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Abstract

Many infectious diseases exhibit seasonal dynamics driven by periodic fluctuations of the

environment. Predicting the risk of pathogen emergence at different points in time is key for

the development of effective public health strategies. Here we study the impact of seasonal-

ity on the probability of emergence of directly transmitted pathogens under different epide-

miological scenarios. We show that when the period of the fluctuation is large relative to the

duration of the infection, the probability of emergence varies dramatically with the time at

which the pathogen is introduced in the host population. In particular, we identify a new

effect of seasonality (the winter is coming effect) where the probability of emergence is van-

ishingly small even though pathogen transmission is high. We use this theoretical frame-

work to compare the impact of different preventive control strategies on the average

probability of emergence. We show that, when pathogen eradication is not attainable, the

optimal strategy is to act intensively in a narrow time interval. Interestingly, the optimal con-

trol strategy is not always the strategy minimizing R0, the basic reproduction ratio of the

pathogen. This theoretical framework is extended to study the probability of emergence of

vector borne diseases in seasonal environments and we show how it can be used to

improve risk maps of Zika virus emergence.

Author summary

Seasonality drives fluctuations in the probability of pathogen emergence, with dramatic

consequences for public health and agriculture. We show that this probability of pathogen

emergence can be vanishingly small before the low transmission season. We derive the

conditions for the existence of this winter is coming effect and identify optimal control

strategies that minimize the risk of pathogen emergence. We generalize this framework to

account for different forms of environmental variations, different modes of control and

complex pathogen life cycles. We illustrate how this framework can be used to improve

predictions of Zika emergence at different points in space and time.
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Introduction

The development of effective control strategies against the emergence or re-emergence of

pathogens requires a better understanding of the early steps leading to an outbreak [1, 2, 3, 4].

Classical models in mathematical epidemiology predict that whether or not an epidemic

emerges depends on R0 ¼
l

m
the basic reproduction ratio of the pathogen, where λ is the birth

rate of the infection (a function of the transmission rate and the density of susceptible hosts)

and μ is the death rate of the infection (a function of the recovery and mortality rates). In the

classical deterministic description of disease transmission, the pathogen will spread if R0 > 1

and will go extinct otherwise (Fig 1). This deterministic description of pathogen invasion relies

on the underlying assumption that the initial number of introduced pathogens is large. The

early stages of an invasion are, however, typically characterized by a small number, n, of

infected hosts. These populations of pathogens are thus very sensitive to demographic stochas-

ticity and may be driven to extinction even when R0 > 1. The probability of emergence pne

Fig 1. Transmission mode and pathogen emergence without seasonality. In a direct transmission model pathogen

dynamics is driven by the birth rate λ and the death rate μ of a single infected compartment I. In a vector borne

transmission model pathogen dynamics is driven by the birth rates and death rates of multiple compartments: exposed

and infected humans (EH, IH), exposed and infected mosquito vectors (EV, IV). In the absence of seasonality (i.e. no

temporal variation in birth and death rates) the basic reproduction ratio R0 can be expressed as a ratio between birth

and death rates. The probability of emergence pe after the introduction of a single infected individual can also be

expressed as a function of these birth and death rates. With vector borne transmission this probability of emergence

depends on which infected host is introduced (Figure E in S1 Text). Here we give the probability of emergence after

the introduction of a single human exposed to the pathogen, EV, and where the index i refers to the four consecutive

states of the pathogen life cycle (see sections 2 and 3 of S1 Text).

https://doi.org/10.1371/journal.pcbi.1007954.g001
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refers to the probability that, after the introduction of n infected hosts, a non-evolving patho-

gen avoids initial extinction and leads to an epidemic. The analysis of stochastic epidemic

models and the derivation of the probability of a major epidemic can be traced back to the

work of Bailey (1953) and Whittle (1955). Under the reasonable assumption that the initial

spread of directly transmitted disease follows a one dimensional birth-death branching process

the probability of emergence is zero when R0 < 1 and, when R0 > 1, it is equal to [3, 4, 5, 6, 7]:

pne ¼ 1 �
1

R0

� �n

: ð1Þ

The above results rely on the assumption that birth and death rates of the infection remain

constant through time (i.e. time homogeneous branching process). Many pathogens, however,

are very sensitive to fluctuations of the environment. For instance, the fluctuations of the tem-

perature and humidity have been shown to have a huge impact on the infectivity of many viral

pathogens like influenza [8] and a diversity of other infectious diseases [9, 10]. In addition,

many pathogens rely on the presence of arthropod vectors for transmission and the density of

vectors is also very sensitive to environmental factors like temperature and humidity [11]. To

account for these environmental variations, the birth and death rates are assumed to be func-

tions of time: λ(t) and μ(t), respectively. The basic reproduction number is harder to compute

but the probability of emergence pe(t0) when one infected individual is introduced (i.e. n = 1)

at time t0 is well known (see e.g. [12] or [13, Chapter 7]):

peðt0Þ ¼
1

1þ
R þ1
t0

mðtÞe� ðφðtÞ� φðt0ÞÞ dt
; ð2Þ

with φðtÞ≔
Z t

0

rðsÞ ds where r(t) = λ(t) − μ(t) is the Malthusian growth rate of the pathogen

population at time t (another derivation of (2) is given in section 2.5 of S1 Text). Because we

are interested in seasonal variation we can focus on periodic scenarios where both λT(t) and

μT(t) have the same period T, one year. In this case, the basic reproduction number has been

computed in [3, 14] as the spectral radius of the next generation operator, and is the ratio of

time averages of birth and death rates:

R0 ¼
�l

�m
; with �l ¼

1

T

Z T

0

lTðsÞ ds ; �m ¼
1

T

Z T

0

mTðsÞ ds : ð3Þ

When R0 < 1 the pathogen will never produce major epidemics and will always be driven to

extinction. When R0 > 1, however, a pathogen introduced at a time t0 may escape extinction.

In this case the probability of emergence can also be expressed as a ratio of average birth and

death rates, but with different weights (see section Pathogen emergence with seasonality of

Methods):

peðt0;TÞ ¼ 1 �

R T
0
mTðsþ t0Þe� φT ðsþt0Þ ds

R T
0
lTðsþ t0Þe� φT ðsþt0Þ ds

: ð4Þ

Note that this quantity refers to the probability of major epidemics, the probability that the

pathogen population does not go extinct. Minor epidemics are likely to outburst if the patho-

gen is introduced during the high transmission season but those outbreaks do not count as

major epidemics if they go extinct during the low transmission seasons.
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In the following we show that very good approximations of the probability of pathogen

emergence can be derived from this general expression when the period is very large (or very

small) compared to the duration of the infection. These approximations give important

insights on the effect of the speed and the shape of the temporal fluctuations of the environ-

ment on the probability of pathogen emergence. We use this theoretical framework to deter-

mine optimal control strategies that minimize the risk of pathogen emergence. We provide

clear cut recommendations in a range of epidemiological scenarios. We also show how this

theoretical framework can be extended to account for the effect of seasonality in vector borne

diseases. More specifically, we use this model to estimate the probability of Zika virus emer-

gence throughout the year at different geographic locations.

Results

Emergence of directly transmitted pathogens

For the sake of simplicity we start our analysis with a directly transmitted disease with a con-

stant clearance rate μ(t) = μ, but with seasonal fluctuations of the transmission rate, λ(t). This

epidemiological scenario may capture the seasonality of many infectious diseases. For instance,

increased contact rates among children during school terms has been shown to have a signifi-

cant impact on the transmission of many childhood infections [15, 16]. Seasonal fluctuations

in temperature and humidity can also drive variations in the survival rate of many viruses and

result in seasonal variations in transmission rates [17, 18].

Both the speed and the amplitude of the fluctuations of λ(t) can affect the probability of

pathogen emergence. Yet, when the period T of the fluctuations is short compared to the dura-

tion 1/μ (e.g. fluctuations driven by diurnal cycles are fast), the probability of pathogen emer-

gence can be approximated by (Fig 2E and 2F, see section Asymptotics for small periods of

Methods):

pe � 1 � �m=�l ¼ 1 � 1=R0
ð5Þ

In other words, the probability of emergence does not depend on the timing of the introduc-

tion event and it is only driven by the average transmission rate.

When the fluctuations are slower, however, the probability of pathogen emergence does

depend on the timing of the introduction. The probability of emergence drops with the trans-

mission rate (Fig 2E and 2F). When the period of the fluctuation is long, a natural approxima-

tion is (see section Asymptotics for large periods of Methods):

peðt0Þ � 1 � mðt0Þ=lðt0Þ ð6Þ

This is a very good approximation whenever the birth rate of the infection remains higher

than the death rate throughout the year (i.e., λ(t)> μ(t), Fig 2). However, when λ(t) can drop

below μ(t), the above approximation fails to capture the dramatic reduction of the probability

of emergence occurring at the end of the high transmission season. When the introduction

time of the pathogen is shortly followed by a low transmission season, the introduced pathogen

is doomed because it will suffer from the bad times ahead (see section Asymptotics for large
periods of Methods). We call this the winter is coming effect. Fig 2D and 2F provide a geometric

interpretation of this effect. In the low transmission season the integrated growth rate φ(t)
drops with t because the Malthusian growth rate of the pathogen is negative. Any epidemic

starting during (dark gray shading) or just before (light gray shading) this period is unlikely to

escape extinction because of this demographic trap. We further explore this effect in Figure A

in S1 Text, under different types of seasonal variations: square waves and sinusoidal waves. As
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expected, the winter is coming effect is particularly pronounced when the period of the fluctua-

tions are long relative to the duration of the infection (Fig 2F).

Optimal control. Our theoretical framework can be used to identify optimal control strat-

egies. The objective is to minimize the average probability of emergence under the assumption

that the introduction time is uniformly distributed over the year:

hpei≔
Z 1

0

peðt0Þ dt0

Control is assumed to act via an instantaneous reduction ρ(t) of the transmission rate of the

pathogen: λρ(t) = λ(t)(1 − ρ(t)). We also assume that higher control intensity is costly and we

define the cost of a given control strategy as a function of the intensity and the duration of the

Fig 2. The winter is coming effect. Pathogen birth rate (i.e. transmission rate) λ(t) is assumed to vary periodically

following a square wave (A and B). During a portion 1 − γ of the year transmission is maximal (γ = 0.7 in this figure)

and λ(t) = λ0. In the final portion of the year λ(t) drops (low transmission season in gray). In A λ(t) varies between λ0 =

2.5 and 1.5 and, in B λ(t) varies between λ0 = 2.5 and 0. Pathogen death rate μ(t) (a function of recovery and death rates

of the infected host) is assumed to be constant and equal to 1 in this figure. When the net growth rate of the pathogen

remains positive in the low transmission season (λ(t)> μ(t), A, C and E) the probability of emergence of a pathogen

introduced at time t0 can be well approximated by Eq (6): peðt0Þ ’ 1 �
mðt0Þ
lðt0Þ

(dashed line in E and F) if the duration of

the infection is short relative to the period T of the fluctuation (E). In contrast, if the low transmission season is more

severe (λ(t)< μ(t), B, D and F), the negative growth rate φ(t) of the pathogen population during this period creates a

demographic trap and reduces the probability of emergence at the end of the high transmision season. This winter is
coming effect is indicated with black arrow in (D) and with the light gray shading in (D) and (F). This effect is

particularly pronounced when the period of the fluctuations of the environment is large relative to the duration of the

infection (i.e., when T is large, F). When the period T of the fluctuation is small relative to the duration of the infection,

the probability of emergence is well approximated by Eq (5): pe ’ 1 � 1

R0
whatever the time of pathogen introduction

(in A, R0 = 2.2 and pe’ 0.55; in B, R0 = 1.75 and pe’ 0.43).

https://doi.org/10.1371/journal.pcbi.1007954.g002
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control:

C≔
Z 1

0

rðsÞds

More explicitly, we assume that the control strategy is governed by three parameters: t1 and t2,

the times at which the control starts and ends, respectively, and ρM the intensity of control dur-

ing the interval [t1, t2]. The cost of such a control strategy is thus: C = (t2 − t1)ρM. For a given

investment in disease control C, what are the values of t1, t2 and ρM that minimize the average

probability of emergence hpei?
We first answer this question when the fluctuation of transmission is a square wave where

λ(t) oscillates between λ0 (for a fraction 1 − γ of the year) and 0, while μ(t) = 1 throughout the

year (Fig 3). For instance, such periodicity may be driven by school terms with high transmis-

sion between students when school is on and low transmission when school is off [19]. The

basic reproduction after control in the high transmission period is equal to R0 − C (see section 1

of S1 Text). In other words, under this scenario, when the investment in control reaches a

threshold (i.e. when C> R0 − 1) the basic reproduction (after control) of the pathogen drops

below one and the probability of emergence vanishes. Fig 3 shows how hpei varies with different

types of interventions when this level of control is unattainable (e.g. because the value of R0 is

too high). We assume that the investment in control is fixed and equal to C = (t2 − t1)ρM = 0.2

and we explore how different values of t1 and ρM affect hpei. A naive strategy where control is

Fig 3. Optimal Control for square wave (A, C and E) and sinusoidal birth rates (B, D and F). In A and B we plot

The pathogen birth rate before (black line) and after the optimal control (dashed blue line) which minimizes the mean

emergence probability< pe> (see also Fig 4). The square wave assumes that λ(t) = 3 1(0<t<0.7). The sinusoidal wave

assumes that λ(t) = 2(1 + sin(2πt)). As in Fig 2 the gray shadings refers to the low transmission season (gray) and the

winter is coming effect (light gray). Similarly, we indicate the additional low transmission period induced by control

(blue shading) and the additional winter is coming effect induced by control (light blue shading).

https://doi.org/10.1371/journal.pcbi.1007954.g003
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applied throughout the high transmission season (t1 = 0, t2 = 0.7, ρM = 2/7) yields an average

probability of emergence equal to hpei = 0.233. Many alternative strategies where the control is

applied more intensely but in a limited portion of the high transmission season (Fig 3A, 3C and

3E and S2) yield lower values of hpei. In particular, all the strategies that fall within the dotted

red curve of Fig 4A have hpei = 0.166. Indeed, all the strategies that fall in this region maximize

the winter is coming effect. Fig 3C and 3E show how the timing of control (indicated by the blue

shading) for one of these optimal strategies minimizes the probability of emergence via an

extension of the effects of the low transmission season.

Second, we consider a seasonal environment where λ(t) follows a sinusoidal wave, while

μ(t) = 1 throughout the year (Fig 3B, 3D and 3F). Such periodicity may arise with more gradual

changes of the abiotic environment driven by climatic seasonality [19]. Under this scenario,

pathogen transmission varies continuously and the basic reproduction after control does

depend on the time at which control is applied. The basic reproduction ratio is minimized

when the intensity of control is maximal (ρM = 1) in a time interval centered on the time at

which pathogen transmission reaches its peak (red cross in Fig 4B). In contrast, the optimal

control strategy that minimizes hpei starts earlier, lasts longer and is a bit less intense (blue

cross in Fig 4B). As discussed in the square wave scenario, the timing of control in the optimal

strategy extends the winter is coming effect. Fig 3D and 3F show that the optimal strategy (indi-

cated by the blue shading) prolongs the effect of the low transmission season.

Emergence of vector borne pathogens

Next we want to expand the above analysis to a more complex pathogen life cycle. Indeed,

many emerging pathogens are vector borne [1, 20] and the probability of pathogen emergence

can also be computed under this life cycle [6, 7, 21, 22]. Arboviruses, for instance, use different

mosquito species as vectors and are responsible for major emerging epidemics in human pop-

ulations [23]. In the following, we use a classical epidemiological model of Zika virus

Fig 4. Mean probability of pathogen emergence for different control strategies with (A) square wave and (B)

sinusoidal wave fluctuations. We used the same scenarios as in Fig 3 and we fix the investment in control (cost of

control C = ρM(t2 − t1) = 0.2). We explore how the intensity of control (ρM) and the timing of control (between t1 and

t2) affect< pe>, the mean probability of pathogen emergence (lighter shading refers to higher values of< pe>). For

the square wave scenario we identify a range of optimal strategies withing the dotted red curve where< pe> is

minimized. The optimal strategies used in Fig 3 are indicated with a blue cross for both the square wave (A) and the

sinusoidal wave (B). The minimal and maximal value for< pe> are: 0.166 − 0.366 (square wave) and 0.085 − 0.31

(sinusoidal wave). For the square wave (A), R0 = 1.5 does not depend on the timing and the intensity of the control.

For the sinusoidal wave (B), there is a single strategy minimizing R0, namely R0 = 1.28 for t1 = 0.15 and ρM = 1.0,

marked with a red cross in B. With the sinusoidal wave there is a single control strategy minimizing< pe> for t1 =

0.07 and ρM = 0.93 (blue cross in B).

https://doi.org/10.1371/journal.pcbi.1007954.g004
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transmission which has been parameterized using empirical data sets to determine the proba-

bility of emergence under various regimes of seasonality (see section 3 of S1 Text). In this

model, the pathogen may appear in four different states (Fig 1): exposed and infectious mos-

quitoes (EV and IV), exposed and infectious humans (EH and IH). The stochastic description of

this epidemiological model yields a four dimension multi-type birth-death branching process

(see section 2 of S1 Text). In the absence of seasonality (homogeneous case) the basic repro-

duction ratio of the pathogen is the ratio of the product of birth rates by the product of the

death rates (Fig 1). The probability of emergence after the introduction of a single infected

host in state 2 (EH, IH, EV, IV):

pe ¼
Qd
i¼i li;iþ1 �

Qd
i¼1
mj

Pd� 1

k¼0

Qk
i¼1
mi
Qd
i¼kþ1

li;iþ1

ð7Þ

where the index i refers to the d consecutive states of the pathogens, starting with the state in

which the pathogen is introduced. Hence λi,i+1 denotes the birth rate of an infection in state

i + 1 from an infection in state i, and μi denotes the death rate of an infection in state i. Note

that the state of the introduced infection can have a huge impact on the probability of patho-

gen emergence (Figure E in S1 Text). One may expect that if the epidemic starts in a bad qual-

ity host with a low Ri ¼
li;iþ1

mi
ratio the pathogen is more likely to go extinct than if it starts with

a good quality host (with a high Ri ratio). We show in the S1 Text subsection 2.2 that this is

indeed the case in dimension d = 2 (see also [21, 22]). But things become more complex when

d> 2 because the quality of the following hosts in the transmission cycle matter as well. In

other words, we can observe a weak host is coming effect on the probability of emergence. This

effect is akin to the winter is coming effect that we discuss above, but it is driven by the alterna-

tion of the quality of hosts, not by seasonality.

Seasonality can drive pathogen transmission through the fluctuations of the available den-

sity of the mosquito vector. Following [24] we assume that mosquito density fluctuates with

temperature and is maximal at Topt, the optimal temperature for mosquito reproduction (see

sup info). The rate λIH, EV at which mosquitoes are exposed to the parasite is directly propor-

tional toNV/NH. In such a fluctuating environment the R0 is the spectral radius of the next gen-

eration operator, see [3, 14] but there is no analytic expression for R0. Yet, it is tempting to use

Eq (7) with the birth and death rates functions of the introduction time t0, to obtain an approx-

imation pe(t0) for large periods. The exact probability of emergence can be efficiently com-

puted numerically thanks to the seminal work of [25]. Fig 5 explores the difference between

this naive expectation and the exact value of the probability of emergence. Crucially, we

recover the same qualitative patterns observed in the direct transmission model. In particular,

we notice that when the product of birth rates remains higher than the product of death rates

the naive expectation for the probability of emergence is not too far from the exact value of

pe(t0). However, when seasonality induces more pronounced drops in transmission, we

recover the winter is coming effect where the probability of emergence can be very low before

the low transmission season (Fig 5D). It is also possible to identify numerically the optimal

control strategies minimizing the probability of Zika emergence (Figure F in S1 Text).

Discussion

The effect of seasonality on the probability of pathogen emergence depends critically on the

duration of the infection 1/μ relative to the period T of the fluctuation. When the period of the

fluctuation is small (i.e., T< 1/μ) the environment changes very fast and the probability of

emergence does not depend on the timing of pathogen introduction but on the average

PLOS COMPUTATIONAL BIOLOGY Winter is coming
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transition rates of the pathogen life cycle. When the period of the fluctuation is large (i.e.,

T> 1/μ) the probability of emergence varies with the timing of pathogen introduction. This

probability drops when the pathogen is introduced at a point in time where conditions are

unfavorable (low transmission and/or high recovery rates). More surprisingly, we show that

the probability of pathogen emergence can also be very low in times where conditions are

favourable if they are followed by a particularly hostile environment. This winter is coming
effect results from the existence of adverse conditions that introduce demographic traps

(where the net reproduction rate is negative) and pathogen emergence is only possible if the

pathogen introduction occurs sufficiently far ahead of those traps. This effect is also expected

to act on the size of the epidemics in deterministic models. Epidemics initiated at the end of

the high transmission season are expected to be smaller because they do not have time to

expand before reaching the low transmission season [26]. There is good evidence of this effect

in measles [27].

Note that our approach neglects the density dependence that typically occurs after some

time with major epidemics. Our probability of pathogen emergence thus provides an upper

approximation of the probability emergence. Indeed, with density dependence the size of the

pathogen population may be too small to survive even very shallow demographic traps. In sec-

tion 5 of S1 Text we show how such density dependence can magnify the winter is coming
effect.

Understanding this effect allows us to identify the optimal deployment of control strategies

minimizing the average probability of pathogen emergence in seasonal environments. We

identified optimal control strategies in different epidemiological scenarios under the assump-

tion that the introduction time is homogeneous (Figures 3, 5, and A, D in S1 Text). This

Fig 5. Probability of Zika emergence across space and time. The top figures (A and B) show the seasonal variations

in λIV, EH, the transmission rate from humans to the vectors because of the fluctuations the density of vectors in two

habitats (this illustrates the effect of space on Zika emergence): a minor variation in mean temperature, 29˚C (A and C)

versus 27˚C (B and D), has a massive impact on transmission and, consequently, on pathogen emergence. In C and D

we illustrate the effect of the time of introduction t0 on Zika emergence. The dotted black line refers to the naive

expectation for the probability of pathogen emergence at time t0 if all the rates were constant and frozen at their t0
values (see (7)). The gray shading in B and D refers to the low transmission season where the product of the

transmission rates is lower than the product of death rates (see S1 Text). The exact probability of emergence pe(t0 T, T)

is indicated as a solid black line. Higher seasonality (B and D) increases the discrepancy between the naive expectation

and the exact value of the probability of pathogen emergence. This discrepancy is due to the winter is coming effect

(light gray shading in D). Parameter values are given in table S1 A (model I) of section 3 of S1 Text.

https://doi.org/10.1371/journal.pcbi.1007954.g005

PLOS COMPUTATIONAL BIOLOGY Winter is coming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007954 July 6, 2020 9 / 16

https://doi.org/10.1371/journal.pcbi.1007954.g005
https://doi.org/10.1371/journal.pcbi.1007954


assumption can be readily modified to take into account temporal variations in the probability

of introduction events, which yields different recommendations for the timing of control (see

subsection 1.3 and Figure C in S1 Text).

This work can be extended to explore optimal timing of other control strategies. For

instance [19] study the optimal timing of pulse vaccination in seasonal environment and show

for a range of epidemiological scenarios that a pulse vaccination applied periodically 3 months

before the peak transmission rate minimizes R0. Yet, as pointed out above, the strategy mini-

mizing R0 may not always coincide with the strategy minimizing hpe(t0)i (see Fig 4). Indeed,

an examination of figure H in S1 Text shows that the probability of emergence is minimized if

pulse vaccination occurs a bit sooner than the time at which R0 is minimized (3.71 instead of 3

months before the peak transmission).

So far we focused on control strategies that lower pathogen transmission. Our approach

can also be used to optimize control measures that do not act on the transmission rate but on

the duration of the infection. For instance, what is the optimal timing of a synchronized effort

to use antibiotics to minimize bacterial pathogens emergence? We found that the timing of

these treatment days have no impact on R0 but pathogen emergence is minimized when treat-

ment occurs 1.3 months before the peak of the transmission season. This strategy creates

deeper traps and results in a stronger winter is coming effect. Interestingly, [28] explored the

optimal timing of mass antibiotic treatment to eliminate the ocular chlamydia that cause blind-

ing trachoma. Numerical simulations showed that the speed of eradication is maximized (the

time to extinction is minimized) when treatment is applied 3 months before the low transmis-

sion season. A similar result was obtained by [29] showing that it is best to treat against malaria

in the low transmission season. The apparent discrepancy between these recommendations is

driven by the use of different objective functions (pathogen emergence, speed of eradication or

cumulative number of cases).

The above examples show that our analysis has very practical implications on the under-

standing and the control of emerging infectious diseases in seasonal environments. This theo-

retical framework could be used to produce maps with a very relevant measure of epidemic

risk: the probability of pathogen emergence across space and time (Fig 5). Currently available

risk maps are often based on integrated indices of suitability of pathogens or vectors [30, 31,

32, 33]. These quantities may be biologically relevant but the link between these quantities and

the probability of pathogen emergence is not very clear. We contend that using risk maps

based on pe(t0) would be unambiguous and more informative. Our model could thus contrib-

ute to development of “outbreak science” [34] and help public health services to forecast the

location and the timing of future epidemics. More generally, the same approach could also be

used to improve the prevention against invasions by nonindigenous species [35].

Experimental test of theoretical predictions on pathogen emergence are very scarce because

the stochastic nature of the prediction requires massive replicate numbers. Some microbial

systems, however, offer many opportunities to study pathogen emergence in controlled and

massively replicated laboratory experiments [36]. It would be interesting to use these microbial

systems to study the impact of periodic oscillations of the environment to mimic the influence

of seasonality. Another way to explore this question experimentally would be to use data on

experimental inoculation of hosts. Indeed, the experimental inoculation of a few bacteria in a

vertebrate host (which could be viewed as “population” of susceptible cells) is equivalent to the

introduction of a few pathogens in a host population. The outcome of these inoculations are

stochastic and the probability of a successful infection (host death) is equivalent to a probabil-

ity of emergence. Interestingly, some daily periodicity to bacterial infections has been found in

mice [37, 38]. Mice inoculated early in the morning (4am) have a higher probability of survival

than mice inoculated at any other time. This pattern is likely to result from a circadian control
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of the vertebrate immune system [39] which are likely to impact the birth and death rates of

bacteria. Given that the generation time of a bacteria is smaller than a day, it is not surprising

to see a probability of emergence depending on the inoculation time (see Eq 6). In other

words, our work may also be used to shed some light on the stochastic within-host dynamics

of pathogen infections. One could envision that simple changes in therapeutic practices that

take into account the time of day may affect clinical care and could limit the risk of nosocomial

infections. Our work provides a theoretical toolbox that can integrate detailed description of

the periodic nature of pathogen life cycles at different spatial and temporal scales (within and

between hosts, over the period of one day or one year) to time optimal control strategies.

Methods

Pathogen emergence with seasonality

The life cycle of a directly transmited pathogen is governed by its birth and death rates (λ and

μ, respectively). In the absence of seasonality these birth and death rates are constant (λ> 0, μ
> 0), the basic reproduction number is R0 ¼

l

m
and the probability of extinction, starting ini-

tially with one individual, is q ¼ inf 1; 1

R0

� �
(Fig 1). This result was first derived by [40].

In a seasonal environment the birth and death rates are assumed to be functions of time,

noted λ(t) and μ(t), respectively, the basic reproduction number is harder to compute but the

extinction probability is well known (see e.g. [12] or [13, Chapter 7]). This yields (Eq 2) for

pe(t0), the probability of pathogen emergence when a single infected host is introduced in the

host population at time t0.

Let us now consider rates with period T> 0, denoted by λT and μT. Accordingly, we denote

φTðtÞ≔
R t

0
ðlTðsÞ � mTðsÞÞ ds and pe(t0, T) the corresponding emergence probability. The

basic reproduction number has been derived in [3, 14] as the spectral radius of the next gener-

ation operator, and is the ratio of time averaged birth and death rates (see Eq (3)). Since

φTðtÞ�t!þ1ð�l � �mÞt, we find that pe(t0, T) = 0 if R0� 1.

If R0 > 1, we can rearrange formula (2) and express pe(t0, T) as Eq (4) which varies with the

ratio of average birth and death rates, but with a weight that takes into account the average

growth rate of the pathogen population. Indeed, first observe that since φ0TðtÞ ¼ lTðtÞ � mTðtÞ
we have

Z t

t0

lTðsÞe
� φT ðsÞ ds �

Z t

t0

mTðsÞe
� φT ðsÞ ds ¼ ½� e� φT ðsÞ�tt0 ¼ e

� φT ðt0Þ � e� φT ðtÞ : ð8Þ

Since φT(t)! +1 this implies

Z 1

t0

lTðsÞe
� φT ðsÞ ds ¼ e� φT ðt0Þ þ

Z 1

t0

mTðsÞe
� φT ðsÞ ds : ð9Þ

We now use periodicity to obtain, first that for integer k,

φTðt þ kTÞ ¼ φTðtÞ þ k
Z T

0

φTðsÞ ds ¼ φTðtÞ þ kTð�l � �mÞ ; ð10Þ
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and thus

Z 1

t0

lTðsÞe
� ðφT ðsÞ� φT ðt0ÞÞ ds ¼

Xþ1

k¼0

Z t0þðkþ1ÞT

t0þkT
lTðsÞe

� ðφT ðsÞ� φT ðt0ÞÞ ds ð11Þ

¼
Xþ1

k¼0

Z t0þT

t0

lTðsÞe
� ðφT ðsÞ� φT ðt0Þ� kTð�l � �mÞÞ ds ð12Þ

¼
1

1 � e� Tð�l � �mÞ

Z t0þT

t0

lTðsÞe
� ðφT ðsÞ� φT ðt0ÞÞ ds : ð13Þ

Similarly,

Z 1

t0

mTðsÞe
� ðφT ðsÞ� φT ðt0ÞÞ ds ¼

1

1 � e� Tð�l � �mÞ

Z t0þT

t0

mTðsÞe
� ðφT ðsÞ� φT ðt0ÞÞ ds : ð14Þ

Hence,

peðt0;TÞ ¼
1

R1
t0
lTðsÞe� ðφT ðsÞ� φT ðt0ÞÞ ds

¼
1 � e� Tð�l � �mÞ

R t0þT
t0

lTðsÞe� ðφT ðsÞ� φT ðt0ÞÞ ds
ð15Þ

and

peðt0;TÞ ¼ 1 �

R1
t0
mTðsÞe� ðφT ðsÞ� φT ðt0ÞÞ ds

R1
t0
lTðsÞe� ðφT ðsÞ� φT ðt0ÞÞ ds

ð16Þ

¼ 1 �

R T
0
mTðsþ t0Þe� φT ðsþt0Þ ds

R T
0
lTðsþ t0Þe� φT ðsþt0Þ ds

: ð17Þ

Asymptotic results for small and large periods

Under the assumption that R0 ¼
�l

�m
> 1 we know that pe(t0, T)> 0 for all t0. In the following we

rescale time so that the T periodic functions λT, μT become 1 periodic functions defined by

lðtÞ≔lTðtTÞ ; mðtÞ≔mTðtTÞ : ð18Þ

And similarly,

φðtÞ ¼
Z t

0

ðlðsÞ � mðsÞÞ ds ¼
1

T
φTðtTÞ : ð19Þ

Hence, the introduction time t0 refers to introduction time between 0 and 1 and by a change

of variables we obtain

peðt0T;TÞ ¼
1 � e� Tð�l � �mÞ

T
R 1

0
lðsþ t0Þe� Tðφðsþt0Þ� φðt0ÞÞ ds

; ðt0 2 ½0; 1�Þ : ð20Þ

In the following we derive simpler expressions for pe(t0 T, T) in the limit cases where T is very

small or very large.
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Asymptotics for small periods: When T! 0

We see from Eq (20) that when R0 ¼
�l

�m
> 1 that we have

lim
T!0
peðt0T;TÞ ¼

�l � �m

�l
¼ 1 �

1

R0

: ð21Þ

In other words when T! 0, we can replace the varying rates by their means. Indeed we

have on one hand, as T! 0,

1 � e� Tð�l � �mÞ � Tð�l � �mÞ : ð22Þ

On the other hand, since λ has period 1,

Z 1

0

lðsþ t0Þe
� Tðφðsþt0Þ� φðt0ÞÞ ds �

Z 1

0

lðsþ t0Þds ¼
Z 1

0

lðsÞ ds ¼ �l : ð23Þ

Asymptotics for large periods: When T! +1

We observe on various examples that for large T, pe(t0 T, T) can sometimes be very small on

subintervals of [0, T].

We are going to give a mathematical formulation to this observation. Define

peðt0Þ≔
1 �

mðt0Þ
lðt0Þ

if lðt0Þ > mðt0Þ ;

0 if lðt0Þ � mðt0Þ :

8
<

:
ð24Þ

to be the guess we make for large periods by substituting in the formula giving the emergence

probability for constant rate λ(t0) and μ(t0) to λ and μ. It is natural to define the winter period,
W, as

W ¼ ft0 : lðt0Þ � mðt0Þg : ð25Þ

However, the period where the emergence probability is vanishingly small is larger thanW.

We call this interval (or set of intervals)WIC (forWinter Is Coming) and we have (see Proposi-

tion 6.1 of the section 6 of the S1 Text):

lim
T!þ1

peðt0T;TÞ ¼
1 �

mðt0Þ
lðt0Þ

if t0 =2WIC ;

0 if t0 2WIC ;

8
<

:
ð26Þ

with

WIC ¼ ft0 2 ½0; 1Þ : lðt0Þ � mðt0Þ or 9s > t0;φðsÞ � φðt0Þg : ð27Þ

In other words a time t0 is in theWIC interval if it is already inW (winter period) or if there

is a demographic trap in the future. A demographic trap occurs if there is a time s> t0 for

which the expected size of the population X(s) at time s is smaller than the original size at the

introduction time X(t0):

E½XðsÞ j Xðt0Þ ¼ x0� ¼ x0eφðsÞ� φðt0Þ � x0 : ð28Þ
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Supporting information

S1 Text. This document contains complementary material that supports the results that

we discuss in the main body of the paper. We present: (1) a calculation of the probability of

emergence of directly transmitted pathogen for different scenarios of seasonality, (2) a general-

isation of our results when the pathogen life cycle goes through multiple stages before complet-

ing its life cycle, (3) an exploration of the winter is coming effect on the seasonal dynamics of

Zika virus, (4) an analysis of a scenario that involves pulse interventions (vaccination or treat-

ment), (5) an exploration of the effect of density dependence on the winter is coming effect,

(6) additional computations and proofs.

(PDF)

Acknowledgments
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