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   Abstract   Native human antibodies are defined as those that arise naturally as the 
result of the functioning of an intact human immune system. The utility of native 
antibodies for the treatment of human viral diseases has been established through 
experience with hyperimmune human globulins. Native antibodies, as a class, differ 
in some respects from those obtained by recombinant library methods (phage or trans-
genic mouse) and possess distinct properties that may make them ideal  therapeutics 
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for human viral diseases. Methods for cloning native human antibodies have been 
beset by technical problems, yet many antibodies specific for viral antigens have 
been cloned. In the present review, we discuss native human antibodies and ongoing 
improvements in cloning methods that should facilitate the creation of novel, potent 
antiviral therapeutics obtained from the native human antibody repertoire.    

  1  Introduction: The Native Human Antibody 
Repertoire and Viral Disease 

 There is a growing awareness of the utility of and need for human antibody thera-
peutics for viral diseases (Keller and Stiehm 2000; Oral et al. 2002; Casadevall et al. 
2004; Casadevall and Pirofski 2005). Individuals who have recovered from a viral 
infection, or who have received a therapeutic vaccination, contain a population of 
antibodies that is capable of contributing to a life-long immunity from the virus. 
These are defined as “native antibodies,” i.e., antibodies in exactly the configura-
tions created by a functioning, intact human immune system. Native antibodies are 
most commonly obtained by methods that immortalize primary B cells by hybrid-
oma formation or Epstein-Barr virus (EBV) infection. They are distinct from 
human or humanized antibodies derived from recombinant DNA or transgenic 
mouse systems, which may not accurately replicate the complete, wild-type struc-
ture of full-length antibodies produced by the human immune system in situ. The 
native human antibody repertoire has tremendous potential as a source for antiviral 
antibody therapeutics because it contains definitive immunologic solutions to 
human viral diseases and is likely to be the safest overall for human clinical use. 
Polyclonal antibody therapeutics of unselected and disease-specific native immu-
noglobulins are effective in some clinical situations. These intravenous immu-
noglobulins (IVIG) are the starting point for exploring the potential value of the 
native human antibody immunome, but they do not address the vast spectrum of 
viral diseases for which antibodies have potential therapeutic efficacy. Over the 
past 25 years, ongoing efforts to improve methods for cloning native human anti-
bodies that can capture and amplify the antiviral capabilities of IVIG have pro-
gressed, demonstrating the value of this approach and justifying further exploration. 
In this review we will consider the history and therapeutic potential of cloned 
native human antibodies specific for viral illnesses. 

  2  Intravenous Immunoglobulins for Human Viral Disease 

 IVIG is the purified population of native human IgG antibodies obtained from 
blood plasma. The only FDA-approved antiviral use for IVIG is to treat infection 
by parvovirus B19 (PV B19) in patients who are immunocompromised or have 
aplastic anemia (Table  1 ). PV B19 is a small DNA virus that in normal children 
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causes fifth disease, characterized by fever, malaise, and a typical bilateral cheek/
facial rash (Broliden et al. 2006). In most people, parvovirus infection is self-limited. 
However, parvovirus can cause complications in susceptible individuals resulting 
from its ability to infect erythroid progenitor cells. Patients who have undergone 
allogeneic hematopoietic stem cell transplants or who have sickle cell anemia can 
have an acute aplastic crisis as a result of parvovirus infection (Broliden et al. 
2006; Eid et al. 2006). Fetuses carried by pregnant women infected with the virus 
can develop severe anemia, complicated by an infectious myocarditis, that can 
induce hydrops fetalis and fetal loss (Ergaz and Ornoy 2006). For these clinical 
situations, IVIG is often used (Moudgil et al. 1997; Geetha et al. 2000; Broliden et 
al. 2006; Eid et al. 2006). Human antibodies have been cloned that bind the major 
or minor capsid proteins and can neutralize parvovirus in vitro (Arakelov et al. 
1993; Gigler et al. 1999). These may be candidates for cloned parvovirus antibody 
therapeutics. 

 Hepatitis A is a picornavirus, containing a positive-strand RNA genome, which 
causes an acute, self-limited hepatitis (Fiore et al. 2006). Prior to the creation of the 
recombinant hepatitis A vaccine, IVIG was routinely given for hepatitis A prophy-
laxis, although it was not FDA-approved for this purpose (CDC 1985; Fiore et al. 
2006; Table 1). IVIG is still indicated for suspected, nonimmune contacts and for 
people who are intolerant of the vaccine. Native antibodies have been cloned that 
are specific for the capsid protein (Cerino et al. 1993) or the core antigen (Siemoneit 
et al. 1994), and one antibody has been cloned that is capable of neutralizing hepa-
titis A in vitro (Lewis et al. 1993). 

 The potential utility of IVIG for treatment of viruses other than PV B19 and 
hepatitis A is broad and reflects the collective antibody immunome of the population 

  Table  1  Common indications for the use of intravenous immunoglobulins (IVIG) or disease-
specific, hyperimmune immunoglobulins (Hyper-IG). References are cited in the text 

Virus Globulins Patients Purpose

Parvovirus B19 IVIG HSCT patients Treatment
Sickle cell disease patients Treatment

Hepatitis A IVIG Anyone at risk Prophylaxis
Hepatitis B Hyper-IG Possibly exposed to HBV PEP

Neonates Inhibit vertical transmission
HBV-infected liver transplant Prophylaxis 

CMV Hyper-IG Solid organ transplant Treatment
VZV Hyper-IG Immunocompromised Treatment of severe cases

Neonates Inhibit vertical transmission
VV Hyper-IG Immunocompromised Treatment
Rabies Hyper-IG Anyone at risk PEP
RSV Hyper-IG Premature infants/BPD Prophylaxis

HSCT patients Treatment

BPD, bronchopulmonary dysplasia; CMV, cytomegalovirus; HBV, hepatitis B virus; HSCT, 
patients who have undergone allogeneic hematopoietic stem cell transplantation; PEP, post-
exposure prophylaxis; VV, vaccinia virus; VZV, varicella zoster virus
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from which it is derived. A study of five different IVIG preparations revealed 
antiviral antibodies specific for types 1, 2, 6, and 7 herpesviruses (HSV), varicella 
zoster (VZV), EBV, measles, mumps, rubella, and parvovirus B19 (Krause et al. 
2002). Differences in the IVIGs were also noted, in that two had high levels of 
antibodies specific for adenovirus and two had high levels of St. Louis encephalitis 
virus antibodies. A panel of eight IVIG preparations was recently examined for the 
presence of vaccinia virus (VV) neutralizing ability (Goldsmith et al. 2004). All 
were found to contain significant in vitro and in vivo VV neutralizing activity, at 
3%–9% of the measured titer of standard VV hyperimmune globulins (VIG), even 
though widespread VV vaccination has not been practiced for nearly the past 
30 years. IVIG may also have clinical activity against West Nile virus (WNV). 
A WNV patient in Israel recovered from the infection after treatment with IVIG. 
It is notable that WNV is endemic in Israel and the Israeli IVIG had a high titer of 
WNV antibodies. In contrast, IVIG from the United States was not found to contain 
WNV antibodies. IVIG has also been considered to be of potential benefit for 
cytomegalovirus (CMV) infection in renal and bone marrow transplants (Sechet et al. 
2002; Sokos et al. 2002). 

  3  Hyperimmune Globulins and Native 
Human Antibodies for Viral Diseases 

 The complications of some viral infections are preferably treated with hyperim-
mune globulins, which are polyvalent IVIGs obtained from subjects with high-titer 
antibody responses to specific antigens (Table 1). Some of the viruses treated with 
this category of therapeutics are hepatitis B (HBV), CMV, VZV, VV, rabies, and 
respiratory syncytial virus (RSV). The first three of these viruses share the capabil-
ity of reactivation in patients who become immunocompromised. In these settings, 
hyperimmune globulins are used to ameliorate the immunodeficiency and bring the 
reactivated viruses under control. VV causes an acute infection that can have severe 
manifestations in immunocompromised hosts and can be mitigated by VV-specific 
hyperimmune globulins. Rabies induces an acute infection that is invariably fatal, 
unless treated, even in immunocompetent individuals. Rabies immune globulins 
(RIG) provide initial control of the virus while a concomitantly administered vac-
cine induces permanent immunity.  RSV can cause fatal bronchiolitis in premature 
infants and recipients of allogeneic hematopoietic stem cell transplants. In these 
patient populations, RSV immunoglobulins (RSV-IG) are effective for RSV proph-
ylaxis and treatment. The different roles for hyperimmune globulins are empirically 
defined and reflect the unique clinical features of each virus and the infected hosts. 
For most of these viruses, native human antibodies have been cloned that may pos-
sess some of the functions provided by the hyperimmune globulins. Future 
 optimized hyperimmune globulins would consist of these or similar antibodies in 
completely defined monoclonal or oligoclonal antiviral therapies. 
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 3.1  Hepatitis B Virus 

 HBV is a partially double-stranded DNA virus that is transmitted by direct contact 
with infected bodily fluids (Hollinger and Liang 2001). In normal individuals, hepa-
titis B will generally induce a self-limited hepatitis, but it has the capacity to establish 
a chronic active state that can eventually lead to cirrhosis or hepatocellular carci-
noma. In the United States, hepatitis B immune globulin (HBIG) is prepared from a 
small number of donors hyperimmunized with the HBsAg vaccine (Terrault and 
Vyas 2003). The main three categories of use for HBIG are (1) post-exposure prophy-
laxis for nonimmune contacts, (2) inhibition of vertical transmission of the virus at 
birth, and (3) prevention of relapse in HBV-positive patients following orthotopic 
liver transplantation. Following a suspected infected needle-stick or fluid exposure, 
HBIG is recommended to be administered in combination with the HBsAg vaccine 
(CDC 1984). Maternal-fetal transmission can be inhibited by administration of HBIG 
and the HBsAg vaccination immediately after birth to infants of mothers positive for 
circulating HBe antigen and HBV DNA (Lo et al. 1985; Ip et al. 1989; Kabir et al. 
2006). Further improvements in outcomes may also be achieved by passive immuni-
zation of HBe-positive mothers with HBIG prior to delivery (Xu et al. 2006; Xiao et al. 
2007). The successful use of orthotopic liver transplantation to treat end-stage liver 
disease caused by HBV depends on the prevention of reactivation of the virus in the 
immunocompromised, post-transplant patient (Gish and McCashland 2006). HBIG 
can collaborate with nucleoside antiviral agents to limit reactivation in these patients, 
but there remains a risk of reactivation of disease after the discontinuation of prophy-
lactic therapy. In this setting, the cost of long-term HBIG administration may poten-
tially be reduced through the use of low-dose combination therapy regimens 
(Di Paolo et al. 2004; Ferretti et al. 2004). 

 Many native human IgG antibodies specific for HBV have been cloned using 
hybridoma and EBV-immortalization methods (Stricker et al. 1985; Colucci et al. 
1986; Desgranges et al. 1987; Ichimori et al. 1987; Tiebout et al. 1987; Andris 
et al. 1992; Ehrlich et al. 1992; Sa’adu et al. 1992; Heijtink et al. 1995). Animal 
data are difficult to obtain with HBV infection, but a combination of two human 
antibodies administered to a chimpanzee chronically infected with HBV was able 
to transiently (< 7 days) reduce the levels of circulating virus (Heijtink et al. 1999). 
An important concern regarding the efficacy of cloned antibodies for HBV is the 
apparent ability of the virus to escape neutralization by polyclonal HBIG. This 
phenomenon has been observed in liver transplant patients who had recurrent HBV 
infection after liver transplantation despite HBIG therapy. In three studies, the 
existence of mutations in antigenic regions of HBsAg correlated with resistant or 
recurrent HBV infection (Carman et al. 1996; Ghany et al. 1998; Terrault et al. 
1998). Furthermore, the length of time of therapy correlated with the likelihood of 
finding mutated HBV strains (Ghany et al. 1998; Terrault et al. 1998). The potential 
failure of polyclonal antibodies may suggest that the virus would be particularly 
adept at escaping the effects of a monoclonal or oligoclonal antibody therapeutic. 
A pair of antibodies with significant HBV binding had considerably less affinity for 
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a variant HBV strain that had arisen in a patient following a year of HBIG therapy 
(Heijtink et al. 1995). Nonetheless, it may be possible to create an oligoclonal 
HBIG equivalent or superior to polyclonal HBIG by identifying two or three non-
cross-resistant antibodies directed at relatively stable portions of HBsAg. 

   3.2 Cytomegalovirus 

 CMV is a double-stranded DNA virus that, in normal individuals, induces a febrile 
illness that resembles mononucleosis from EBV, with chills, fatigue, headache, and 
malaise (Gandhi and Khanna 2004). In immunocompromised patients, such as 
those who have undergone bone marrow or other organ transplantation or who have 
advanced human immunodeficiency virus (HIV) disease, CMV can cause consider-
able morbidity and mortality. CMV may be reactivated in a previously infected 
person who becomes immunosuppressed. Alternatively, a de novo CMV infection 
may be transmitted to a CMV-negative recipient of an organ from a CMV-positive 
donor. Many organs can be affected by CMV infection, including the retina, lung, 
liver, esophagus, or colon. CMV can also cause complications to a fetus infected in 
utero, including hearing loss, visual loss, and neurological complications (Fowler 
et al. 1992). CMV hyperimmune globulins (CMVIG) first demonstrated efficacy in 
the treatment of disease associated with kidney transplants (Snydman et al. 1987). 
Since then, CMVIG has been approved by the FDA for treatment of CMV reactiva-
tion in patients with transplants of the kidney, heart, lung, liver, and pancreas 
(Sawyer 2000). Evidence does not clearly support the use of IVIG or CMVIG in 
allogeneic bone marrow transplant patients (Zikos et al. 1998; Sokos et al. 2002). 
The utility of CMVIG in organ transplant settings has been lessened by the availa-
bility of potent small molecule anti-CMV drugs, such as ganciclovir, valganciclo-
vir, foscarnet, and cidofovir, even though these drugs have significant toxicities 
(Biron 2006). It is possible that CMVIG may synergize with small molecule anti-
CMV drugs in some clinical situations (Kocher et al. 2003; Varga et al. 2005; 
Ruttmann et al. 2006). 

 Many native human monoclonal antibodies specific for CMV have been 
described (Emanuel et al. 1984; Redmond et al. 1986; Foung et al. 1989; Bron 
et al. 1990; Kitamura et al. 1990; Drobyski et al. 1991; Gustafsson et al. 1991; 
Ohizumi et al. 1992; Ohlin et al. 1993; Rioux et al. 1994). Some of these were 
found to be capable of neutralizing CMV in vitro (Redmond et al. 1986; Foung 
et al. 1989; Ohizumi et al. 1992; Ohlin et al. 1993). The native human CMV 
antibody, MSL-109, has been tested for clinical efficacy (Drobyski et al. 1991). 
In a randomized controlled trial of allogeneic hematopoietic stem cell transplant 
patients, no benefit from the antibody was seen in terms of the time to develop-
ment of CMV viremia or pp65 antigenemia (Boeckh et al. 2001). Studies of the 
MSL-109  antibody in AIDS patients with newly diagnosed or recurrent CMV 
retinitis did not show a reduction in the progression of CMV disease (CDC 1997a; 
Borucki et al. 2004). The explanation for these disappointing results is unclear. 
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The MSL-109 antibody is specific for the H glycoprotein (gp86). It is possible 
that an antibody specific for the B glycoprotein complex (gp58/116), a major tar-
get of CMV neutralizing antibodies, may be useful alone or in combination with 
an anti-H antibody (Ohlin et al. 1993). Nonetheless, the most likely explanation 
may be that T cell function is essential for CMV control in vivo and that neutral-
izing antibodies are minimally active in the absence of robust T cell activity 
(Boeckh et al. 2003). 

  3.3  Varicella Zoster Virus 

 VZV is a highly transmissible, double-stranded DNA poxvirus that induces a 
febrile illness (chickenpox), which is characterized in children by fever, malaise, 
and a pruritic, vesicular rash (CDC 1996). VZV can also reactivate in adulthood as 
a series of painful vesicular lesions in the distribution of a cutaneous dermatome. 
Infection of pregnant women during the first and second trimesters may induce the 
congenital varicella syndrome, which can result in significant fetal deformities, and 
VZV infection transmitted to newborns can be fatal (Tan and Koren 2006). 
Accordingly, VZV immunoglobulins (VZIG) are indicated for immunocompro-
mised patients, pregnant women, and neonates at risk for VZV infection (CDC 
2006; Tan and Koren 2006). Native human antibodies capable of neutralizing VZV 
in vitro have been cloned (Foung et al. 1985; Sugano et al. 1987, 1991). 

  3.4  Vaccinia Virus 

 One of the established uses of human hyperimmune globulins is the treatment of 
complications of vaccinia virus (Lane et al. 1969; Henderson et al. 1999). 
Vaccinia virus is a poxvirus that has been adapted for use as a human vaccine for 
the prevention of smallpox. Although generally safe for immunocompetent per-
sons, disseminated and occasionally fatal infections can occur among patients 
with underlying immunodeficiencies, such as those with HIV infection, eczema, 
or atopic dermatitis (Henderson et al. 1999). Generalized vaccinia is a syndrome 
in which VV proliferation is systemically spread through the bloodstream 
(Redfield et al. 1987). Progressive VV infection is characterized by unrestrained 
proliferation of virus in the skin. Eczema vaccinatum is the excessive prolifera-
tion of VV in the skin lesions of eczema patients. For these conditions, VIG is 
indicated and can often lead to a complete resolution of symptoms (Henderson et 
al. 1999). VIG is also useful in immunocompetent individuals who have a com-
plicated infection, such as may result from accidental infection of the periorbital 
region (Lewis et al. 2006). 

 Creation of cloned neutralizing antibody therapeutics for VV may be challenged 
by its complex life cycle. The VV virion exists in two forms that differ in their abil-
ity to be neutralized by antibodies, the intracellular mature virion (IMV) and the 
extracellular enveloped virion (EEV), with the IMV more susceptible to  neutralization 
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than the EEV (Law and Smith 2001; Smith et al. 2002). Optimal protection against 
lethal VV in murine and rhesus macaque models by a DNA vaccine required a com-
bination of four genes directed at both the IMV and EEV (Hooper et al. 2003). 
A cloned native murine antibody specific for the A27L antigen (a neutralization 
target of the IMV) was able to protect mice prophylactically and therapeutically 
from a lethal VV challenge (Ramirez et al. 2002). However, no comparable native 
or nonnative human antibodies have been described. It will be important, however, 
to determine how many cloned human antibodies will be required to improve the 
symptoms of VV infection in immunocompromised patients. 

  3.5  Rabies Virus 

 Rabies is a virus with a single-stranded RNA genome that causes an acute and 
universally fatal encephalitis. The efficacy of RIG for the post-exposure prophy-
laxis of rabies has been reviewed elsewhere in this volume (see the chapter by 
T. Nagarajan et al.). Briefly, human rabies immunoglobulins (HRIG) are used in 
combination with rabies vaccination for a known or suspected rabies exposure, 
administered intravenously as well as directly into the suspected exposure site (see 
the chapter by T. Nagarajan et al., this volume). Native human antibodies have 
been cloned that are capable of neutralizing the virus in vitro and in vivo; most of 
these are reactive with the rabies glycoprotein (Dietzschold et al. 1990; Gebauer 
and Lindl 1990; Lafon et al. 1990; Ueki et al. 1990; Enssle et al. 1991; Dorfman 
et al. 1994; T. Nagarajan et al., this volume). A combination of two human anti-
bodies that bind noncross-resistant epitopes on the glycoprotein has undergone 
preclinical in vivo testing. One of the antibodies was a native antibody and the 
other was cloned using the phage display method (Champion et al. 2000; Bakker 
et al. 2005). The antibody combination demonstrated efficacy comparable to 
HRIG and did not interfere with the potency of a simultaneously administered 
rabies vaccine (de Kruif et al. 2006). 

  3.6  Respiratory Syncytial Virus 

 RSV is a single-stranded, negative-strand virus that usually causes an upper 
 respiratory infection (Welliver 2003). In some patient populations, RSV infection 
can develop into a bronchiolitis, an inflammation of the bronchioles, the smallest 
air passages of the lung. It is an important cause of mortality in young children and 
the elderly, and no vaccine for the disease currently exists (Shay et al. 2001; 
Thompson et al. 2003; Falsey et al. 2005). RSV exists in two main subtypes, A and 
B, but infection with one subtype does not even provide lifelong protection from 
reinfection by the same subtype (Welliver 2003). Premature infants and those 
affected by  bronchopulmonary dysplasia (BPD) are at increased risk for 
 hospitalization and death from RSV bronchiolitis (Aujard and Fauroux 2002). The 
prevalence of RSV infection in this population can be reduced by prophylactic 
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treatment with RSV-IG (CDC 1997b). In contrast, RSV-IG did not show any 
efficacy in the treatment of infants already admitted to the hospital with the disease 
(Rodriguez et al. 1997). RSV may also cause a fatal bronchiolitis in patients under-
going allogeneic stem cell transplantation, and off-label administration of RSV-IG 
with the antiviral drug ribavirin may reduce mortality (DeVincenzo et al. 2000; 
Ghosh et al. 2000; Small et al. 2002). 

 No native human antibodies that neutralize RSV have been cloned. However, a 
humanized murine monoclonal antibody, palivizumab, is a potent substitute for 
RSV and the first demonstration of the utility of a monoclonal antibody as an anti-
viral therapeutic (Young 2002; see the chapter by H. Wu et al., this volume). 
Palivizumab binds an epitope on the F glycoprotein, a viral surface protein that is 
a major target for neutralizing antibodies and is highly conserved between type A 
and B viruses. In a series of high-risk infants with prematurity and/or BPD, a course 
of monthly prophylactic doses of palivizumab reduced the overall rate of serious 
infections and hospitalizations by 55% (CDC 1998). A role for palivizumab in the 
treatment of RSV infection in the elderly or in allogeneic hematopoietic stem cell 
patients has not yet been established. 

  3.7  Cloning Antibody Therapeutics for Viral Disease 

 The potency of IVIG, hyperimmune IGs, and the monoclonal antibody palivizumab 
demonstrate in principle that human antibody therapeutics are likely to be effective 
for the treatment of viral diseases. A vast, unmet medical need exists for treatments 
for the majority of viral diseases that occur worldwide. The development of antivi-
ral antibody therapeutics will be challenged by the diversity of virus types, patient 
populations and the roles antibodies play in the neutralization of specific viruses, 
the ability of viruses to mutate antigenic domains, and an incomplete understanding 
of the specific features that endow an antibody with neutralizing ability. To counter 
these uncertainties it will be important to explore as diverse an antibody repertoire 
as possible, which can best be achieved by using a variety of different, complemen-
tary methods for human antibody cloning. The efficacy of IVIG and hyperimmune 
IGs suggests that an ideal starting point to clone a human antibody capable of 
potently neutralizing a viral pathogen may be with B cells from subjects who have 
developed a definitive antiviral body response, either by infection or vaccination. 
Native antibody libraries created from these affinity-matured B cells would be 
expected to contain individual antibodies that possess virus-neutralizing abilities 
and would be suitable for use as monoclonal or oligoclonal antibody therapeutics. 
The successes of native human antibody cloning methods in obtaining native 
human antiviral antibodies, and the potency of these antibodies, establish a ration-
ale for further exploration of these methods. It is evident that the effectiveness of 
this approach will depend on the ability to create libraries that come as close as 
possible to comprehensively incorporating the entire diversity of the human anti-
body response to viral pathogens. 
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   4  Features of Different Cloned Human Antibody Repertoires 

 The prevalent methods of cloning human antibodies from immune human reper-
toires differ in bias and in the degree to which they sample antibodies in their native 
configurations (e.g., with the original heavy chain:light chain pairing). B cell 
immortalization methods, which use hybridoma generation or EBV infection to 
enable primary human B cells to proliferate in vitro, theoretically take an unbiased 
sample of the repertoire of B cells and express each antibody with native heavy 
chain:light chain pairings. In addition to the antibodies described in the preceding 
section, these methods have been used to clone native human antibodies specific for 
measles, HIV, severe acute respiratory syndrome (SARS), EBV and hepatitis C. 
These methods have historically been challenged by poor antibody yields and 
unstable antibody secretion. Nonetheless, they have been the focus of ongoing 
optimization efforts that should improve their ability to comprehensively access the 
native human antibody immunome. 

 Recombinant DNA methods offer a well-established method for cloning human 
antibody repertoires. In these methods, heavy chain and light chain variable domains 
are amplified from B cell populations using RT-PCR, fused, and expressed as single-
chain antigen-binding domains (scFv) on the surface of filamentous phages (Barbas 
1993; Winter et al. 1994). Screening for specific antibodies is performed by panning 
for virus that binds to a plate or other solid support coated with antigen (Bradbury and 
Marks 2004). A related technology is yeast display, in which the scFv molecules are 
expressed on the surface of  Saccharomyces cerevisiae  (Boder and Wittrup 1997). 
Yeast display allows greater diversification of expressed antibody sequences by 
mutagenesis and has the advantage that yeast cells expressing human antibody can be 
directly screened by flow cytometry with fluorescent antigen, enabling a rapid assess-
ment of binding kinetics. Libraries of scFv antibodies have also been efficiently 
expressed on the surface of  Escherichia coli  (Daugherty et al. 1999). 

 It is clear that recombinant DNA libraries obtained from immune individuals 
differ from antibodies obtained from nonimmune individuals (Amersdorfer et al. 
2002). However, the process of creating these libraries can introduce bias at differ-
ent steps in the process that may hinder their ability to capture the entire native 
antibody repertoire. The first step is an RT-PCR amplification with consensus 
DNA primers, which may not equally amplify each immunoglobulin gene sequence. 
The second is at the level of expression in phage, because  E. coli  does not express 
all eukaryotic peptides with the same efficiency, and human variable domain gene 
sequences can differ significantly from one another in their length and amino acid 
composition (Pavoni et al. 2006). A combination of these effects could potentially 
reduce the prevalence of  specific antibodies in the antibody libraries or eliminate 
them entirely. 

 Evidence that this occurs comes from DNA sequence analysis of complementarity-
determining (CDR) regions of heavy chain variable domains (V 

H
 ) cloned by phage 

display. The third CDR region (CDR3) of the V 
H
  is the most important contributor 

to the antigen-binding specificity of an antibody (Xu and Davis 2000). CDR3 
regions incorporated into phage display libraries tend to be short (less than 
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15 amino acids), whereas CDR3 regions in native human antibodies vary widely in 
length, with many over 20 amino acids in length (Griffiths et al. 1994; Brezinschek 
et al. 1995; Tian et al. 2007). Shorter CDR3 regions correlate overall with greater 
levels of somatic hypermutation, but longer CDR3 regions may be better capable 
of viral neutralization (Saphire et al. 2001; Hangartner et al. 2006; Tian et al. 2007). 
It is possible that shorter CDR3 regions are selected against at the level of PCR 
amplification or expression in  E. coli.  

 Two studies have directly examined the types of immune libraries that arise from 
phage display and hybridoma methods. In one comparative study, antibodies cloned 
from mice immunized with human interleukin-5 protein using phage display and 
hybridoma methods were compared (Ames et al. 1995). Each method produced a 
structurally distinct group of antibodies, and only the antibodies cloned by the hybri-
doma method were able to block binding of the cytokine with its receptor. Ohlin and 
Borrebaeck (1996) analyzed a dataset of cloned antibody sequences specific for infec-
tious disease antigens, the majority of which were viral, and were cloned by either the 
phage display or hybridoma method (Ohlin and Borrebaeck 1996). They noted sub-
stantial differences in the heavy chain and light chain gene family utilization between 
antibodies derived from the two different sources. They also noted a dramatic limita-
tion of the diversity of the light chain gene repertoire. This observation may have been 
due to the phenomenon of light chain promiscuity, i.e., the ability of heavy chains to 
productively associate with a variety of light chains (Kang et al. 1991). 

 The ability of a phage library to recreate native heavy chain:light chain combina-
tions was recently assessed by comparing a phage display antibody library that 
maintained native pairings with one made from the same cDNA that did not (Meijer 
et al. 2006). In the random library, the assortment of heavy chain and light chain 
sequences had apparently lost a majority of the original heavy chain:light chain 
pairings. Consistent with the principle of light chain promiscuity, the diversity of 
the random library was less than the nonrandom library due to an over-representation 
of VH chains capable of associating with many different light chain sequences. The 
functional importance of the antibody repertoire shift in the random library was 
revealed by the overall lower affinity of antibodies specific for tetanus toxoid (TT) 
antibodies cloned from the two libraries. 

 Taken together, these experiments illustrate the concept that intrinsic biases in 
phage display libraries may prevent some important native antibody structures from 
being incorporated into them. B cell immortalization methods of human antibody 
cloning are therefore complementary to recombinant DNA methods and thus merit 
further study and optimization. 

  5  Hybridoma Methods to Clone Native Human Antibodies 

 As a starting point in native human antibody cloning methods, the source of virus-
immune B cells is an immune individual who has generated an antibody response 
that is effective in collaborating with the human immune system to cure the viral 
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infection. Thus, there can be a presumption that antibodies with the requisite bio-
logical functions exist within the volunteer B cell donor. Donors can be subjects 
who have either (1) received vaccines specific for the virus, (2) survived an infec-
tion by the relevant virus, or (3) have succumbed to the viral infection but have 
made spleen, lymph nodes, or peripheral blood mononuclear cells (PBMCs) avail-
able  post mortem . The use of B cells from a variety of genetically unrelated indi-
viduals can increase the diversity of the native antibody libraries to be screened. 

 There are many approaches to cloning human antibodies in their native configu-
rations. For the most part, these involve methods of converting primary human B 
cells into a form that is viable in vitro through EBV immortalization, hybridoma 
formation, or a combination of these protocols. In EBV immortalization, purified 
B cells are infected with EBV-containing supernatant from the B95-8 marmoset 
cell line (Brown and Miller 1982). These methods are effective, yet they can be 
compromised by the low levels of antibody that are typically expressed by EBV-
transformed cells (lymphoblastoid cells, LCLs) (Stein and Sigal 1983). In hybrid-
oma methods, primary human B cells are fused to an immortal fusion partner cell 
line, which is adapted to in vitro culture and capable of producing high levels of 
antibody from immunoglobulin genes provided by the primary B cell. The primary 
impediments to hybridoma approaches have been low hybrid cell yields and the 
loss of antibody expression, which correlates with the loss of human chromosomes 
from the hybrid cells. Combination approaches have been taken that can overcome 
some of these defects by immortalizing and expanding the antigen-specific B cell 
population first with EBV infection, and then fusing the immortalized cells to a 
murine or murine/human fusion partner cell line. 

 5.1  Improvements in Fusion Partner Cell Lines 

 Most of the technology development in this area has attempted to address the problem 
of hybridoma instability by improving the fusion partner cell line. It had originally 
been considered that human cell lines would be optimal as fusion partners for primary 
human B cells because hybrid cells formed between murine cells and human cells 
were known to segregate human chromosomes (Ephrussi and Weiss 1969). The first 
reported human antibody cloning by a hybridoma method was an IgM antibody spe-
cific for measles virus (Croce et al. 1980). For this purpose, Croce et al. used a human 
myeloma cell line as a fusion partner cell and PBMCs from a patient with subacute 
sclerosing panencephalitis, the clinical  syndrome resulting from measles virus infec-
tion of the central nervous system. Shortly thereafter appeared the first report of use 
of an EBV-immortalized B cell line as a fusion partner to clone antibodies specific for 
TT (Chiorazzi et al. 1982). An EBV-immortalized human B cell expressing an anti-
body to CMV was fused to a human myeloma cell line to give a hybrid with improved 
antibody expression (Emanuel et al. 1984). Enthusiasm for human cell lines was 
tempered, however, due to problems with the limited number of immortalized mye-
loma and other B cell lines that were available (Kozbor et al. 1986). Most of the cell 
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lines had low fusion rates and produced slow-growing hybridomas, and many already 
expressed human antibody genes. Chromosomal instability was also observed to be a 
considerable problem (Olsson et al. 1983). 

 Experiments using murine myeloma cell lines as fusion partners for human B 
cells demonstrated a poor efficiency that likely resulted from the strong tendency 
of murine/human hybrid cells to rapidly segregate human chromosomes (Ephrussi 
and Weiss 1969; Schlom et al. 1980; Kozbor et al. 1982; Koropatnick et al. 1988). 
To compensate for the defects intrinsic to human and murine partner cell lines, a 
variety of heteromyeloma (murine and human) cell lines have been created. The 
general approach taken was to fuse murine myeloma cell lines with human cells, 
either normal PBMCs (Foung et al. 1984; Ichimori et al. 1985; Grunow et al. 1988) 
or malignant cells (Carroll et al. 1986; Posner et al. 1987; Faller et al. 1990; 
Shirahata et al. 1998). 

 Where examined, these fusions have generally resulted in hybrid cells with 
chimeric murine/human genomes that appear to be improved fusion partners for 
creating hybridoma cells that stably secrete human antibodies. For instance, the 
CB-F7 and the SPAM-8 heteromyelomas contained no distinct human chromo-
somes, but did contain human DNA detectable by hybridization analysis, probably 
in the form of murine/human chimeric chromosomes (Grunow et al. 1988; 
Gustafsson et al. 1991). The heteromyeloma cell lines K6H6/B5, HAB-1, HM-5, 
and SPC-H20 all possessed independent, metacentric chromosomes, consistent 
with a human origin (Foung et al. 1984; Ichimori et al. 1985; Carroll et al. 1986; 
Faller et al. 1990). When directly compared to the parental murine myeloma cell 
lines, the heterohybridoma fusion partner cell lines tended to have an improved 
ability to give rise to hybrid cells that stably expressed human antibodies (Foung 
et al. 1984; Carroll et al. 1986; Grunow et al. 1988; Faller et al. 1990). As many 
of the hybrid cells derived from these fusion partner cells contained substantial 
numbers of human chromosomes, it is likely the heteromyeloma cell lines were 
better able to produce hybrid cells with a reduced tendency to segregate human 
chromosomes (Foung et al. 1984; Carroll et al. 1986; Grunow et al. 1988; Faller 
et al. 1990). Using heteromyeloma fusion partner cell lines, a wide variety of 
native human antibodies have been cloned that were specific for important viral 
pathogens. These included the human T cell lymphotropic virus (HTLV-1), CMV, 
HBV, hepatitis C virus (HCV), HIV, and VZV (Foung et al. 1984; Carroll et al. 
1986; Grunow et al. 1988; Bron et al. 1990; Faller et al. 1990; Gustafsson et al. 1991; 
Hadlock et al. 1997, 2000). 

  5.2  Methods of Preparing Human B Cells for Fusion 

 Along with the improvements in the fusion partner cell lines, the parameters 
affecting the rate of productive hybrid cell formation have been systematically 
analyzed. The best sources of primary human B cells are the splenic mononuclear 
cells, tonsils, or peripheral blood mononuclear cells from infants (Olsson et al. 
1983; Grunow et al. 1988; Jessup et al. 2000; Karpas et al. 2001). The time of 
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harvest of B cells following a vaccination is also important, with the best outcomes 
with TT antibodies seen with cells obtained 5–7 days following the vaccination, 
which corresponds to the period of time when the maximum quantity of TT-
specific memory B cells is circulating in the blood (Butler et al. 1983; Lanzavecchia 
et al. 2006). Treatment of the primary B cells with a proliferative stimulus prior to 
fusion is also essential, either with pokeweed mitogen (PWM) or EBV (Butler et 
al. 1983; Larrick et al. 1983; Olsson et al. 1983; Cole et al. 1984; Emanuel et al. 
1984). PWM is superior to phytohemagglutinin and is optimally used for 5–7 days 
(Olsson et al. 1983; Arinbjarnarson and Valdimarsson 2002). Costimulation of 
mitogen-treated cells with antigen can increase the yield of antigen-specific anti-
bodies (Butler et al. 1983; Sugano et al. 1987). During the cell fusion, the ratio of 
B cells to immortal fusion partner cells is an important variable (Butler et al. 1983; 
Perkins et al. 1991). 

 Two groups of investigators have noted improvements in fusion efficiencies 
when the PBMCs are expanded prior to cell fusion using the CD40 system, an in 
vitro cell culture method that uses antibodies specific for CD40 and interleukin 
(IL)-4 to stimulate B cell proliferation and survival in vitro prior to cell fusion 
(Banchereau and Rousset 1991; Darveau et al. 1993; Thompson et al. 1994). Some 
of the benefit from expansion of the B cells in the CD40 system or by EBV-
 immortalization may derive from removing cytotoxic cells from the fusion that may 
threaten the viability of nascent heterohybridoma cells, which presumably express 
a variety of murine protein antigens, in the context of human MHC, that may be 
recognized as foreign by the human cytotoxic cell population. Consistent with this 
hypothesis, Borrebaeck and his colleagues demonstrated a dramatic improvement 
in the yields of murine/human and human/human cell fusions when they treated the 
input PBMCs with  l -leucine methyl ester (Leu-OMe), which is toxic to lysosome-
rich cytolytic cells, including natural killer (NK) cells and some T cells (Borrebaeck 
et al. 1987; Borrebaeck et al. 1988). A similar potential effect on cytotoxic, unfused 
cells was observed by Kalantarov et al. with the murine/human fusion partner cell 
line MFP-2S, which carried the  neo  drug-resistance marker. Inclusion of G418 in 
the cell culture medium post-fusion substantially reduced the variability of yields 
of antibody-secreting hybrid cells (Kalantarov et al. 2002). 

 In principle, it may be helpful to enrich cell populations for expression of specific 
antibodies prior to cell fusion. In a report approximately 20 years ago, Casali et al. 
selected B cells expressing antibodies specific for TT prior to EBV immortalization 
(Casali et al. 1986). More recently, in comparison to results obtained with  unselected 
PBMCs, fusions performed with CD19-selected B cells had increased hybridoma 
yields (Schmidt et al. 2001). 

  5.3  Electrofusion and Hybrid Cell Culture 

 As an alternative to traditional chemical methods of inducing cell fusion with 
 polyethylene glycol (PEG), electrofusion can offer dramatically improved rates of 
cell fusion (Pratt et al. 1987; Foung et al. 1990; Perkins et al. 1991). In electrofusion, 
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the cells to be fused are aligned in a hypoosmolar buffer solution using an alternat-
ing current. Fusion is then induced by one or more bursts of direct current. 
Electrofusion has been used with a variety of fusion partner cell lines, including 
lymphoblastoid, heteromyeloma and murine myeloma cell lines (Pratt et al. 1987; 
Foung et al. 1990; Yoshinari et al. 1996). Three studies have directly compared the 
efficiency of electrofusion and polyethylene glycol (PEG) fusion, estimating an 
apparent superiority of electrofusion of 4- to 100-fold, with a maximal calculated 
fusion rate of approximately 1 cell per 1,000 input human B cells (Perkins et al. 
1991; Krenn et al. 1995; Panova and Gustafsson 1995). To improve the viability of 
hybrid cells following fusion, a delay of 24 h prior to the initiation of HAT selec-
tion (hypoxanthine, aminopterin, thymidine) and the use of cell feeder layers to 
support hybridoma growth have also been found to be helpful (Cote et al. 1983; 
Perkins et al. 1991; Hoffmann et al. 1996; Shirahata et al. 1998). 

   6  Recent Advances in Native Human Antibody Cloning 

 Improvements continue to be made in the fusion partner cell lines. The Karpas 707H 
cell line is a near-tetraploid human myeloma cell line that has been specifically 
selected for improved growth rates in vitro and resistance to PEG, which is required 
for cell fusion but which was toxic to the original myeloma cell line (Karpas et al. 
2001). Karpas 707H effectively fuses with tonsillar B cells and lymphoblastoid cells 
and is notable for the creation of hybridomas that secrete up to 210 µg antibody/ml 
culture medium. An analysis of the antibodies cloned from thymocytes fused to the 
Karpas 707H cell line revealed a spectrum of antibodies representing different 
stages in the B cell differentiation process (Vaisbourd et al. 2001). 

 MFP-2B is a novel heterohybridoma cell line that is actually the progeny of two 
cell fusions. The first was between a murine myeloma cell line and a human mye-
loma cell line. The second was between one of the resultant heterohybridomas and 
primary human lymphocytes obtained from a lymph node (Kalantarov et al. 2002). 
The MFP-2B has been additionally modified to express a  neo  resistance gene, ena-
bling negative selection against cytotoxic cells following the cell fusion (Kalantarov 
et al. 2002). This cell line is notable for its fusion and cloning efficiency. A karyo-
type demonstrates no intact human chromosomes, but 40% of the chromosomes are 
partial human chromosomes or chimeric murine/human chromosomes. The MFP-2B 
cell line has also been used to clone antibodies specific for breast cancer antigens 
(Kirman et al. 2002). 

 An important alternative to hybridoma methods is a recently improved EBV-
immortalization method, in which human primary CD19 + IgG + B cells are stimu-
lated with a CpG oligonucleotide prior to EBV exposure (Hartmann and Krieg 
2000; Traggiai et al. 2004). The polyclonal B cell proliferation increases the rate 
of EBV immortalization from 1%–2% to 30%–100%. In addition, the efficiency 
of cloning the transformed cells was improved by including CpG oligonucleotides 
in the culture medium and using an irradiated mononuclear cell layer. Others have 
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noted that lymphoblastoid cells tend to have unstable IgG expression, but the 
immortalized cells were found to produce 3–20 µg antibody/ml supernatant and 
were stable enough to enable in vitro and in vivo functional experiments (Stein 
and Sigal 1983; Traggiai et al. 2004). This method enabled the cloning of a panel 
of IgG antibodies specific for either the nucleoprotein or the spike protein of the 
SARS virus, some of which were able to significantly reduce proliferation of the 
virus in a murine disease model (Traggiai et al. 2004). 

 Improvements have also been made in phage display methods that may miti-
gate some of the factors that hinder the incorporation of native human antibody 
genes into typical phage display libraries. As described above, Meijer et al. 
employed a novel approach of in-cell, single-cell PCR with consensus oligonu-
cleotides that produce an individual, correctly paired scFvs from each cell (Meijer 
et al. 2006). These scFvs were then used to create a phage display library for 
screening. Analysis of the paired sequences produced by this method demon-
strated consistent pairing of the same heavy and light chains, indicating preserva-
tion of the native paired antibody conformations. 

  7  The Use of Ectopic Gene Expression to Improve 
Hybridoma Stability 

 Little is understood about the causes of the intrinsic instability of hybridomas 
formed with primary human B cells or of the segregation of human chromosomes 
by murine/human hybrid cells (Ephrussi and Weiss 1969; Cieplinski et al. 1983; 
Harris et al. 1990). To begin to address these questions empirically, we and others 
have considered that empiric modification of fusion partner cells by ectopic gene 
expression may provide insight into the nature of hybridoma cells while potentially 
improving their utility.  

 The first experiments along these lines were based on the observation that addi-
tion of IL-6 to the culture medium of murine/murine cell fusions could increase the 
proportion of hybrid cells expressing murine antibody (Bazin and Lemieux 1989). 
Interleukin-6 is essential for myeloma cell growth, possessing proliferative and 
antiapoptotic functions, in addition to the ability to directly stimulate antibody gene 
expression (Hirano 1998). Addition of IL-6 to hybridoma culture medium improved 
the cloning efficiency and antibody secretion of established hybridomas (Zhu et al. 
1993). SP2/0 cells ectopically expressing high level mIL-6 (SP2/mIL-6) were 
found to give improved yields of hybridomas secreting both antigen-specific and 
nonspecific antibodies, compared with untransfected, parental SP2/0 cells (Harris 
et al. 1992). 

 A similar experiment was performed with the goal of improving the stability of 
murine/human cell fusions (Zhu et al. 1999). Interleukin-11 (IL-11), which shares 
many functions with IL-6, was ectopically expressed in a murine fusion partner cell 
line. Expression of IL-11 improved the yields of hybridomas following selection, 
and this effect was noted with both mitogen-stimulated and EBV-transformed 
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B cells. IL-11 expression also increased the quantity of antibody produced by 
hybrids derived from stable LCLs. However, no data were given on the long-term 
stability of the hybridomas. It is likely that they were still prone to segregation of 
human chromosomes and the associated loss of antibody expression. We performed 
similar experiments, comparing the ability of the SP2/mIL-6 and SP2/0 fusion 
partner cell lines to form stable hybrids with human splenic B cells. Expression of 
mIL-6 was not able to overcome the instability resulting from the segregation of 
human chromosomes (Dessain et al. 2004; K. Rybinski, S. Adekar, B. Barnoski, 
S. Dessain, unpublished data). 

 We originally considered that ectopic expression of human telomerase (hTERT) 
may improve fusions between human B cells and human immortal fusion partner 
cell lines. Human/human hybridomas are affected by poor proliferation rates and 
chromosome loss, both phenotypes having been associated in other cell culture 
systems with telomere dysfunction (Olsson et al. 1983; Counter et al. 1992; Bailey 
and Murnane 2006). Prior to the discovery of hTERT, experiments had shown that 
mortal human T cells impose a dominant senescence program when fused to 
immortal human cells (Pereira-Smith et al. 1990). Later, microcell fusion experi-
ments revealed that the introduction of an intact copy of human chromosome 3 into 
an immortal, hTERT-expressing cell line repressed hTERT activity and caused cel-
lular senescence (Oshimura and Barrett 1997). Together, these results suggested 
that human/human hybrid cells, formed between immortal fusion partner cell lines 
and primary human B cells, suffered from hTERT deficiency. Unfortunately, initial 
experiments with human fusion partner cell lines suggested that their deficiencies 
were multifactorial and could not be overcome solely by ectopic hTERT expression 
(S. Dessain, R. Goldsby, R. Weinberg, data not shown). 

 Because murine fusion partner cell lines are much better at forming hybrids than 
most human fusion partners, we performed similar experiments with the SP2/0 cell 
line (Shulman et al. 1978). The SP2/0 cell line is a very poor fusion partner for pri-
mary human B cells, so it served as a useful starting point to assess the affect of 
ectopic gene expression (Jessup et al. 2000). In murine/human hybrid cells, hTERT 
could potentially contribute to hybrid cell stability by a species-specific stabilization 
of human telomeres. In addition, hTERT has been shown to have many other func-
tions that may be beneficial to hybrid cells, including an incompletely characterized 
tumor-promoting function that may be related to its antiapoptotic and growth factor-
stimulatory activities (Holt et al. 1999; Stewart et al. 2002; Kanzaki et al. 2003; 
Smith et al. 2003). We found that most heterohybridoma cells formed between the 
SP2/0 cell line and primary human B cells expressed murine TERT (mTERT), but 
not hTERT. We introduced hTERT into SP2/0 cells, observing a modest increase in 
the numbers of cells expressing hTERT, but without useful, long-term maintenance 
of human antibody expression (S. Dessain, R. Goldsby, R. Weinberg, data not 
shown). In contrast, the ectopically expressed combination of hTERT and mIL-6 
readily enabled the creation of stable hybrid cells secreting human antibodies. 
Notably, the hybridomas that resulted from these fusions contained considerable 
numbers of intact human chromosomes, even after 3 months of continuous culture 
in vitro (Dessain et al. 2004). An example of this is shown in Fig.  1 , the human 
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chromosome karyotype of a human/murine hybridoma cell that secretes a nonneu-
tralizing IgM antibody specific for the vaccinia virus A27L antigen. Virtually a full 
diploid human genome is present, in addition to over 100 murine chromosomes, 
10 weeks following the creation of the hybrid cell. 

 Some of the apparent cooperative benefit of the hTERT and mIL-6 genes may 
result from a mechanism whereby mIL-6 expression may promote the maintenance 
of human chromosomes by nascent hybridoma cells. Hybrid cells created by SP2/0 
cells and human primary B cells do not proliferate in culture because the human 
chromosome 21 represses mIL-6 expression by the hybrid cells (Ebeling et al. 
1998). Therefore, proliferation of the hybrid cells in vivo may only be possible after 
this chromosome is lost, indirectly selecting for cells that rapidly segregate human 
chromosomes. The specific mechanisms whereby mIL-6 and hTERT collaborate in 
chromosome maintenance are under investigation. 

  8  High-Throughput Screening Technologies 

 Following their establishment through cell fusion and drug selection, hybridomas 
need to be screened for specific antibody expression. In an optimal approach to 
thoroughly explore the native antibody immunome, each hybridoma would be 
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   Fig. 1  Human chromosomes in a human/murine heterohybridoma. Shown are G-banded human 
chromosomes in a hybridoma that secretes a human antibody. Murine chromosomes are not 
shown. Stable antibody expression results from the ability of the hybrid cells to maintain intact 
human chromosomes  
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assayed individually for the binding specific of its particular antibody. Because of 
practical considerations, hybridomas are generally assayed in pools of dozens or 
more clones, but advanced screening technologies may significantly increase the 
yields of specific antiviral antibodies that could be obtained. New antibody screen-
ing methods differ in how they achieve the core objective of associating individual 
cells with the antibodies they produce. In the selected lymphocyte antibody method 
(SLAM), primary B cells are cultured in the presence of complement and sheep red 
blood cells (SRBC) conjugated to the antigen of interest (Babcook et al. 1996). 
B cells expressing antibodies specific for the SRBC-conjugated antigen can be 
identified because their secreted antibodies cause localized hemolytic reactions. 
Although it was originally conceived that this method would be used with primary 
B cells from which immunoglobulin genes would be directly cloned by RT-PCR, 
this method may be useful for screening hybridomas or EBV-transformed cells. 

 Three methods combine the isolation of individual hybridoma cells with fluores-
cent assays for antigen binding. The first distributes individual hybridomas into tiny 
wells (0.1–1 nl volume) created on glass slides using a microengraving technique 
(Love et al. 2006). The secreted antibodies are captured for analysis by sandwich-
ing the arrayed hybridoma supernatants with a capture slide that is coated with sec-
ondary antibody or antigen. The bound complexes are then detected with 
fluorescently labeled antigens or secondary antibodies, respectively. Multiple cap-
ture slides can be used with a single hybridoma microarray, enabling cells to be 
screened for a variety of antigen-binding specificities. An alternate method immo-
bilizes hybridomas on a filter through which secreted antibodies diffuse and then 
bind to a plate coated with a secondary antibody (www.trellisbio.com; Potera 
2005). The plate is then probed with a panel of fluorescent probes that can be used 
in a combinatorial fashion to allow simultaneous screening for many different anti-
gens. Computerized microscopy is used to analyze the binding reactions. 
Hybridomas can also be enveloped in an agarose matrix that captures the antibodies 
secreted by the hybridomas. For this purpose, secondary antibodies are attached to 
the agarose through a biotin-avidin bridge (Gray et al. 1995). The secreted antibod-
ies are thus stably associated with the cells that produce them. The porous agarose 
matrix enables the hybridomas to be screened for binding to fluorescently labeled 
antigens. The matrix also offers structural stabilization for the hybridomas so that 
they can be analyzed and sorted by FACS. 

 In one of our laboratories (J.B.) we have begun experiments with the FMAT 
8200 Cellular Detection System. This system uses antigen-coated beads, which are 
mixed with hybridoma supernatants and fluorescently labeled secondary antibodies 
in 96-well or 386-well formats. The secondary antibodies detect specific antibody 
bound to the beads, thereby concentrating the fluorescence into punctate signals 
that are detected by a mechanized plate reader. The advantage of this method is that 
it enables high-throughput screening of hybridoma supernatants, but it does not 
provide a means of isolating single cells prior to screening. Finally, the marriage of 
such cell screening technologies with automated cell manipulators (ClonePix, 
www.genetix.com) will accelerate the process of mining the native human antibody 
immunome to obtain antibodies for use in the treatment of viral diseases. 
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  9  Summary and Future Prospects 

 The pressing demand for antibodies for use as antiviral therapeutics mandates a 
broad-based effort that utilizes all of the available antibody cloning technologies in 
parallel. Cloning methods that directly immortalize B cells through hybridoma cre-
ation or EBV infection can complement recombinant DNA and transgenic mouse 
methods of antibody cloning because they have an unbiased access to antibody 
repertoires in their native configurations. In addition, these methods simplify the 
exploration of the antibody repertoires of genetically diverse individuals. Over the 
past 27 years, successive technical advances have improved the methods for clon-
ing native human antibodies such that they now may be able to contribute meaning-
fully to ongoing efforts with phage display and transgenic mouse methods. The 
simplicity of these methods should facilitate their application by laboratories with 
a diversity of research interests, as well as provide a rationale for creating core 
facilities that provide high-throughput screening services to academic and other 
researchers.   
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