molecules25194375 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-3546-9370
https://orcid.org/0000-0002-3238-6900
https://orcid.org/0000-0002-6878-0790
https://orcid.org/0000-0001-8006-6402
https://orcid.org/0000-0001-6517-2485
https://orcid.org/0000-0003-3299-7266
https://orcid.org/0000-0002-1454-3124
http://dx.doi.org/10.3390/molecules25194375
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/19/4375?type=check_update&version=2


Molecules 2020, 25, 4375 2 of 13

In addition, it is well known that oyster meat is a high-quality marine food resource that contains
several vitamins and minerals [2]. Numerous studies have reported that oysters and their bioactive
peptides have pharmacological benefits including anti-oxidant [3], anti-microbial [4], osteogenic [5,6],
anti-inflammatory [7], postprandial blood glucose control [8], and anti-coagulant properties [1].

Fermentation is a natural or controlled food preservation technique that extends shelf-life and
improves flavor and nutrition [9]. Several reports have estimated that the biochemical components of
oysters changed during fermentation, altering its biological activities [10–12]. Je et al. [10] suggested
that during oyster sauce fermentation, the major free amino acids increased including taurine,
glutamic acid, glycine, leucine, alanine, and lysine. They also reported that peptides isolated from
fermented oyster (FO) sauces possessed angiotensin-converting enzyme inhibitory activity, and oral
administration of these peptides suppressed blood pressure in spontaneously hypertensive rats [11].
Recently accumulated evidence has established that FO is attributed to bone health [12–15]. Data
published in 2019 demonstrated that FO prevented ovariectomy-induced bone loss and suppressed
osteoclastogenesis [13]. A recent study reported that FO promotes bone formation by osteoblast
differentiation via activating the Wnt/β-catenin signaling pathway in mouse pre-osteoblast MC3T3-E1
cells, human osteoblast-like MG-63 cells, and zebrafish larvae [14]. Our previous study suggested that
FO attenuates osteoclastogenesis via suppression of reactive oxygen species in mouse macrophage
cells [15]. We recently demonstrated that fermentation of oyster by Lactobacillus brevis BJ20 increased
the amount of gamma aminobutyric acid (GABA), which may contribute to increased height in
Sprague-Dawley (SD) rats [12]. GABA is associated with bone health and might be a biomarker of
osteoporosis diagnosis and therapy [16]. According to a recent report, high levels of serum GABA
were observed in young women, which plays a positive role in physical activity, whereas GABA
levels were lower in elderly women with osteoporotic fractures [16]. Our previous study suggested
that FO has rich GABA content and increases body length and hepatic insulin-like growth factor-1
(IGF-1) synthesis [12]. However, there are limitations that no statistical significance on circulating
growth hormone levels and bone morphometric parameters upon oral administration of 100 mg/kg FO.
Therefore, the present study assessed the efficacy of high doses of FO in growing rats. We observed the
efficacy on growth upon oral administration of 200 mg/kg FO for two weeks in young SD rats. We also
investigated the effect of oral FO administration on hepatic and serum growth regulator levels and the
development of the proximal tibial growth plate.

2. Results

2.1. Fermented Oyster (FO) Administration Has No Toxicity

The body weight gains of the FO100 (64.97± 5.78 g), FO200 (63.92± 1.87 g), and rhGH (70.04± 8.70 g)
groups were similar to those of the normal group (62.43± 8.95 g). Body weight gain was not significantly
different between all groups, although body weight gain was slightly increased in the treated groups
(data not shown). Meanwhile, the changes in hematological profiles following FO administration
were investigated. Red blood cells (RBC), white blood cells (WBC), hematocrit, hemoglobin, mean
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC),
and platelets showed no differences among all of the groups (Table 1). There was no difference between
each group in the values of the biochemical indices including alanine aminotransferase (ALT), aspartate
aminotransferase (AST), blood urea nitrogen (BUN), creatinine, and calcium (Table 1).

2.2. FO Increased the Expression of Hepatic Insulin-Like Growth Factor-1 (IGF-1) and Insulin-Like Growth
Factor Binding Protein-3 (IGFBP-3)

We evaluated the effect of FO administration on the expression of IGF-1 and IGFBP-3 in liver
tissue. Analysis of the effects of test substances on hepatic IGF-1 expression showed that the expression
significantly increased to 3.86-fold of normal in the FO200 group (Figure 1A,B). The expression of hepatic
IGFBP-3 was also markedly increased by FO200 administration (4.49-fold of normal, Figure 1C,D).



Molecules 2020, 25, 4375 3 of 13

Administration of FO100 did not affect the expression of IGF-1 and IGFBP-3 in the liver tissue.
However, the expression of hepatic IGF-1 and IGFBP-3 were remarkably upregulated by recombinant
human growth hormone (rhGH) injection (IGF-1, 4.72-fold of normal; IGFBP-3, 4.15-fold of normal).

Table 1. Hematological and biochemical analysis of the Sprague-Dawley rats 14 days after treatment.

Parameter (Units) 2
Group 1

Normal FO100 FO200 rhGH

RBC (106/µL) 6.83 ± 0.42 6.77 ± 0.40 6.81 ± 0.37 6.84 ± 0.33
WBC (103/µL) 3.44 ± 0.38 3.52 ± 0.59 3.68 ± 0.64 3.15 ± 0.76

Hematocrit (%) 50.11 ± 2.32 49.74 ± 2.08 51.00 ± 1.93 49.93 ± 2.15
Hemoglobin (g/dL) 14.55 ± 0.74 14.36 ± 0.49 14.64 ± 0.63 14.37 ± 0.58

MCV (fL) 72.68 ± 1.83 72.33 ± 1.54 73.41 ± 1.92 73.51 ± 1.75
MCH (pg) 21.42 ± 0.53 21.04 ± 0.44 20.79 ± 0.67 21.28 ± 0.53

MCHC (g/dL) 28.97 ± 0.36 28.35 ± 0.42 28.75 ± 0.39 28.72 ± 0.35
Platelet (103/µL) 1217.49 ± 236.81 1334.52 ± 201.57 1294.63 ± 194.68 1315.44 ± 186.37

ALT (U/L) 13.72 ± 1.02 13.44 ± 0.85 12.96 ± 0.78 13.35 ± 0.89
AST (U/L) 24.38 ± 2.72 21.06 ± 2.47 22.41 ± 3.11 20.85 ± 3.26

BUN (mg/dL) 19.15 ± 2.34 20.27 ± 2.75 18.89 ± 3.06 18.12 ± 2.51
Creatinine (mg/dL) 0.29 ± 0.04 0.29 ± 0.04 0.29 ± 0.02 0.28 ± 0.04
Calcium (mg/dL) 12.84 ± 0.65 12.37 ± 0.39 12.27 ± 0.41 12.33 ± 0.43

Results are expressed as means ± SD of eight rats in each group. 1 Normal distilled water was orally administered;
FO100, 100 mg/kg/day of fermented oyster (FO) extract was orally administered; FO200, 200 mg/kg/day of FO was
orally administered; rhGH, 200 µg/kg/day of recombinant human growth hormone (rhGH) was subcutaneously
injected. 2 RBC, red blood cells; WBC, white blood cells; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, MCH concentration; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
BUN, blood urea nitrogen.
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Figure 2. The serum GH (A), IGF-1 (B), and IGFBP-3 (C) levels. Serum from Sprague-Dawley rats 14 

days after treatment were analyzed using commercial ELISA kits. Data are expressed as means ± 

standard deviation (SD, n = 6). * p < 0.05 and ** p < 0.01 vs. normal. GH, growth hormone; IGF-1, 
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2.4. FO Increased the Height of the Proximal Tibial Growth Plate 

Examination of hematoxylin and eosin (H&E) stained sections of the proximal tibia revealed 

changes in the growth plate (Figure 3A). Treatment with rhGH (383.79 ± 45.92 μm), FO100 (385.30 ± 

Figure 1. The protein expression of hepatic IGF-1 and IGFBP-3. Liver extract from Sprague-Dawley
rats 14 days after treatment were analyzed via western blotting with anti-IGF-1 (A) and anti-IGFBP-3
(C) antibodies. β-actin served as the loading control. (B,D) Quantification of IGF-1 and IGFBP-3 levels.
Data are expressed as means ± SD (n = 6). * p < 0.05, ** p < 0.01 and, *** p < 0.001 vs. normal. IGF-1,
insulin-like growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3.



Molecules 2020, 25, 4375 4 of 13

2.3. FO Induced Circulating Levels of Growth Hormone (GH), IGF-1, and IGFBP-3

Changes in the serum GH, IGF-1, and IGFBP-3 levels following FO administration were then
estimated. As shown in Figure 2A, FO200 administration increased the serum GH levels, which had
statistical significance (2.85-fold of normal, p < 0.05), and the levels were also elevated by rhGH
injection (5.42-fold of normal). The circulating levels of IGF-1 noticeably increased in the FO100 and
FO200 administration groups, and the levels were similar to the rhGH group (Figure 2B). The serum
IGFBP-3 levels were markedly upregulated by FO200 administration (1.28-fold of normal) and rhGH
injection (1.36-fold of normal), but not FO100 (Figure 2C).

Molecules 2020, 25, x FOR PEER REVIEW 4 of 14 

 

 

Figure 1. The protein expression of hepatic IGF-1 and IGFBP-3. Liver extract from Sprague-Dawley 

rats 14 days after treatment were analyzed via western blotting with anti-IGF-1 (A) and anti-IGFBP-3 

(C) antibodies. β-actin served as the loading control. (B,D) Quantification of IGF-1 and IGFBP-3 levels. 

Data are expressed as means ± SD (n = 6). * p < 0.05, ** p < 0.01 and, *** p <0.001 vs. normal. IGF-1, 

insulin-like growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3. 

2.3. FO Induced Circulating Levels of Growth Hormone (GH), IGF-1, and IGFBP-3 

Changes in the serum GH, IGF-1, and IGFBP-3 levels following FO administration were then 

estimated. As shown in Figure 2A, FO200 administration increased the serum GH levels, which had 

statistical significance (2.85-fold of normal, p < 0.05), and the levels were also elevated by rhGH 

injection (5.42-fold of normal). The circulating levels of IGF-1 noticeably increased in the FO100 and 

FO200 administration groups, and the levels were similar to the rhGH group (Figure 2B). The serum 

IGFBP-3 levels were markedly upregulated by FO200 administration (1.28-fold of normal) and rhGH 

injection (1.36-fold of normal), but not FO100 (Figure 2C). 

 

Figure 2. The serum GH (A), IGF-1 (B), and IGFBP-3 (C) levels. Serum from Sprague-Dawley rats 14 

days after treatment were analyzed using commercial ELISA kits. Data are expressed as means ± 

standard deviation (SD, n = 6). * p < 0.05 and ** p < 0.01 vs. normal. GH, growth hormone; IGF-1, 

insulin-like growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3. 

2.4. FO Increased the Height of the Proximal Tibial Growth Plate 

Examination of hematoxylin and eosin (H&E) stained sections of the proximal tibia revealed 

changes in the growth plate (Figure 3A). Treatment with rhGH (383.79 ± 45.92 μm), FO100 (385.30 ± 

Figure 2. The serum GH (A), IGF-1 (B), and IGFBP-3 (C) levels. Serum from Sprague-Dawley
rats 14 days after treatment were analyzed using commercial ELISA kits. Data are expressed as
means ± standard deviation (SD, n = 6). * p < 0.05 and ** p < 0.01 vs. normal. GH, growth hormone;
IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3.

2.4. FO Increased the Height of the Proximal Tibial Growth Plate

Examination of hematoxylin and eosin (H&E) stained sections of the proximal tibia revealed
changes in the growth plate (Figure 3A). Treatment with rhGH (383.79 ± 45.92 µm), FO100
(385.30 ± 40.34 µm), and FO200 (410.41 ± 33.43 µm) significantly increased the growth plate’s total
height compared to the vehicle treated normal group (334.69 ± 28.53 µm) (Figure 3B). Detailed
measurement of the growth plate demonstrated a significant increase in the height of the proliferation
zone in the treated groups compared to the normal group: normal group (138.76 ± 20.72 µm), rhGH
(181.19 ± 25.38 µm), FO100 (173.48 ± 17.26 µm), and FO200 (181.54 ± 22.39 µm). As shown in
Figure 3C, the height of the hypertrophic zone did not reveal significant differences between the
normal (161.12 ± 19.85 µm), rhGH (153.66 ± 30.28 µm), and FO100 (162.58 ± 19.21 µm) treated groups.
However, the height of the hypertrophic zone significantly increased in the F0200 (187.52 ± 21.91 µm)
treated groups compared to the other groups.

2.5. FO Enhanced the Expression of Bone Morphogenetic Proteins in the Proximal Tibial Growth Plate

We next observed the changes in the expression of bone morphogenic proteins in the tibial
growth plate following FO administration. Bone morphogenetic protein (BMP)-2 expression was
higher in the hypertrophic zones than in the proliferative zones in the proximal tibial growth plate
(Figure 4A,B). The expression of BMP-2 was markedly increased by FO200 administration and rhGH
injection. As shown in Figure 4C,D, in the normal group, BMP-4 was more highly expressed in the
proliferative zone than in the hypertrophic zone. The expression of BMP-4 in the proliferative zone
was not different between the groups. However, the expression of BMP-4 in the hypertrophic zone was
markedly enhanced by FO administration in a dose-dependent manner. The rhGH injection induced
marked incremental expression of BMP-4 in the hypertrophic zone in the proximal tibial growth plate.
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Figure 3. Histology of the proximal tibial growth plate in the Sprague-Dawley rats and height
measurements. (A) Hematoxylin & eosin (H&E) staining of the proximal tibial growth plate
(100×magnification). (B) Heights of the entire growth plate were measured on tibial sections stained
with H&E. (C) Length of the proliferating zone in the growth plates. (D) Length of the hypertrophic
zone in the growth plates. Heights were measured on tibial sections stained with H&E (100×). Data
are expressed as means ± SD (n = 6). * p < 0.05 and ** p < 0.01 vs. normal. PZ, proliferating zone;
HZ, hypertrophic zone.
Molecules 2020, 25, x FOR PEER REVIEW 6 of 14 

 

 

Figure 4. Immunohistochemical localization of bone morphogenic proteins in the proximal tibial 

growth plate. BMP-2 (A) and BMP-4 (C) were detected in the proliferating and hypertrophic zone of 

the proximal tibial growth plate. Scale bar; 50 μm. (B,D) The stained area of BMP-2 and BMP-4 was 

analyzed using ImageJ®  and calculated in terms of the fold of the control. Data are expressed as means 

± SD (n = 6). ** p < 0.01 and *** p < 0.001 vs. normal. BMP-2, bone morphogenetic protein-2; BMP-4, 

bone morphogenetic protein-4; PZ, proliferating zone; HZ, hypertrophic zone. 

2.6. FO Promoted the Expression of IGF-1 and IGFBP in the Proximal Tibial Growth Plate 

To investigate whether FO administration regulated the expression of IGF-1 and IGFBP-3 in the 

proximal tibial growth plate, we performed additional immunohistochemical analysis. Our results 

showed that IGF-1 was only slightly expressed in both the proliferative and hypertrophic zones 

(Figure 5A,B). However, the administration of FO substantially increased IGF-1 expression in both 

the proliferative and hypertrophic zones, and its increase had a concentration-dependent tendency. 

In addition, rhGH injection enhanced IGF-1 expression, which was similar to the result in the FO200 

group. In the proliferative zone, there was no difference in the expression of IGFBP-3 between the 

groups (Figure 5B–D). However, the expression of IGFBP-3 in the hypertrophic zone was markedly 

enhanced by FO administration and rhGH injection. 

Figure 4. Immunohistochemical localization of bone morphogenic proteins in the proximal tibial
growth plate. BMP-2 (A) and BMP-4 (C) were detected in the proliferating and hypertrophic zone
of the proximal tibial growth plate. Scale bar; 50 µm. (B,D) The stained area of BMP-2 and BMP-4
was analyzed using ImageJ® and calculated in terms of the fold of the control. Data are expressed as
means ± SD (n = 6). ** p < 0.01 and *** p < 0.001 vs. normal. BMP-2, bone morphogenetic protein-2;
BMP-4, bone morphogenetic protein-4; PZ, proliferating zone; HZ, hypertrophic zone.
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2.6. FO Promoted the Expression of IGF-1 and IGFBP in the Proximal Tibial Growth Plate

To investigate whether FO administration regulated the expression of IGF-1 and IGFBP-3 in the
proximal tibial growth plate, we performed additional immunohistochemical analysis. Our results
showed that IGF-1 was only slightly expressed in both the proliferative and hypertrophic zones
(Figure 5A,B). However, the administration of FO substantially increased IGF-1 expression in both
the proliferative and hypertrophic zones, and its increase had a concentration-dependent tendency.
In addition, rhGH injection enhanced IGF-1 expression, which was similar to the result in the FO200
group. In the proliferative zone, there was no difference in the expression of IGFBP-3 between the
groups (Figure 5B–D). However, the expression of IGFBP-3 in the hypertrophic zone was markedly
enhanced by FO administration and rhGH injection.Molecules 2020, 25, x FOR PEER REVIEW 7 of 14 
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Figure 5. Immunohistochemical localization of IGF-1 and IGFBP-3 in the proximal tibial growth plate.
IGF-1 (A) and IGFBP-3 (C) were detected in the proliferating and hypertrophic zones in the proximal
tibial growth plate. Scale bar; 50 µm. (B,D) The stained area of IGF-1 and IGFBP-3 was analyzed using
ImageJ® and calculated in terms of the fold of the control. Data are expressed as means ± SD (n = 6).
* p < 0.05 and *** p < 0.001 vs. normal. IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like growth
factor binding protein-3; PZ, proliferating zone; HZ, hypertrophic zone.

3. Discussion

GABA is a non-protein amino acid that is widely distributed in microorganisms, plants,
and animals, and is produced by glutamate decarboxylase that catalyzes the irreversible decarboxylation
of L-glutamate to GABA [17,18]. A number of microorganisms of bacteria and fungi have been reported
to produce GABA [19]. Among the microorganisms, lactic acid bacteria is the most practical group of
bacteria for GABA production, which makes high levels of GABA [19]. Recently, Lactobacillus brevis
and Lactococcus lactis isolated from many fermented foods have been used for the mass production
of GABA [20]. A wide range of traditional foods produced by microbial fermentation contain
GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new
health-benefited products enriched with GABA [21]. Numerous studies have demonstrated that
GABA-enriched functional food have physiological benefits such as suppression of blood pressure [22],
hepatoprotection [23], decrease in gut inflammation [24], and regulation of glucose tolerance [25].
Furthermore, several reports have demonstrated that GABA promoted bone health [15,16,26–28].
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Watanabe et al. [26] reported that GABA directly regulates the muscle tone, and Muhammad et al. [27]
suggested GABA promotes osteoblastogenesis by stimulation of bone formation genes. More recently,
Jeong et al. [15] found that GABA-enriched seaweed suppressed osteoclastogenesis. Additionally,
one study reported that peripheral GABA increases plasma GH concentration in humans [28]. In this
regard, our previous finding demonstrated that FO had a high content of GABA by fermentation with
Lactobacillus brevis BJ20 [12]. Our recent reports suggest that FO prevented osteoclast differentiation,
stimulated bone formation, and proposed the possibility of promotion on bone growth [12–14].
Based on these previous studies, we considered that the beneficial effect of FO on bone health was
associated with a high content of GABA. Therefore, in the present study, we investigated the effect
of GABA-enriched FO on hepatic and serum growth regulator levels and the development of the
proximal tibial growth plate in SD rats.

The development of the human body is a multifactorial process involving bone tissue accumulation
influenced by genetic, nutritional, environmental, and hormonal factors [29]. This process begins during
the fetal age and ends in adolescence with the fusion of the epiphyseal growth plate, which determines
an individual’s final stature. [30]. Therefore, childhood and pubertal growth has an important
impact on height and depends on GH, which has long been established as a longitudinal growth
regulator [31,32]. GH is the main hormone involved in growth and has a stimulatory effect on osteoblast
precursors and stimulate osteoblast proliferation and activity [32,33]. In the liver, GH accelerates
IGF-1 synthesis and subsequently secretion in the blood [33]. GH stimulates the local production of
IGF-1 through a direct effect on cartilage cells in the growth plates [34]. IGF-1 is primarily present
in a complex form with IGFBP-3, which is synthesized in the liver, and it plays a significant role
in growth-plate mediated growth [35,36]. In this respect, numerous reports have established that
longitudinal bone growth is stimulated by IGF-1, which has been proposed to play an essential role in
bone metabolism [37,38]. Moreover, IGFBP-3 is considered as a biochemically excellent index of GH
level due to it is GH dependent and is maintained at a regular daily concentration [39]. Actually, several
studies have suggested that the level of IGFBP-3 may be superior to the measurement of IGF-1 in the
diagnosis of GH deficiency, and in reflecting actual serum levels of IGF-1 [40–42]. In 2016, Lee et al.
also demonstrated that oral administration of Phlomis umbrosa root increased longitudinal bone growth
rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating
IGFBP-3 [43]. Furthermore, Kim et al. reported that oral administration of herbal extracts increased
the expression of IGF-1 and IGFBP-3 on the growth plate, and most rats had a direct proportional
relationship between IGF-1 and IGFBP-3 [44]. Therefore, observations of changes in circulating
GH, IGF-1, and IGFBP-3 as well as hepatic IGF-1 and IGFBP-3 expression are important for growth
evaluation. In the present study, we evaluated the effect of high doses of FO on growth regulators
including GH, IGF, and IGFBP-3 in young SD rats. In accordance with previous studies, our findings
showed that the administration of FO 200 mg/kg stimulated the levels of serum GH as well as the
expression of IGF-1 in liver and blood (Figures 1 and 2). We found it interesting that in the FO 200 mg/kg
group and rhGH group, the IGFBP-3 levels were increased in the liver and blood. In addition, the local
expression of IGF-1 and IGFBP-3 was also observed in the hypertrophic zone in the proximal tibial
growth plate (Figure 5). These results suggested that oral administration of FO positively regulates
circulating and hepatic IGF-1 and IGFBP-3 via incremental GH secretion and has a direct impact on the
local proximal tibial growth plate, ultimately contributing to growth.

During childhood, bone mass accretion is a combination of bone remodeling and bone
growth [33]. Bone remodeling is the course of new bone formation and resorption by osteoblasts and
osteoclasts, respectively [33]. GH regulates both osteoblast proliferation and promotes bone formation,
and osteoclast differentiation stimulates bone resorption [45]. Accumulated evidence supports that FO
regulates bone remodeling and has a net effect on bone accretion by suppressing osteoclastogenesis
and promoting osteogenesis [13,14]. Bone growth primarily occurs at the growth plates and depends
on the proliferation and differentiation of chondrocytes [46,47]. The growth plate consists of three
principal zones: the resting, proliferative, and hypertrophic zones [48]. The resting zone is adjacent to
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the epiphyseal bone and maintains the growth plate [49]. The proliferative zone contains replicating
chondrocytes arranged in columns parallel to the bone’s long axis [46–48]. Terminally differentiated
chondrocytes enlarge to become hypertrophic chondrocytes that maintain a columnar alignment in
the hypertrophic zone [46–48]. In the present study, we investigated the effect of FO on histological
changes in the proximal tibial growth plate. Our results showed that FO administration markedly
increased the expansion of the proliferative and hypertrophic zones in the growth plate (Figure 3).
FO also contributes to increasing the entire growth plate length. Numerous studies suggested that
bone growth results in the expansion of the proliferative and hypertrophic zones in growth plates with
associated matrix synthesis [48,50]. The oral administration of FO promotes the enlargement of the
proximal tibial growth plate, increasing height.

Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play a critical role
in bone formation [51]. BMP signal activation is required for undifferentiated mesenchymal cells to
become precursors of osteoblasts and chondrocytes [51,52]. Shu et al. reported knockdown of BMP-2
and BMP-4 due to disorganization of chondrocytes, dysregulation of differentiation, and increased
apoptosis in the growth plate [53]. Another study showed that BMP-2-deficent mice demonstrated
failed fracture healing due to the absence of chondrogenesis at injured lesions [54]. Another study
also demonstrated that BMP is required for normal osteogenesis and is a key regulator promoting
proper endochondral bone formation [55]. In line with these findings, our results showed that FO
promoted the expression of BMP-2 and BMP-4 in the hypertrophic zone in the proximal tibial growth
plate. Based on this result, oral administration of FO upregulates BMP expression in the growth plate
and may contribute to bone health via bone formation.

In summary, administration of GABA-enriched FO has no toxicity and markedly increased the
hepatic expression and circulating levels of GH, IGF-1, and IGFBP-3. Administration of FO substantially
upregulated the expression of BMPs, IGF-1, and IGFBP-3 in the hypertrophic zone of the proximal
tibial growth plate. These effects of FO contribute to increasing the length of the entire growth plate in
the proximal tibia, which may ultimately result in increased height (Figure 6).
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Sprague-Dawley rats.

4. Materials and Methods

4.1. Preparation of Fermented Oyster

FO extract was obtained from Marine Bioprocess Co. Ltd. (Busan, Korea). In brief, the FO used in
this study was oyster fermented with L. brevis BJ20, and glutamic acid and dextrin were used on behalf
of glutamate and an excipient, respectively. Glutamate was used as a precursor to produce GABA
through a decarboxylation reaction during fermentation with L. brevis BJ20 [56]. In the present study,
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used FO was the same batch as used that in a previous report [12], which was comprised of 46 g/100 g
carbohydrate, 36 g/100 g crude protein, 6.3 g/100 g sugars, and 114 mg/g GABA. FO was diluted with
distilled water immediately before use.

4.2. Animal Study

Female Sprague-Dawley rats (three weeks old) were purchased from Koatech Laboratory Animals,
Inc. (Pyeongtaek, Gyeonggi, Korea) and adapted for one week. All of the procedures were followed
in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the
Institutional Animal Care and Use Committee of Dong-eui University (No. R2019–002). Thirty-two
rats were randomly assigned to four groups of eight rats: group 1 (normal, 100 µL of distilled water),
group 2 (100 µL of 100 mg/kg FO), group 3 (100 µL of 200 mg/kg FO), and group 4 (subcutaneous
injection of 200 µg/kg rhGH; Growtropin-II Dong-A ST Co. Ltd., Seoul, Korea). Groups 1, 2 and
3 were orally administrated directly into the stomach of rats via metal gavage needles (Braintree
Scientific, Braintree, IL, MA), while Group 4 was subcutaneously injected. All of the treatments were
administered once a day in the morning for two weeks. The body wight was measured weekly. All of
the rats were given ad libitum access to standard chow and water and sacrificed on day 14 of the study.

4.3. Collection of Blood and Tissue Samples

Blood samples were collected from the heart using BD Vacutainer ethylenediaminetetraacetic
acid (EDTA)-containing tubes (Becton Dickinson, Franklin Lakes, NJ, USA). Whole blood samples
were used for hematological analysis. Serum samples that were obtained by centrifugation at 3000 g
for 10 min were stored at −80 ◦C for later biochemical and ELISA analyses. After perfusion, liver
samples were immediately surgically excised and stored at −80 ◦C for western blotting. Longitudinal
bone was dissected, fixed 10% formalin overnight, and decalcified for one month in 0.5 M EDTA
(pH 7.4) at 4 ◦C with constant shaking. Tissues were dehydrated by passage through an ethanol series,
cleared three times in xylene, embedded in paraffin, and sectioned to 5µm with a microtome (Leica
Biosystems, Nussloch, Germany). Paraffin sections of the proximal tibia then underwent histochemical
and immunohistochemical analysis.

4.4. Hematological and Biochemical Analysis

The hematological analyses were conducted using a Sysmex XN-9000 analyzer (Sysmex
Corporation, Kobe, Japan) to assess the complete blood count: RBC, WBC, hematocrit, hemoglobin,
MCV, MCH, MCHC, and platelet counts. The biochemical analysis was validated using a Cobas 8000
C702 chemistry analyzer (Roche, Mannheim, Germany). Components including ALT, AST, BUN,
creatinine, and calcium were detected as previously described [57].

4.5. Western Blotting Analysis

Western blotting analysis was conducted as previously described [12]. In brief, the liver tissues
were lysed in radioimmunoprecipitation assay lysis buffer, and the total protein concentration was
determined using Bradford Protein Assay Kits (Bio-Rad Laboratories, Hercules, CA, USA). A total of
50 µg of protein was separated on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels
and transferred to polyvinylidene fluoride (PVDF) membranes after electrophoresis. The membranes
were then blocked with 5% non-fat dry milk in Tris-buffered saline containing 0.1% Triton X-100 (TBST)
for 1 h and probed for overnight at 4 ◦C using primary antibodies: IGF-1 (1:500, sc-74116, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), IGFBP-3 (1:500, sc-374365, Santa Cruz Biotechnology),
and β-actin (1:2000, sc-47778, Santa Cruz Biotechnology). The PVDF membrane was washed with
Tris-buffered saline (TBS) and incubated with appropriate secondary antibody (sc-2005, Santa Cruz
Biotechnology) for 1 h at room temperature, then exposed with an enhanced chemiluminescence kit
(GE Healthcare Life Sciences Ltd., Amersham Place, Little Chalfont, UK) at the Core-Facility Center for
Tissue Regeneration, Dong-eui University (Busan, Korea). Immunoreactive proteins were scanned
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with a Fusion FX Image system (Vilber Lourmat, Torcy, France). The band density was normalized
according to the expression of β-actin as a loading control.

4.6. Enzyme-Linked Immunosorbent Assay

Serum GH, IGF-1, and IGFBP-3 levels were measured using an enzyme-linked immunosorbent
assay (ELISA), in accordance with the manufacturer’s instructions. A rat GH solid-phase sandwich
ELISA kit (KRC5311) was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Quantitative
sandwich ELISA kits for mouse IGF (OKBB00165) and mouse IGFBP-3 (OKBB00172) were obtained
from AVIVA Systems Biology (San Diego, CA, USA).

4.7. Histochemical Analysis

Histochemical analysis of the longitudinal bone was performed using a previously described
protocol with slight modifications [15,58]. Paraffin sections of the proximal tibia were dewaxed,
rehydrated, and stained with hematoxylin and eosin (Sigma-Aldrich Chemical Co., St. Louis, MO, USA)
and representative images were captured using a Leica DM 2500 (Leica Biosystems, Nussloch, Germany).
Regions along the center of the growth plates and proliferative and hypertrophic zones were selected for
measurements. The height measurements were obtained by using iSolution software (Daejeon, Korea)
at 100×magnification. At least 10 measurements were obtained for each section.

4.8. Immunohistochemistry

Immunohistochemistry of the longitudinal bone was performed as previously described [59].
Paraffin sections of the proximal tibia were dewaxed, rehydrated, cooked in antigen retrieval buffer
(Abcam Inc., Cambridge, UK) for 10 min, and then incubated using a Vectastain ABC kit (Vector
Laboratories, Burlingame, CA, USA) for 30 min. The tissue sections were blocked in 5% bovine
serum albumin for 1 h and then probed overnight at 4 ◦C with primary antibodies: BMP-2 (1:200,
ab14933, Abcam), BMP-4 (1:200, ab39973, Abcam), IGF-1 (1:200, sc-74116, Santa Cruz Biotechnology),
and IGFBP-3 (1:200, sc-374365, Santa Cruz Biotechnology). The sections were then applied with
appropriate secondary antibodies for 1 h at room temperature and incubated in ABC reagent for
1 h. Immunoreactions were visualized with 3,3′-diaminobenzidine (DAB) peroxidase substrate and
counterstained with Mayer’s hematoxylin (Sigma-Aldrich Chemical Co.). Images of the sections were
photographed with a Leica DM 2500. The quantitative analysis of histological staining for BMP-2,
BMP-4, IGF-1, and IGFBP-3 was performed using the “threshold tool” of ImageJ® [60].

4.9. Statistical Analysis

The results were presented as means ± standard deviation (SD). All of the data were analyzed
via one-way ANOVA with Tukey’s post-hoc test (GraphPad Prism 5.03, GraphPad Software, Inc.,
La Jolla, CA, USA), and p < 0.05 was considered statistically significant.

5. Conclusions

Collectively, our results suggest that oral administration of FO can lengthen the proximal tibial
growth plate and increase growth hormone and growth regulator in the liver and blood. FO’s effect
on proximal tibial growth may be due to GABA. Although our findings demonstrated the enhancing
effect of FO on the development of young rats, further studies are necessary to confirm the effect of
FO on bone micro-architecture and identify the mechanism of action. More evidence is needed to
demonstrate the potential benefits on childhood bone growth using clinical trials.
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