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Abstract 

Background:  Cuproptosis, a new form of programmed cell death, has been recently reported to be closely related to 
tumor progression. However, the significance of cuproptosis-related genes (CRGs) in papillary thyroid carcinoma (PTC) 
is still unclear. Therefore, this study aimed to investigate the role of the CRG signature in prognosis prediction and 
immunotherapeutic effect estimation in patients with PTC.

Methods:  RNA-seq data and the corresponding clinical information of patients with PTC were obtained from the 
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Comprehensive analyses, namely, 
consensus clustering, immune analyses, functional enrichment, least absolute shrinkage and selection operator-
multivariate Cox regression, and nomogram analysis, were performed to identify new molecular subgroups, deter-
mine the tumor immune microenvironment (TIME) status of the identified subgroups, and construct a clinical model. 
Independent verification cohort data and quantitative real-time polymerase chain reaction (qPCR) was performed to 
validate the expression of specific prognosis-related and differentially expressed CRGs (P-DECRGs).

Results:  In the TCGA database, 476 patients with PTC who had complete clinical and follow-up information were 
included. Among 135 CRGs, 21 were identified as P-DECRGs. Two molecular subgroups with significantly different 
disease-free survival and TIME statuses were identified based on these 21 P-DECRGs. The differentially expressed 
genes between the two subgroups were mainly associated with immune regulation. The risk model and nomogram 
were constructed based on four specific P-DECRGs and validated as accurate prognostic predictions and TIME status 
estimation for PTC by TCGA and GEO verification cohorts. Finally, the qPCR results of 20 PTC and paracancerous thy-
roid tissues validated those in the TCGA database.

Conclusions:  Four specific P-DECRGs in PTC were identified, and a clinical model based on them was established, 
which may be helpful for individualized immunotherapeutic strategies and prognostic prediction in patients with 
PTC.
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Background
The incidence of thyroid carcinoma, the most common 
endocrine malignancy, has continuously and rapidly 
increased worldwide in recent decades [1]. However, 
thyroid carcinoma mortality remains relatively stable at 
low levels [2]. In 2021, the estimated numbers of new 
thyroid cancer cases and deaths in the United States 
were 44,280 and 2,200, respectively [3]. Similar thyroid 
carcinoma trends have been reported in China [4]. The 
most frequent histological type of thyroid carcinoma 
is papillary thyroid carcinoma (PTC), which accounts 
for approximately 90% of all cases [5]. Most PTCs are 
well-differentiated, indolent, and have excellent prog-
noses when conventional treatments are implemented. 
However, several clinicopathological features, includ-
ing age, tumor diameter, extrathyroidal extension, and 
cervical lymph node and distant organ metastases, are 
considered significantly unfavorable prognostic factors 
and result in a relatively high recurrence rate [6]. Our 
institution has reported the risk factors associated with 
cervical lymph node metastasis of PTC and provided 
some clinical suggestions regarding prophylactic cen-
tral lymph node dissection [7]. To date, the molecular 
mechanisms of recurrence and metastasis in PTC are 
not fully understood. Therefore, a deeper investiga-
tion of potential therapeutic targets and more efficient 
prognostic models for PTC are of great clinical signifi-
cance, especially for facilitating personalized treatment 
strategies.

Copper is an indispensable trace element that plays 
an essential role in various biological processes. Dys-
regulation of copper homeostasis, i.e., the abnor-
mal alteration of intracellular copper levels, may 
trigger cytotoxicity and is considered a novel hallmark 
of malignant tumor progression [8]. Recently, cuprop-
tosis has been identified as a unique type of cell death 
related to copper homeostasis disorder, proving that 
the dysregulation of copper homeostasis plays a pivotal 
role in tumor development and progression. Addition-
ally, several genes involved in cuproptosis have been 
identified [9]. However, the role of cuproptosis-related 
genes (CRGs) in PTC remains poorly understood.

In the present study, we aimed to comprehensively 
investigate the correlations of CRGs with different sur-
vival statuses of patients with PTC, as well as the under-
lying molecular mechanisms. Our study highlighted 
the regulatory functions of CRGs in PTC progression. 
Moreover, the results shed light on novel strategies to 

predict prognosis and lay a foundation for individual-
based therapeutic application in patients with PTC.

Materials and methods
Data collection
Gene expression profiles and clinical information on thy-
roid carcinoma from The Cancer Genome Atlas (TCGA) 
database were obtained from the cBioPortal for Can-
cer Genomics, including 502 tumor and 58 non-tumor 
cases [10, 11]. We enrolled patients with PTC who had 
complete information on age, sex, tumor/lymph node/
metastasis (TNM) staging system, follow-up, and sur-
vival status (disease-free survival [DFS]). The clinico-
pathological features of PTC samples from TCGA are 
presented in Table  1. Samples acquired from seven 
Gene Expression Omnibus (GEO) databases (GSE3678, 
GSE6004, GSE29265, GSE33630, GSE35570, GSE53157, 
and GSE60542) were integrated and defined as an inde-
pendent verification cohort, including 196 PTC and 160 
normal thyroid cases. The matched mapping informa-
tion of GeneSymbol and ENSG_ID was extracted from 
the gff3 files and downloaded from GENCODE. The 
median was obtained when multiple matches existed, 
and finally, the converted expression spectrum (con-
vert_exp.txt) was obtained. To deal with missing data 
completion, both genes and cases with unavailable (NA) 
ratios greater than 50% were removed. To standardize the 
data, we performed a log2 (X + 1) conversion. Datasets 
of cuproptosis-related genes (CRGs) were obtained from 
the Molecular Signatures Database (MSigDB) and a pre-
viously published cuproptosis-related study [9, 12].

Tissue samples
A total of 20 patients who underwent thyroid surgery and 
were diagnosed with PTC by postoperative pathology 
between January 2022 and May 2022 at Shengjing Hospi-
tal of China Medical University were included. The inclu-
sion criteria for selecting patients were age > 18  years, a 
postoperative pathological diagnosis of PTC, and com-
plete patient clinical information. In addition, the exclu-
sion criteria were other treatments, such as radiotherapy, 
chemotherapy, or immunotherapy, received before sur-
gery; patients with serious systemic diseases, such as 
severe heart, liver, or kidney diseases and other malig-
nant tumors; women in the gestational and lactational 
period; patients taking drugs with potential interference; 
patients who refused or were unable to sign informed 
consent; other histological types of thyroid carcinoma 
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combined with PTC in postoperative pathological diag-
nosis. PTC and paracancerous thyroid tissues at least 
2 cm away from PTC areas and confirmed as being with-
out PTC cells by two pathologists were collected fol-
lowing protocols approved by the Ethics Committee of 
Shengjing Hospital of China Medical University. Written 
informed consent was obtained from all patients enrolled 
in this study.

Identification of molecular subgroups related to CRGs
Differentially expressed CRGs (DECRGs) in PTC and 
non-tumor cases from the TCGA database were deter-
mined using the Wilcoxon rank-sum test. The association 
between these DECRGs and PTC prognosis was com-
pared using univariate Cox regression analysis. Next, 

cluster analysis of these prognosis-related DECRGs 
(P-DECRGs) was performed by “ConsensusClusterPlus” 
using agglomerative pam clustering with 1-Pearson cor-
relation distances and resampling 80% of the samples for 
10 repetitions [13]. The optimal number of clusters was 
determined using an empirical cumulative distribution 
function plot. The R software package “stats” (version 
3.6.0) was used for principal component analysis (PCA). 
Briefly, we first determined the Z-score on the expres-
sion spectrum and then used the “prcomp” function 
for dimension reduction analysis to obtain the reduced 
dimension matrix.

Kaplan–Meier plot
We used the “survfit” function of the R software package 
“survival” to analyze the prognostic differences between 
different groups of samples and the log-rank test method 
to evaluate the significance.

Functional analyses
Differentially expressed genes (DEGs) between molec-
ular subgroups related to P-DECRGs were identi-
fied using the R package “linear models for microarray 
data (Limma, version 3.40.6)” [14]. Specifically, for the 
expression profile data set we obtained, we used the 
“lmFit” function to perform multiple linear regression. 
Further, we used the “eBays” function to compute mod-
erated t- and F-statistics and log-odds of differential 
expression by empirical Bayes moderation of the stand-
ard errors towards a common value. Finally, we obtained 
the significance of the differences of each gene. For Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, we downloaded 
the “c5.go.v7.4.symbols.gmt” subset from the molecu-
lar signatures database and used the KEGG rest API to 
obtain the latest gene annotations for KEGG pathway 
analysis [15–17]. Considering these as the background, 
we mapped the genes into the background set and used 
the R software package “clusterProfiler” (version 3.14.3) 
for enrichment analysis of the gene set. The minimum 
and maximum gene sets were set to 5 and 5,000, respec-
tively. P < 0.05, and false discovery rate (FDR) < 0.1 were 
considered statistically significant.

Immune analyses
The stromal and immune scores and tumor purity, 
defined as the quantitative proportions of immune 
and stromal components and malignant cells in tumor 
samples in different groups, were calculated using the 
estimation of stromal and immune cells in malignant 
tumor tissues using expression data (ESTIMATE) algo-
rithm [18]. The scores of four different immunophe-
notypes, including major histocompatibility complex 

Table 1  Clinical characteristics of patients with PTC obtained 
from the TCGA database in the present study

PTC papillary thyroid carcinoma, TCGA​ the Cancer Genome Atlas, T tumor, N 
lymph node, M metastasis

Clinical 
characteristics

Total
(n = 476)

Training 
cohort
(n = 238)

Verification 
cohort
(n = 238)

χ2 P

Gender 0.271 0.603

Female 351 178 173

Male 125 60 65

Age 1.402 0.236

 < 55 326 157 169

 ≥ 55 150 81 69

T stage 0.998 0.910

T1 137 64 73

T2 160 84 76

T3 159 80 79

T4 18 9 9

Tx 2 1 1

N stage 0.416 0.812

N0 221 114 107

N1 208 101 107

Nx 47 23 24

M stage 0.144 0.959

M0 267 132 135

M1 8 4 4

Mx 201 102 99

Pathologic stage 2.932 0.402

I 273 128 145

II 49 28 21

III 104 54 50

IV 50 28 22

Disease free status 0.096 0.756

Yes 430 216 214

No 46 22 24
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(MHC) molecules, effector cells, immunosuppressive 
cells, and immune checkpoints, were calculated using 
the immunophenoscore (IPS) algorithm [19]. The 
human immune cell subsets were calculated using the 
cell type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) and the quantification 
of the tumor immune contexture from human RNA-
seq data (quanTIseq) algorithms [20, 21]. The responses 
of patients with PTC to immune checkpoint blockade 
(ICB) therapy were predicted using the immune cell 
abundance identifier (ImmuCellAI) algorithm [22].

Establishment and verification of the risk model related 
to specific P‑DECRGs
The PTC sample dataset from the TCGA database was 
randomly divided into training and verification cohorts 
(1:1). We used the R software package “glmnet” to inte-
grate survival time and status and gene expression data 
and used the least absolute shrinkage and selection 
operator (LASSO)-Cox method for regression analysis. 
In addition, a tenfold cross-validation was performed 
to obtain the minimum lambda, which was defined as 
the optimal value. In addition, a risk model related to 
specific P-DECRGs was established using a multivari-
ate Cox regression analysis. We used the R software 
package “survival” to integrate survival time and status 
and gene expression data and the Cox method to evalu-
ate the prognostic significance of each gene. Patients 
with PTC were divided into high- and low-risk groups 
according to the medium value of the risk score. Next, 
we used the R software package “pROC” (version 
1.17.0.1) to perform a receiver operating characteristic 
(ROC) analysis to assess the predictive efficiency of the 
risk model. Specifically, we obtained patient follow-up 
times and risk scores and used the pROC function to 
perform ROC analysis at multiple time points and the 
CI function of pROC to evaluate the area under the 
curve (AUC) and confidence interval to obtain the final 
AUC results.

Establishment and verification of a nomogram scoring 
system related to risk score
By integrating the DFS time, survival status, clinico-
pathological features, and risk score data, a predictive 
nomogram was established using the package “rms,” 
and the prognostic significance of these characteristics 
was evaluated [23]. In the nomogram scoring system, 
each variable was matched to a score. The total score of 
each sample was the sum of all variable scores. Time-
dependent ROC curves and calibration plots were used 
to assess the nomogram-scoring system.

RNA extraction and quantitative real‑time polymerase 
chain reaction (qPCR)
Total RNA was extracted using an RNAiso Plus Kit 
(Takara, Dalian, China) according to the manufac-
turer’s instructions. After reverse transcription, cDNA 
was synthesized, and qPCR analysis was performed 
using SYBR Premix Real-time PCR Reagent (Takara) 
in a Roche LightCycler 480 II system (Roche Diagnos-
tics Corporation, Indianapolis, IN, USA) according to 
the manufacturer’s protocol. The internal control was 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 
The primer sequences of the selected target genes 
and internal controls are listed in Table  2. The tar-
get gene expression levels were calculated using the 2 
–ΔΔCt method, similar to that in one of our previously 
reported studies [24].

Statistical analyses
Enumeration data are presented as numbers/percent-
ages, whereas measurement data are presented as 
mean ± standard deviation (SD). Student’s t-test was 
used for the statistical analysis of two groups, and one-
way ANOVA was used for three or more groups. Statis-
tical analyses were performed using R software (version 
4.0.3; R Foundation for Statistical Computing, Vienna, 
Austria). Statistical significance was set at P < 0.05.

Results
Identification of P‑DECRGs in PTC
A flow chart of the data analysis in the present study is 
shown in Fig. 1. Among the 502 patients with thyroid 
carcinoma from the TCGA dataset, 476 patients with 
PTC who had complete clinical and survival informa-
tion were selected. To investigate the potential roles of 
CRGs in PTC, 135 CRGs were obtained from 12 gene 
sets in MSigDB and a previously published cuprop-
tosis-related study (Additional file  1: Table S1). We 

Table 2  Primer sequences of genes used in this study

Gene Primer sequence Product 
length 
(bp)

FDX1 Forward: 5′-CTT​TGG​TGC​ATG​TGA​GGG​AA-3′
Reverse: 5′-GCA​TCA​GCC​ACT​GTT​TCA​GG-3′

216

P2RX4 Forward: 5′-TGG​CGG​ATT​ATG​TGA​TAC​CAGC-3′
Reverse: 5′-GTC​GCA​TCT​GGA​ATC​TCG​GG-3′

112

CDK1 Forward: 5′-CCC​TTT​AGC​GCG​GAT​CTA​CC-3′
Reverse: 5′-CAT​GGC​TAC​CAC​TTG​ACC​TGT-3′

133

MAP1LC3A Forward: 5′-CCA​GCA​AAA​TCC​CGG​TGA​-3′
Reverse: 5′-TGG​TCC​GGG​ACC​AAA​AAC​T-3′

88

GAPDH Forward: 5′-GCA​CCG​TCA​AGG​CTG​AGA​AC-3′
Reverse: 5′-TGG​TGA​AGA​CGC​CAG​TGG​A-3′

138
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matched these 135 genes with the RNA-seq data of 476 
PTC and 58 non-tumor samples from the TCGA data-
base. Compared with non-tumor samples, 107 CRGs 
were differentially expressed in PTC. Among these 107 
genes, only 21 P-DECRGs, generated from the univari-
able Cox analysis results, were selected for subsequent 
analysis (Additional file 2: Table S2).

Identification of two molecular subtypes based 
on P‑DECRGs in PTC
The consensus clustering approach was used to divide 
the 476 patients with PTC into subgroups based on 

the 21 P-DECRGs. The clustering results showed that 
optimal clustering stability was identified when K = 2 
(Fig.  2a and b). A total of 267 patients with PTC were 
clustered into cluster 1 (C1), and the remaining 209 
patients with PTC were clustered into C2 (Fig.  2c). 
The PCA results revealed significant differences in the 
expression levels of P-DECRGs between the two molec-
ular subtypes (Fig.  2d). Moreover, patients in C2 had 
better DFS than those in C1 (P < 0.05; Fig.  2e). These 
results demonstrate that the 21 P-DECRGs could divide 
patients with PTC into two molecular subtypes with dif-
ferent prognostic results.

Fig. 1  Data analysis flow chart. PTC, papillary thyroid carcinoma; TCGA, the Cancer Genome Atlas; GEO, Gene Expression Omnibus; LASSO, least 
absolute shrinkage and selection operator; P-DECRGs, prognostic associated and differentially expressed cuproptosis-related genes; TIME, tumor 
immune microenvironment

(See figure on next page.)
Fig. 2  Identification of the two molecular subtypes based on P-DECRGs through consensus clustering in PTC. a CDF values and (b) Relative 
changes in the area under the CDF curve corresponding to different consensus matrices for K = from 2 to 10. c The consensus clustering matrix 
defining two clusters (K = 2) and their correlation area visualized using a heatmap. d Different transcriptional expressions between C1 and C2 
analyzed by PCA. e A remarkable difference in DFS was observed between C1 and C2, which were visualized using a Kaplan–Meier plot. f The 
heatmap, g GO biological processes, h Cellular components, and (i) Molecular function enrichment analysis results of DEGs between C1 and C2 
visualized using Circos. j KEGG enrichment analysis results of DEGs between C1 and C2 visualized using a bubble chart. PTC, papillary thyroid 
carcinoma; P-DECRGs, prognostic associated and differentially expressed cuproptosis-related genes; C1, cluster1; C2, cluster2; CDF, cumulative 
distribution function; PCA, principal components analysis; HR, hazard ratio; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes
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Fig. 2  (See legend on previous page.)
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Functional enrichment of differentially expressed genes 
between the two P‑DECRG‑based molecular subtypes
To explore the underlying signaling mechanisms between 
the two P-DECRG-based molecular subtypes, the DEGs 
between these two clusters were identified. Compared 
with C2, the results showed that a total of 1,351 DEGs 
were identified, of which 775 genes were upregulated, 
and 576 genes were downregulated in C1 (Fig.  2f ). GO 
biological process enrichment analysis revealed that the 
DEGs were enriched in biological adhesion, cell migra-
tion, locomotion, leukocyte migration, and the positive 
regulation of immune system processes (Fig. 2g). GO cel-
lular component enrichment analysis revealed that the 
DEGs were enriched in the cell surface, external encap-
sulating structure, collagen-containing extracellular 
matrix, side of membrane, and MHC protein complex 
(Fig.  2h). GO molecular function enrichment analysis 
revealed that the DEGs were enriched in signaling recep-
tor, antigen, glycosaminoglycan, growth factor, and cell 
adhesion molecule binding (Fig.  2i). KEGG enrichment 
analysis revealed that the DEGs were enriched in many 
pathways, including cell adhesion molecules, viral myo-
carditis, phagosome, focal adhesion, rheumatoid arthri-
tis, and extracellular matrix (ECM)-receptor interaction 
(Fig. 2j). All these results demonstrated that the divided 
molecular subtypes were correlated with the regulation 
of the immune system process, which may be involved in 
the DFS of patients with PTC.

Different tumor immune microenvironment (TIME) 
statuses in the two P‑DECRG‑based molecular subtypes
To explore the differences in TIME status between the 
two molecular subtypes, we performed multiple immune 
analyses. Compared with those in C1, the ESTIMATE 
algorithm results revealed that patients with PTC in C2 
had significantly lower stromal scores (P < 0.05), immune 
scores (P < 0.0001), and tumor purity (P < 0.0001; Fig. 3a). 
The IPS algorithm results showed that patients with PTC 
in C2 had significantly lower MHC molecules (P < 0.0001) 
and effector cells (P < 0.0001), and higher immunosup-
pressive cells (P < 0.0001) and immune checkpoints 
(P < 0.0001; Fig.  3b) compared to those in C1. The CIB-
ERSORT algorithm results indicated that the infiltration 
levels of naive B cells, CD4 memory activated T cells, 
regulatory T cells (Tregs), M0 macrophages, resting 

dendritic cells, activated dendritic cells, and activated 
mast cells were significantly higher in C1 than those in 
C2. In contrast, memory B cells, CD8 T cells, resting NK 
cells, activated NK cells, monocytes, M2 macrophages, 
and eosinophils had significantly lower infiltration in 
C1 than those in C2 (Fig. 3c). The quanTIseq algorithm 
results showed that the infiltration levels of M1 mac-
rophages, neutrophils, NK cells, and Tregs were signifi-
cantly higher in C1 than those in C2, while CD4 T cells 
and dendritic cells had significantly lower infiltration in 
C1 compared to those in C2 (Fig. 3d). The results of the 
ImmuCellAI algorithm revealed that ICB therapy scores 
were significantly lower in C1 than those in C2 (Fig. 3e). 
In addition, the investigation of the expression differ-
ences of 33 known types of immune checkpoint mol-
ecules showed that 26 types were differentially expressed 
between the two molecular subtypes (Fig.  3f ). All these 
results demonstrated significant differences in TIME sta-
tus between the C1 and C2 subtypes.

Establishment of a risk model based on specific P‑DECRGs 
in the training cohort
To assess the prognostic value of P-DECRGs in PTC, a 
risk signature model based on P-DECRGs in the training 
cohort was constructed. First, the potential P-DECRGs 
for establishing the risk model were screened using 
LASSO regression analysis. The results showed that 
the optimal lambda value was 0.0164684245862992, 
and 10 genes were filtered (Fig.  4a and b). In addition, 
multivariate Cox analysis was performed based on the 
genes generated from LASSO analysis, and four specific 
P-DECRGs of PTC were identified: Ferredoxin 1 (FDX1), 
Cyclin Dependent Kinase 1 (CDK1), Purinergic Receptor 
P2X 4 (P2RX4), and Microtubule Associated Protein 1 
Light Chain 3 Alpha (MAP1LC3A). A risk model of these 
four specific genes was constructed to calculate the risk 
score as follows:

Risk score = -2.011 × the expression level of 
FDX1 + 1.139 × the expression level of CDK1 + 1.662 × the 
expression level of P2RX4 − 0.948 × the expression level of 
MAP1LC3A.(1).

Patients with PTC in the training cohort were suc-
cessfully classified into high- and low-risk groups based 
on the medium risk score of the established risk model. 
We analyzed the relationship between different risk 

Fig. 3  Differences in tumor immune microenvironments between C1 and C2. a The differences in stromal and immune scores and tumor purity 
between C1 and C2 based on the ESTIMATE algorithm. b The differences in MHC molecules, effector cells, immunosuppressive cells, and immune 
checkpoints between C1 and C2 based on the IPS algorithm. c The differences in the 22 types of immune cell infiltrating abundances between C1 
and C2 based on the CIBERSORT algorithm. d The differences of immune cell infiltrating abundances between C1 and C2 based on the quanTIseq 
algorithm. e The differences in ICB therapy scores between C1 and C2 based on the ImmuCellAI algorithm. f The differences in the expression levels 
of the 33 known types of immune checkpoint molecules between C1 and C2. C1, cluster1; C2, cluster2; MHC, major histocompatibility complex; ICB, 
immune checkpoint blockade. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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scores and patient follow-up times, events, and changes 
in the expression of various genes. It was observed 
that, with an increase in risk scores, the survival rate 
of patients decreased, and the expression of FDX1 and 

MAP1LC3A showed a downward trend. However, the 
expression of CDK1 and P2RX4 was upregulated with 
an increase in risk score (Fig. 4c). Patients with PTC in 
the high-risk group had a worse DFS than those in the 

Fig. 4  Establishment and validation of risk model based on specific P-DECRGs. a Coefficients and (b) Partial likelihood deviances corresponding to 
different lambda values in the LASSO regression analysis. c The correlation between risk score and DFS visualized using ranked bar (upper part) and 
scatter plots (middle part). The correlation between the expression of the four specific P-DECRGs and risk score visualized using a heatmap (lower 
part). d The significant difference in DFS between high- and low-risk groups observed and visualized using a Kaplan–Meier plot. e The sensitivities 
and specificities of 1-, 3-, and 5-year DFS predictions based on the risk model; these are visualized using ROC curves. f The significant difference 
in DFS between high- and low-risk groups in the verification cohort observed and visualized using a Kaplan–Meier plot. g The sensitivities 
and specificities of 1-, 3-, and 5-year DFS predictions based on the risk model in the verification cohort visualized using ROC curves. P-DECRGs, 
prognostic associated and differentially expressed cuproptosis-related genes; LASSO, least absolute shrinkage and selection operator; DFS, 
disease-free survival; ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio
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low-risk group (Fig.  4d). The AUCs of the ROC curve 
for 1-, 3-, and 5-year survival were 0.84, 0.86, and 0.82, 
respectively, according to the results of time-dependent 
ROC analysis in the training cohort (Fig.  4e). These 
results suggest that the constructed risk model based 
on the four specific P-DECRGs showed considerable 
potential for predicting the DFS of patients with PTC.

Validation of the risk model based on specific P‑DECRGs 
in the PTC verification cohort of PTC
To validate the constructed risk model based on the four 
specific P-DECRGs, patients with PTC in the TCGA veri-
fication cohort and those in the independent GEO veri-
fication cohort were also divided into high- or low-risk 
groups. Survival analysis revealed that patients from the 
TCGA verification cohort in the low-risk group had a bet-
ter prognosis than those in the high-risk group (Fig. 4f ). 
The AUC of the ROC curve for 1-, 3-, and 5-year survival 
was 0.68, 0.63, and 0.61, respectively, which indicated that 
the constructed risk model exhibited predictive capacity, 
according to the results of time-dependent ROC analysis 
in the verification cohort (Fig. 4g). These results validated 
that the risk model based on the four specific P-DECRGs 
was well established and associated with predicting the 
DFS of patients with PTC in the verification cohort.

Different TIME statuses in the two risk groups based 
on the constructed risk model
To explore the association between risk score and TIME 
status, we performed multiple immune analyses. In the 
training cohort, the ESTIMATE algorithm results revealed 
that patients with PTC in the high-risk group had sig-
nificantly higher stromal scores (P < 0.01), immune scores 
(P < 0.0001), and tumor purity (P < 0.0001) than those in 
the low-risk group (Fig.  5a). The IPS algorithm results 
showed that patients with PTC in the high-risk group had 
significantly higher MHC molecules (P < 0.0001) and effec-
tor cells (P < 0.0001), and lower immunosuppressive cells 
(P < 0.0001) and immune checkpoints (P < 0.0001) than 
those in the low-risk group (Fig.  5b). The CIBERSORT 

algorithm indicated that the infiltration levels of naive 
B cells, plasma cells, CD4 memory activated T cells, fol-
licular helper T cells, Tregs, M0 macrophages, M1 mac-
rophages, eosinophils, and neutrophils were significantly 
higher in the high-risk group than those in the low-risk 
group, while memory B cells, resting NK cells, activated 
NK cells, monocytes, M2 macrophages, and activated mast 
cells had significantly lower infiltration in the high-risk 
group than those in the low-risk group (Fig. 5c). The quan-
TIseq algorithm results showed that the infiltration levels 
of M1 macrophages and Tregs were significantly higher in 
the high-risk group than those in the low-risk group, while 
CD4 T cells and dendritic cells had significantly lower infil-
tration in the high-risk group compared to those in the 
low-risk group (Fig. 5d). The ImmuCellAI algorithm results 
revealed that ICB therapy scores were significantly lower 
in the high-risk group than those in the low-risk group 
(Fig.  5e). Among the 33 known types of immune check-
point molecules, 26 were differentially expressed between 
the two risk groups (Fig. 5f). Moreover, all these TIME sta-
tus results in the TCGA verification cohort and independ-
ent GEO verification cohort were similar, demonstrating 
that there were associations between the risk score and 
TIME status in patients with PTC (Figs. 5g-6f).

Construction and calibration of a nomogram integrating 
the constructed risk model
A nomogram integrating risk score and clinicopatho-
logical features was constructed to predict the DFS 
of patients with PTC more precisely. The constructed 
nomogram showed the contribution of the risk score 
and clinicopathological features to the probability of DFS 
(Fig.  6g). The C-index of the nomogram in the training 
cohort reached 0.85 (95% CI: 0.78–0.92; P < 0.05). In addi-
tion, the AUCs of the ROC curve for 1-, 3-, and 5-year 
survival in the training cohort were 0.85, 0.88, and 0.85, 
respectively (Fig. 6h-i), and similar results were observed 
in the TCGA verification cohort (Fig. 6j-k). These results 
demonstrate that the integrated nomogram could accu-
rately predict the DFS of patients with PTC.

Fig. 5  Different TIME statuses between high- and low-risk groups of risk model based on specific P-DECRGs in the training and TCGA verification 
cohort. The differences in stromal and immune scores and tumor purity between high- and low-risk groups (a) in the training cohort and (g) in the 
TCGA verification cohort based on the ESTIMATE algorithm. The differences in MHC molecules, effector cells, immunosuppressive cells, and immune 
checkpoints between high- and low-risk groups (b) in the training cohort and (h) in the TCGA verification cohort based on the IPS algorithm. The 
differences in the 22 types of immune cell infiltrating abundances between high- and low-risk groups (c) in the training cohort and (i) in the TCGA 
verification cohort based on the CIBERSORT algorithm. The differences of immune cell infiltrating abundances between high- and low-risk groups 
(d) in the training cohort and (j) in the TCGA verification cohort based on the quanTIseq algorithm. The differences in ICB therapy scores between 
high- and low-risk groups (e) in the training cohort and (k) in the TCGA verification cohort based on the ImmuCellAI algorithm. The differences in 
the expression levels of the 33 known types of immune checkpoint molecules between high- and low-risk groups (f) in the training cohort and (l) 
in the TCGA verification cohort. PTC, papillary thyroid carcinoma; P-DECRGs, prognostic associated and differentially expressed cuproptosis-related 
genes; TIME, tumor immune microenvironment; DFS, disease-free survival; ROC, receiver operating characteristic; AUC, area under the curve; MHC, 
major histocompatibility complex; ICB, immune checkpoint blockade; TCGA, the Cancer Genome Atlas. * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001

(See figure on next page.)
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Expressional validation of four specific P‑DECRGs
The expression levels of four specific P-DECRGs were 
compared between PTC and non-tumor thyroid tissues 
in the independent GEO verification cohort. In addition, 

the expression differences of four specific P-DECRGs 
between selected PTC and paracancerous thyroid tis-
sues were also estimated by qPCR. The comparison 
results showed that the mRNA expression levels of CDK1 

Fig. 5  (See legend on previous page.)
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and P2RX4 in PTC tissues were significantly higher 
than those in non-tumor thyroid tissues. Moreover, the 
mRNA expression levels of MAP1LC3A and FDX1 in 
PTC tissues were significantly lower than those in non-
tumor thyroid tissues (Fig. 6l-m). The comparison results 
were consistent with those of the TCGA datasets.

Discussion
Most PTCs are indolent, and patients have relatively 
favorable prognoses with a 10-year survival rate > 90% 
[25]. Because of the excellent overall survival (OS) of 
PTC, we paid more attention to another important 
endpoint (DFS) to evaluate its prognostic significance 
for patients with PTC in this study. Among the 476 
patients with PTC from the TCGA database, the OS rate 
was 99.58% (474/476), while the DFS rate was 90.34% 
(430/476). For patients with PTC, DFS more accurately 
reflects disease status and the impact of the disease on 
the physical and mental states of patients than OS.

Tumor heterogeneity is a crucial phenomenon involved 
in the interactions among various factors, including cer-
tain intracellular genetic changes and tumor microenvi-
ronment influences [26]. As a result, tumor heterogeneity 
leads to the complexity of tumor cells and diversity in 
the therapeutic response [27]. Therefore, it is essential 
to administer specific treatment strategies based on the 
molecular subtype classification of PTC, in line with the 
concept of precision medicine [28]. Consensus clustering 
is a reliable approach in which several different clusters 
can be obtained to aggregate the clustering results and 
obtain a better clustering solution [29].

Accordingly, in this study, patients with PTC were 
divided into two different clusters, corresponding to two 
different molecular subtypes, using the consensus clus-
tering method. Recent studies have suggested that cop-
per is closely related to the occurrence and development 
of tumors [30]. Molecular subtype classification based on 
CRGs may reveal the exact molecular mechanisms and 
specific signaling pathways involved in tumor progres-
sion, TIME characteristics, and patient prognosis. A prog-
nostic model for cuproptosis-related subtypes has been 

developed for glioma, providing new insights into tumor 
prognosis assessment, neoplasm-immune interactions, 
and potential drug targets [31]. Identifying cuproptosis-
related subtypes and developing prognosis models in 
breast cancer are also useful predictors of prognosis and 
the tumor microenvironment [32]. In hepatocellular carci-
noma, the CRG scoring model may inspire new approaches 
for both clinically predicting prognosis and develop-
ing treatment strategies [33]. However, the relationship 
between cuproptosis, PTC, and TIME status remains elu-
sive. In the present study, patients with PTC were divided 
into clusters corresponding to two different molecular 
subtypes based on P-DECRGs. Further research indicated 
the diversity of prognosis and revealed the distinction of 
molecular mechanisms, especially those in immune regu-
latory mechanisms, between the two molecular subtypes. 
In addition, the constructed risk model was proven to be 
a well-established scoring system for predicting prognosis 
and evaluating the TIME status of each patient with PTC, 
which helped specify individualized treatment and follow-
up strategy. Consequently, we speculate that cuproptosis 
plays an important role in tumor development, regulation 
of the TIME status, and prognosis in PTC.

Further bioinformatics analysis revealed the enrich-
ment of many invasion-migration-associated pathways. 
These pathways, including biological adhesion, cell 
migration, locomotion, leukocyte migration, cell adhe-
sion molecules, focal adhesion, and ECM-receptor inter-
action, have been widely confirmed to be associated with 
the prognosis of patients with PTC [34]. In addition, 
some immune-related pathways, such as the positive reg-
ulation of immune system processes and MHC protein 
complexes, were also enriched. Therefore, cuproptosis 
may inhibit the progression and improve the prognosis of 
PTC by regulating invasion-migration-associated path-
ways and mediating these immune regulation processes.

The tumor microenvironment consists primarily of 
several different types of immune cells, extracellular 
matrix, and stromal cells, which provide tumor cells 
with support and nourishment. Tumor biology highly 
depends on the tumor microenvironment, especially the 

(See figure on next page.)
Fig. 6  Construction and calibration of a nomogram integrating the risk model and experimental validation of the four specific P-DECRGs. The 
differences of TIME statues based on (a) ESTIMATE, b IPS, c CIBERSORT, d quanTIseq, e ImmuCellAI algorithms and (f) the expression levels of 
the 33 known types of immune checkpoint molecules between high- and low-risk groups in the independent GEO verification cohort. g A 
nomogram for predicting the 1-, 3-, and 5-year DFS of patients with PTC in the training cohort. Calibration curves of the nomogram for 1-, 3-, and 
5-year DFS predictions of patients with PTC h in the training cohort and (j) in the TCGA verification cohort. The sensitivities and specificities of 
1-, 3-, and 5-year DFS predictions of patients with PTC (i) in the training cohort and (k) in the TCGA verification cohort based on the nomogram 
and visualized using ROC curves. f Relative mRNA expression of the four specific P-DECRGs in PTC and non-tumor thyroid tissues from (l) the 
independent GEO verification cohort and (m) 20 patients. PTC, papillary thyroid carcinoma; P-DECRGs, prognostic associated and differentially 
expressed cuproptosis-related genes; ROC, receiver operating characteristic; AUC, area under the curve; TIME, tumor immune microenvironment; 
DFS, disease-free survival; ROC, receiver operating characteristic; AUC, area under the curve; MHC, major histocompatibility complex; ICB, immune 
checkpoint blockade; TCGA, the Cancer Genome Atlas; GEO, Gene Expression Omnibus. * P < 0.05, **** P < 0.0001
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immune microenvironment [35]. Copper, which is essen-
tial for the immune response, plays a vital role in both 
cellular and humoral immunity [36, 37]. Various immune 
cells, including B cells, T helper cells, macrophages, and 
NK cells, can be manipulated by copper to activate and 

maintain the immune system [38]. In the present study, 
multiple immune analysis algorithms were applied to 
comprehensively evaluate the relationship between 
TIME status and the P-DECRG-based subtypes and the 
risk model. The results showed that the TIME features, as 

Fig. 6  (See legend on previous page.)



Page 14 of 17Wang et al. BMC Cancer         (2022) 22:1131 

well as the abundance of many immune infiltrating cells, 
varied substantially across the two distinct P-DECRG-
based molecular subtypes and various P-DECRG risk 
scores. Although there were some inconsistencies 
between the results of different immune algorithms, the 
significantly different trend of Tregs was always observed. 
Tumor-infiltrating Tregs inhibit antitumor immunity and 
promote cancer progression, with poor clinical outcomes 
[39]. Recent studies have demonstrated that the CRG sig-
nature correlates with the infiltration of Tregs in osteo-
sarcoma [40] and melanoma [41]. Therefore, cuproptosis 
may improve the response to immunotherapy by inhib-
iting Treg infiltration into the tumor microenvironment 
of PTC. Based on current knowledge, immunotherapy, 
which has witnessed breakthrough progress in recent 
years, has provided a new strategy for tumor treatment. 
Among the various types of immunotherapies, immune 
checkpoint blockade therapy aims to inhibit or block 
the interaction of certain immune checkpoints with 
their ligands [42]. Experimental and clinical studies of 
immune checkpoint inhibitors, including those target-
ing programmed cell death protein-1, programmed cell 
death-Ligand 1 (PD-L1), and cytotoxic T lymphocyte-
associated antigen-4, have demonstrated improved treat-
ment outcomes. Intra-tumoral copper supplementation 
enhances PD-L1 expression, affects the number of infil-
trated CD8+ T and NK cells, and regulates key cancer 
immune evasion signaling pathways driven by PD-L1 
[43]. In the present study, significant differences were 
observed in the receipt of immune checkpoint blockade 
therapy between these two subtypes, and immune check-
point blockade therapy could be a favorable choice for 
treating certain PTC subtypes.

Genome-wide CRISPR-Cas9 loss-of-function screens 
have been reported, and 10 genes closely related to 
cuproptosis have been identified [9]. In the current study, 
we included a large number of genes, including 135 genes 
associated with copper homeostasis and transport, to 
comprehensively evaluate the influence of copper on 
the progression and prognosis of PTC. After stepwise 
screening and analysis, four specific P-DECRGs (CDK1, 
FDX1, MAP1LC3A, and P2RX4) related to the progno-
sis and TIME status of PTC were identified, which was 
not completely consistent with the results of a previously 
published study [44]. Several explanations, including dif-
ferences in tumor types, may explain this discrepancy.
FDX1 encodes a small iron-sulfur (Fe-S) protein that is 

present in the matrix of human mitochondria. In addi-
tion to its function in mitochondrial Fe-S cluster biogen-
esis, FDX1 is considered a versatile electron mediator 
involved in various physiological and pathological pro-
cesses [45–47]. For example, in lung adenocarcinoma, 
FDX1 has been reported to be closely involved in fatty 

acid oxidation, glucose, and amino acid metabolism 
[48]. However, in PTC, the functions and mechanisms 
of FDX1 have not been established. Nevertheless, the 
results of this study indicate that FDX1 may be nega-
tively associated with the progression and prognosis of 
PTC through the mediation of cuproptosis.
CDK1 encodes a serine/threonine kinase that func-

tions as a cell cycle checkpoint protein and plays a key 
role in controlling eukaryotic cell cycle progression [49]. 
Binding to different cyclin proteins, CDK1 is considered 
the most critical cell cycle element and is sufficient to 
regulate numerous steps in cell proliferation and organ 
development [50]. Recently, the cell cycle-independent 
function of CDK1 in enhancing overall protein syn-
thesis has been uncovered [51]. An integrative human 
pan-cancer analysis showed that dysregulation of CDK1 
was identified in more than 20 human tumors and was 
significantly correlated with the development, progres-
sion, and microenvironment of tumor cells [52]. Low-
dose radiation exposure alters the expression of CDK1, 
which is associated with post-Chernobyl PTC develop-
ment [53]. In addition, CDK1 mediates the proliferation 
of PTC cells induced by high iodine [54]. Our results in 
this study were consistent with those of other studies. 
Currently, the role of CDK1 in PTC progression remains 
unclear. We speculated that CDK1-related cuproptosis 
might be associated with energy metabolism reprogram-
ming in PTC cells due to the vital function of CDK1 in 
regulating mitochondrial bioenergetics [55].
P2RX4 encodes a receptor protein of the P2X4 ATP-

gated nonselective ionotropic channel, which has emerged 
as a key molecule controlling the release of neuronal brain-
derived neurotrophic factor and is involved in pain pro-
cessing [56]. Emerging evidence has uncovered the role 
of P2RX4 in cancer biology, including cancer pain [57]. 
In prostate cancer, P2RX4 is involved in enhancing tumor 
formation, mobility, TGFβ-1 induced invasiveness, and 
epithelial-to-mesenchymal transition [58, 59]. In hepato-
cellular carcinoma, P2RX4 is highly expressed and posi-
tively related to the growth and proliferation of cancer cells 
[60]. Moreover, P2RX4 may play a vital role in regulating 
tumor development through inflammation and immune 
responses in the microenvironment [61]. In the present 
study, P2RX4 expression was positively associated with the 
progression and prognosis of PTC by regulating the iono-
tropic channel related to cuproptosis.

Based on current knowledge, autophagy plays a crucial 
role in intracellular copper transportation [62]. Micro-
tubule-associated protein 1A/1B light chain 3 (LC3) is a 
well-known biomarker for evaluating autophagy. Three 
LC3 proteins exist in humans: LC3A, LC3B, and LC3C 
[63]. Among these three members, MAP1LC3A encodes 
LC3A, which functions as a structural protein involved 
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in mediating physical interactions between microtubules 
and other cytoskeleton elements. MAP1LC3A expression 
is downregulated in multiple tumors [64], and in the cur-
rent study, MAP1LC3A expression was also suppressed 
in PTC, suggesting that its decreased expression may be 
related to the development of PTC cells. However, the 
exact molecular roles of MAP1LC3A in PTC pathogenesis 
require further study since the interactions between cop-
per metabolism and autophagy are mostly unexplored.

The current study has some limitations. In the cur-
rent study, no prognostic information on the selected 
patients with PTC was obtained due to the limited fol-
low-up time. The number of patients with PTC selected 
for validation was small. Although the signatures of the 
four specific P-DECRGs were observed to be potential 
therapeutic targets or predictive biomarkers for PTC, the 
exact molecular mechanisms underlying their functions 
in cuproptosis have not yet been clarified. Therefore, fur-
ther studies should include an expanded enrollment of 
cases and long-term follow-up to construct an independ-
ent validation cohort and confirm the predictive effect of 
the constructed risk model. In addition, further research 
is necessary to investigate the functions and molecular 
mechanisms of the four specific P-DECRGs in PTC.

Conclusions
In summary, in the present study, we identified two PTC 
molecular subtypes based on CRGs via consensus clus-
tering. We also constructed a prognostic related predic-
tive risk model using the signature of the four specific 
P-DECRGs, which was closely associated with the TIME 
status of patients with PTC. Our findings may provide 
valuable clinical guidance for either prognostic predic-
tion or the development of precision treatment strategies 
for patients with PTC.
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