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ABSTRACT: A myriad of studies have attempted to use ground-level observations to obtain gap-free spatiotemporal variations of
PM2.5, in support of air quality management and impact studies. Statistical methods (machine learning, etc.) or numerical methods
by combining chemical transport modeling and observations with data assimilation techniques have been typically applied, yet the
significance of site placement has not been well recognized. In this study, we apply five proper orthogonal decomposition (POD)-
based sensor placement algorithms to identify optimal site locations and systematically evaluate their reconstruction ability. We
demonstrate that the QR pivot is relatively more reliable in deciding optimal monitoring site locations. When the number of planned
sites (sensors) is limited, using a lower number of modes would yield lower estimation errors. However, the dimension of POD
modes has little impact on reconstruction quality when sufficient sensors are available. The locations of sites guided by the QR pivot
algorithm are mainly located in regions where PM2.5 pollution is severe. We compare reconstructed PM2.5 pollution based on QR
pivot-guided sites and existing China National Environmental Monitoring Center (CNEMC) sites and find that the QR pivot-guided
sites are superior to existing sites with respect to reconstruction accuracy. The current planning of monitoring stations is likely to
miss sources of pollution in less-populated regions, while our QR pivot-guided sites are planned based on the severity of PM2.5
pollution. This planning methodology has additional potentials in chemical data assimilation studies as duplicate information from
current CNEMC-concentrated stations is not likely to boost performance.
KEYWORDS: PM2.5 pollution, sensor placement, ground-level PM2.5 estimation, aerosol data assimilation

1. INTRODUCTION
China’s rapid and energy-intensive development over recent
decades has caused a series of environmental issues, among
which PM2.5 (particulate matter with an aerodynamic diameter
of less than 2.5 μm) pollution received worldwide attention.1−4

It has been well recognized that both acute and chronic
exposures to high PM2.5 concentrations are associated with
multiple health issues, including heart disease, lung cancer,
respiratory infection, etc.5−8 Monitoring air pollution is critical
to understanding the formation mechanism of PM2.5, to
supporting air quality management, and to reducing human
exposure.9,10 Since 2013, Chinese government has established
a ground-based monitoring network across China to measure
hourly concentrations of six air pollutants, including PM2.5.

11

These monitoring stations were empirically established, mainly
concentrated in urban areas.12,13 Activities in rural or suburb
regions including agricultural burning also exert influences on
air quality, weather, and climate, yet are commonly missed by
the current monitoring network.

To fill these gaps, numerous studies12,14−16 have proposed
to integrate satellite aerosol optical depth (AOD) with ground-
measured PM2.5 using machine learning algorithms to obtain a
better depiction of spatiotemporal variations of PM2.5. Due to
existences of clouds and occurrences of snow/extreme haze,
AOD-retrieving algorithms usually fail to offer valid values.17

Moreover, a large range of missing and abnormal data could
happen when some satellites stay in service beyond their
design life.13 These issues could be addressed with advances in
machine learning and growing volume of observations, and a
wide range of algorithms or satellite retrievals (low-Earth orbit,
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geostationary, etc.) were explored previously.12,14−16 Aerosol
data assimilation methods were also developed to improve the
spatiotemporal representation of PM2.5.

18,19

It has been generally believed in the data assimilation
community that not every observation influences prediction
identically.19 Similarly, reconstruction of PM2.5 based on
machine learning algorithms is also largely influenced by
locations of monitoring sites. Currently, the planning of
locations of air quality monitoring has not dealt with the issue
of optimal placement of sites with respect to data assimilation
or data-driven reconstruction of air pollution. In the weather
forecasting community, Ancell and Hakim20 demonstrated that
observation targeting inferred with sensitivity analysis could
help improve the accuracy of forecasts. However, the
significance of air pollution observation targeting has not
been well recognized.

These problems fall under the umbrella of the optimal
sensor placement (OSP), which answers how to use sparse
sensor networks to infer a spatiotemporal varying process. The
most intuitive solution to design optimal sensor locations is a
brute-force search or an exhaustive search, which generates

!
! !

n
n p p( )

combinatorial possibilities for p observing locations

out of n points in the whole field. However, the complexity of
this method exponentially increases as p and n grow. It seems
intractable for more complex problems with larger search
spaces, especially for a high-dimensional and possibly nonlinear
dynamical system.21 With the generation of big data and
advances in computing power, many modern techniques, such
as machine learning and sparse sampling, have been leveraged
to determine optimal sensor locations for reconstruction. More
specifically, dimensionality reduction techniques, such as
proper orthogonal decomposition (POD),22−25 also known
as Karhunen−Loev̀e expansion, empirical orthogonal function,
and principal component analysis, have been commonly used
to provide a compact description of spatial and temporal
variabilities in a dynamical system.26,27 Gappy POD, an
extension of POD, was proposed by Everson and Sirovich28

to handle incomplete or gappy data and has been successfully
applied in the reconstruction of unsteady flow,29 human
faces,28 and ocean surface temperatures.30 Within the gappy
POD framework, a number of algorithms have been proposed
to minimize reconstruction error, including random sam-
pling,31,32 extrema of the POD modes,33 minimization of the
matrix condition number (MCN),29 QR with column
pivoting,21 and discrete empirical interpolation method
(DEIM).34

Where to place air pollution monitoring and how the
placement would benefit the depiction of PM2.5 remain
unclear. In this study, we explore the theoretical framework
and associated algorithms for optimally placing PM2.5-
monitoring stations. The results offer valuable implications
for the future planning of monitoring stations with respect to
potential studies of data assimilation or data-driven recon-
struction of air pollution. In Section 2, we provide a brief
introduction to POD-based reconstruction and several POD-
based sensor placement algorithms. In Section 3, we
comprehensively evaluate these sensor placement algorithms
and discuss the benefits of optimal placements over existing
locations of monitoring stations. Major findings are summar-
ized in Section 4.

2. METHODOLOGY

2.1. POD-Based Reconstruction
POD excels in capturing dominant structures of studied fields
in the forms of orthonormal eigenmodes that define a low-
dimensional embedding space. The whole field’s information
can be encoded into such a feature space and expressed as
linear combinations of a set of POD modes. Given a data
matrix ×U N Q with Q snapshots in N , a snapshot

tu x( , ) N is a spatial map of studied fields at a given time t,
which can be represented by

=
=

t tu x a x( , ) ( ) ( )
k

k k

1 (1)

or approximated as a truncated expansion:

=
xt tu x a( , ) ( ) ( )

k

K
k k

1 (2)

where K represents the number of orthonormal POD basis
modes Φk(x) and ak(t) denotes the time-dependent POD
coefficients. Suppose the gappy vector is denoted as ũ(x,t) and
it is a point-wise product of a mask vector m(x,t) and complete
vector u(x,t), that is

= ·t t tu x m x u x( , ) ( , ) ( , ) (3)

The mask vector m(x,t) consists of values of 0 or 1,
indicating whether the data at the corresponding locations are
missing or available. Our aim is to construct an estimator ũζ to
approximate ũ using the existing spatial POD modes Φk(x).
This can be represented as

=
=

tu b x( ) ( )
k

K
k k

1 (4)

where bk(t) stands for unknown POD coefficients. The error
between the intermediate repaired vector ũζ and the gappy
vector ũ can be minimized by

= u u
m
2

(5)

where the subscript m denotes a gappy norm, not a standard
L2-norm, which means only original existing elements in ũ are
compared. As described by Willcox,29 the gappy inner product
is defined

= · ·w v w vm m( , ) (( ), ( ))m (6)

and the corresponding gappy norm is

|| || =v v v( , )m m
2

(7)

Then, the error in eq 5 can be unfolded as

= || ||

+

=

= =

u b u x

b b x x

2 ( , ( ))

( ( ), ( ))

m
k

K
k k

m

k

K

j

K
k j k j

m

2

1

1 1 (8)

We differentiate it with respect to bn(t) and yield a linear
equation system for the coefficient bk

=Mb f (9)
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where Mij = (Φi,Φj)m and fi = (ũ,Φi)m. Specifically, the matrix
M depends on the mask vector and POD basis vectors. Once
the coefficients bk are determined, we can obtain the
intermediate-repaired vector ũζ through eq 4. Finally, the
missing elements in gappy data ũ can be repaired by the
corresponding elements in ũζ.
2.2. Algorithms for Efficient Sensor Placement

Considerable previous studies proposed multiple algorithms to
determine sensor locations within the gappy framework. The
simplest approach is to sample randomly (hereafter referred to
as Random algorithm).21,28,32,35,36 Some studies29,37 leveraged
the properties of the linear system and designed a method that
minimizes the matrix condition number M or κ(M) (hereafter
referred to as MCN algorithm). Mathematically, the condition
number of a matrix M refers to the ratio of the maximum to
minimum singular values of M, which reveals the orthogonality
of the matrix. The matrix M is a K × K identity matrix in cases
of complete data, and all singular values equal to 1. Its
condition number κ(M) equals to 1 accordingly for complete
data, yet orthogonality is lost (κ(M) > 1) for gappy data. We
can thus set up an optimization problem which minimizes the
condition number M by selecting sensor locations to preserve
orthogonality in order to approach closer to conditions of
complete data. The MCN algorithm is computationally costly
as it needs to look over all remaining locations and calculate
the condition number at each iteration.

A heuristic physics-based approach based on the extrema of
dominant POD was developed to maximally capture the
variance in the data.32 Specifically, Cohen et al.33 placed
sensors at the energetic maxima and minima of each mode for
modeling unsteady flow past a circular cylinder since the
positions of the extrema are the areas with highest modal
activity. Normally, the number of sensor locations that are
maxima and minima of POD modes is often less than the
double of the number of modes as locations of maxima and
minima for different modes may coincide. To relax the
quantity limit of the potential sensor locations, the local
extrema (hereafter referred to as Extrema algorithm) of each
mode can also be involved to introduce more sensor
locations.36 More recently, variants of the empirical inter-
polation method (EIM) were developed to provide a
principled selection of interpolation points for data recon-
struction.21 As a discrete variant of EIM, the discrete EIM
(hereafter referred to as DEIM algorithm)38 has been applied
with success and demonstrated to be a good candidate for
sensor placement problems.21,32,38,39 In the POD-based DEIM
algorithm, the nonlinear function f(τ) of a system can be onto
the subspace spanned by the basis { }, ..., K

N
1 with the

form

=f c( ) ( ) (10)

where = { } ×, ..., M
N K

1 and c( ) K denotes the
coefficient vector (K ≪ N). c(τ) can be simply estimated by
c(τ) = ΦTf(τ) when Φ represents POD bases, but it requires
handling higher dimensional-state vectors (N-dimensional),
leading to expensive computation. To deal with this
over-determined system, we estimate c(τ) by carefully
selecting K interpolation points. Given the interpolation
or measurement matrix = [ ] ×D e e, ..., N K

K1
, where

= [ ]e 0, ...0, 1 , 0, ..., 0 NT
i

i

ß , c(τ) can be uniquely

determined with

=D f D c( ) ( )T T (11)

Then, the DEIM approximation of f(τ) becomes

=f D D f( ) ( ) ( )DEIM
T 1 T (12)

DEIM provides a principled method to construct a set of
indices inductively on basis vectors.34

QR factorization with column pivoting is a specific version
of the common QR-factorization method that was developed
to handle rank-deficient least-squares problems. The reduced
matrix QR factorization decomposes a matrix A into a product
of a unitary matrix Q and an upper triangular matrix R, that is,
A = QR. Therefore, it follows |det(A)| = |det(Q)·det(R)| = |
det(R)| = |∏irii| = ∏iλi, where rii denotes diagonal entries and
λi is the eigenvalues of R. Thus, the condition number of A can
be controlled by optimizing the determinant or spectral radius
of this matrix, that is, maximize |∏irii|. In general, the diagonal
values rii of R have no particular sequences. However, when
combined with the column pivoting procedure, we introduce a
column permutation matrix D containing ones and zeros, thus
AD = QR. The pivoting procedure enforces the diagonal
values of R, rii, to form decreasing sequence. Therefore, QR
column pivoting increments the volume of the submatrix by
reordering the columns of A, which also maximizes the
absolute value of the determinant. This approach can be
applied for sensor placement problems based on the
connections between the permutation matrix D and the
measurement matrix. Suppose a measurement matrix is defined
as C, due to the fact that sensor locations are fixed and do not
vary with time, C can be viewed as the matrix representation
form of the mask vector m (eq 3). Therefore, the observations
y can be represented as P elements selected from f (where f =
Φc seen in eq 10) by ×C P N

= = =y Cf C c c (13)

where P is the number of sensors and N is the number of state
dimension.

For the case of P = K, Θ becomes a square matrix and Θ =
CΦK where ΦK is the given tailored basis and K is the number
of basis. For improved reconstruction, sensor locations need to
be carefully selected to maximize the determinant of Θ, which
in turn is expected to control the condition number. The
following relationship holds for such a square matrix

= = Cdet( ) det( ) det( )K
T T T (14)

Thus, the QR factorization of ×
K

N K with column
pivoting yields

=D QRK
T (15)

where ×D N N is a square permutation matrix. When C
builds upon the first P rows of DT, the right-hand side of eq 14
will be maximized. The index locations of ones in each row of
C are denoted by [ ], , ..., P1 2 , corresponding to point sensor
locations in state space.

For oversampled cases with P > K, the determinant of
= ×M K KT (M = Θ, if P = K) needs to be maximized,

so that the condition number of M is bounded. Based on this
principle of pivoted QR, we have the following relationships
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= = =

=

M

C C

det( ) det( ) ( ) ( )

( )

i
i

i

K

i

i

K

i K K

T T T

T T

(16)

Thus, the maximization of det(M) can be realized by
maximizing det(ΦKΦK

TCT) by the pivoted QR factorization

=D QR( )KK
T (17)

and C is chosen as the first P rows of ×D N NT . The index
locations of ones in each row of C are denoted by
[ ], , ..., P1 2 .21

2.3. Descriptions of Data Sets

Experiments were performed with two PM2.5 data sets, namely,
the high-resolution Chinese air quality reanalysis data set
(CAQRA)40 and a long-term gap-free high-resolution air
pollutant concentration data set (LGHAP) offering 1 km
resolution satellite-derived daily PM2.5 concentrations over

China.41 We chose the daily PM2.5 concentrations across China
from CAQRA at two time slots (8:00 and 20:00) in 2017.
Therefore, the first data set is composed of 730 snapshots.
Each snapshot has 432 × 339 pixels. The LGHAP data set was
generated by a machine learning model with inputs of satellite
observations of AOD, numerical simulations, and in situ
measurements. The daily PM2.5 concentrations in 2017 were
utilized as the second data set consisting of 365 snapshots. To
avoid the excessive consumption of computer memory, each
snapshot in this data set was regridded to 410 × 680. 10-fold
cross validation (CV) was employed on these two data sets to
ensure the reliability of our experiments. We also used
locations of current China National Environmental Monitoring
Center (CNEMC) network stations to conduct reconstruc-
tions. Then, the results were utilized to compare with the
reconstructions of sensor placement algorithms to further
illustrate the advantage and necessity of finding more optimal
sensor locations.

To quantify the reconstruction performance of different
sensor placement algorithms, we used three commonly used

Table 1. Performance of Different Sensor Placement Algorithms Using Different Numbers of Sensors under POD Modes
without Modal Truncation, i.e., K = 657 (Units of RMSE: μg/m3)

P = K P = 1.5K P = 2 K

algorithms ε R2 RMSE ε R2 RMSE ε R2 RMSE

Random 109.70 0.02 4493.64 0.45 0.69 16.94 0.33 0.80 12.60
MCN 87.27 0.02 3405.29 0.44 0.70 16.73 0.32 0.81 12.55
Extrema 47.80 0.03 1721.57 1.49 0.10 55.79 0.69 0.45 25.98
DEIM 1.35 0.24 52.16
QR pivot 1.03 0.31 40.11 0.33 0.81 12.49 0.28 0.84 10.98

Figure 1. Locations of sensors and reconstructed yearly mean PM2.5 concentrations across China with Random (a1,a2), MCN (b1,b2), Extreme
(c1,c2), and QR pivot (d1,d2) algorithms under the condition of P = 2K and K = 657 and CAQRA yearly mean PM2.5 as ground truth (e).

ACS Environmental Au pubs.acs.org/environau Article

https://doi.org/10.1021/acsenvironau.1c00051
ACS Environ. Au 2022, 2, 314−323

317

https://pubs.acs.org/doi/10.1021/acsenvironau.1c00051?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.1c00051?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.1c00051?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenvironau.1c00051?fig=fig1&ref=pdf
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.1c00051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


evaluation metrics. First, we define the reconstruction error ε,
as shown in eq 18

=
|| ||

|| ||
=

=

PM PM

PM
i
N

i i

i
N

i

1 t, e,
2

1 t,
2

(18)

where N represents the state dimension in a snapshot and PMt
and PMe are the true PM2.5 concentration and estimated PM2.5
concentration, respectively. PMt and PMe are the mean PM2.5
concentrations of PMt and PMe, respectively. In addition, the
correlation of determination (R2) and the root-mean-square
error (RMSE, μg/m3) are common metrics used in the
estimation of PM2.5 concentrations, which are defined,
respectively, as follows

= =

= =

R
(PM PM ) (PM PM )

(PM PM ) (PM PM )
i
N

i i

i
N

i i
N

i

2 1 t, t
2

e, e
2

1 t, o
2

1 e, e
2

(19)

= =
N

RMSE
(PM PM )i

N
i i1 t, e,

2

(20)

According to these definitions, the smaller the values of
these metrics are except R2, the more accurate the estimation
of PM2.5 concentrations is. In particular, R2 is no greater than
1. The value of R2 is closer to 1, which means that the
estimated PM2.5 concentrations fit the true PM2.5 concen-
trations better. Eventually, the reconstruction performance of
sensor placement algorithms was assessed by the mean of ε, R2,
and RMSE of validation snapshots.

3. RESULTS AND DISCUSSION

3.1. Performance of Five Sensor Placement Algorithms
Here, we assess five POD-based sensor placement algorithms
(i.e., Random, MCN, Extrema, QR pivot, and DEIM) in
estimating the ground-level distribution of PM2.5 across China.
To minimize the bias raised by randomization in Random and

Figure 2. Reconstruction errors as a function of number of POD modes using (a) 100 sensors; (b) 300 sensors; (c) 600 sensors; (d) 900 sensors;
(e) 1200 sensors; and (f) 1500 sensors.
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Extrema algorithms, we take the average of 50 independent
runs in each round of cross-validation. Due to the extremely
expensive computation of MCN, we conduct a simplified
version which traverses all possible sensor locations at once
and picks the first P positions with minimum values of κ(M).
Table 1 summarizes 10-fold CV (10-CV) results of the
CAQRA data set generated by different sensor placement
algorithms without modal truncation, that is, using full-state
modes, r = 657 (the number of training snapshots). Three
conditions are considered, namely, P = K (sensor quantity
equals to the number of modes used in reconstruction), P =
1.5K, and P = 2K (number of sensors exceeds the number of
modes used). Under the P = K condition, reconstruction with
sensors generated by Random, MCN, and Extrema yields
relatively poor evaluation metrics, with reconstruction error
greater than 40, R2 < 0.03, and RMSE > 1000 (Table 1).
DEIM and QR achieve better reconstructions under the P = K
condition as indicated by large declines in reconstruction error
and notable enhancement in R2.

Although QR pivot offers the best reconstruction under the
P = K condition, its performance is still unacceptable. The
poor performance is likely to be associated with the relatively
small number of used sensors (P = 657). With growing sensor
quantity, we observe significant improvements in results using
all the algorithms under conditions of both P = 1.5K and P =
2K (Table 1). Note that the DEIM algorithm generates sensor
locations whose quantity equals to the dimension of POD
basis, and this feature limits the occurrences of oversampling.
Among other four algorithms, QR pivot exhibits distinct
advantages and achieves the best performance, with the lowest
error ε of 0.28, the highest R2 value of 0.84, and the lowest
RMSE value of 10.98 μg/m3 under the P = 2K (∼1300
sensors) condition.

Figure 1 displays spatial distribution of PM2.5 concentrations
over China from CAQRA (e) and reconstructed ones using
Random (a2), MCN (b2), Extreme (c2), and QR pivot (d2)

algorithms under the P = 2K condition. These four algorithms
generally produce satisfactory reconstruction under such an
oversampled condition. Nevertheless, the Extrema algorithm
underestimates PM2.5 pollution in eastern China, and it
produces more hotspots of PM2.5 pollution in northwestern
China, compared with ground truth (Figure 1). The Random,
MCN, and QR pivot algorithms achieve better reconstructions
with respect to spatial distribution, consistent with the
evaluation metrics displayed in Table 1. The corresponding
sensor locations generated by these four algorithms are shown
in the left column of Figure 1. The sensor locations generated
by the Random and MCN algorithms are evenly dispersed
across China, while the Extrema algorithm distributes sensors
densely in an approximately rectangular area. Such a clustering
pattern was also mentioned previously,42 which is likely to be
caused by proximity or coincidence of the locations of the
extrema of POD modes.42 Different from the unreasonably
dense distribution of Extrema-generated sensor locations, QR
pivot enables the sensors relatively concentrated in northern
and northwest China, where PM2.5 pollution is usually severe
(Figure 1). Potential impacts brought by seasonal variability
are shown in the Supporting Information.
3.2. Reconstruction Accuracy Varies with Sensor Quantify
and POD Modes

Normally, dimension reduction is performed in POD-based
reconstruction through the truncation of POD modes to
obtain a low-rank reduced-order model. The first K most
dominant modes are usually retained to build a low-rank
approximation. Accordingly, the number of POD modes K is
essential with respect to reconstruction quality. Here, we
explore the interplay between POD basis, sensor quantity, and
sensor locations on reconstruction accuracy. Figure 2 illustrates
how reconstruction errors ε change along with the dimension
of POD modes when sensor quantity is fixed at (a) 100, (b)
300, (c) 600, (d) 900, (e) 1200, and (f) 1500. Under P=K
conditions, the reconstruction errors of the Random, MCN,
and Extrema algorithms reach peaks, distinctly greater than
those of DEIM and QR pivot (Figure 2a−c). Additionally, QR
pivot tends to be superior to DEIM, as indicated by lower
errors under P=K conditions (Figure 2a−c). Under P < K
conditions, reconstruction errors of these algorithms are
generally greater than 1.0 (Figure 2a,b). We observe that the
Random, MCN, and Extrema algorithms achieve the worst
performance under the P = K condition, even worse than their

Table 2. Performance of Sensor Placement Using Sensors
Located by QR Pivot and Existing CNEMC Sites; Results of
Both CAQRA and LGHAP Data Sets Are Presented

CAQRA LGHAP

sensors ε R2 RMSE ε R2 RMSE

QR pivot 0.27 0.87 10.60 0.22 0.81 11.05
existing sites 0.98 0.37 37.72 0.36 0.60 17.90

Figure 3. Locations of sensors and reconstructed PM2.5 concentrations across China using existing CNEMC sites (a1,b1) and QR pivot algorithm
(a2,b2) and CAQRA mean PM2.5 of evaluation snapshots in one cross-validation round as ground truth (c).
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performances under under-sampling (P < K) conditions. These
results suggest that these three algorithms are relatively
instable, compared to the DEIM and QR pivot algorithms.

Under oversampling conditions (P > K), we observe a
marginally upward trend of errors along with the increasing
number of POD modes (Figure 2c). Lower errors are obtained
by these algorithms under highly oversampling conditions
(e.g., K = 100, P = 600), compared to marginal oversampling
(e.g., K = 500, P = 600). More modes are involved in the latter,
and sensor location algorithms are thus more likely to decide
locations based on less-informative modes, especially when the
number of sensors is relatively small. In general, the fewer the
number of the POD modes, the better performance can be
achieved for most sensor placement methods, when available
sensors are not sufficient.

It is worth noting that the actual available sensor quantity in
DEIM equals to the number of modes and does not exactly

correspond to the sensor quantity displayed in each subfigure
(Figure 2). Therefore, the errors of DEIM are consistent in all
subfigures. When we increase the sensor quantity to 900, 1200,
and 1500, a substantial gap between DEIM and other
algorithms appears (Figure 2). This signifies that a large
increase in the number of sensors is able to significantly
improve reconstruction abilities of these algorithms, except
DEIM whose sensor quantity cannot be arbitrarily set. We also
find in Figure 2c−f that the error of Extrema shows an upward
trend when the dimension of POD increases. However, the
dimension of modes does not exert notable influences on the
performances of Random, MCN, and QR pivot, when the
number of sensors is sufficient. More precisely, we find that
QR pivot achieves marginally better approximation with the
increased number of POD modes (Figure 2e,f), which is able
to take advantage of the low-energy information contributed
by additional features. On the whole, QR pivot algorithm can

Figure 4. Locations of sensors and reconstructed PM2.5 concentrations across China using existing CNEMC sites (a1,b1) and QR pivot algorithm
(a2,b2) and LGHAP mean PM2.5 of evaluation snapshots in one cross-validation round as ground truth (c).

Figure 5. Locations of CNEMC and QR pivot-derived sensors and CAQRA PM2.5 in northern China (a1,a2) and northeastern China (b1,b2).
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yield competitive and stable reconstruction results under most
conditions.
3.3. Comparison with Reconstruction Using Existing Sites

We further compare the reconstruction accuracy using QR
pivot-guided sensors (sites) (K = 600 and P = 1500) and
existing CNEMC sites (1583 sites), and the results with both
CAQRA and LGHAP data sets as ground truth are listed in
Table 2. Compared with the reconstruction results using
existing CNEMC sites, QR pivot sensors (sites) yield better
reconstruction by a large margin in the case of fewer sensors.
As shown in Figure 3, QR pivot sensors offer higher degree
agreements with ground truth, while existing sites result in an
extensive overestimation in northwestern China. Similar
agreements and differences are found when we use the
LGHAP data set as ground truth (Table 2 and Figure 4). As
indicated by Figure 5a1,b1, most existing CNEMC stations are
concentrated in densely populated urban regions in eastern
China, leading to missing information in other polluted
suburban or rural regions. Instead, QR pivot sensors are
more evenly distributed in populated eastern China and
densely distributed in northeastern China (Figure 5).

We notice that notable discrepancies exist between the two
data sets as ground truth with respect to magnitudes of PM2.5
concentrations. Yet the spatial distributions of pollution
hotspots are generally consistent. The CAQRA data set was
derived with chemical transport modeling with assimilated
surface observations of air pollutants across China, while the
LGHAP data were inferred by combining satellite AOD and
associated variables. Satellite AOD offers only daytime
products, and results are relatively less reliable in northern
regions that affected by ice cover. Accordingly, differences
occur in the magnitudes of PM2.5. Instead of locating
monitoring sites empirically before, we could determine
optimal site locations using theoretical guidance by QR pivot
to better estimate the spatial distribution of PM2.5 pollution
across China. Although ground truth of gap-free variations of
PM2.5 does not exist, the inferred locations of sites using two
data sets are generally consistent. This further suggests that we
are able to demonstrate the rationality of the proposed
framework when we use reasonable data sets as inputs.

4. CONCLUSIONS
Numerous studies attempted to use ground-level observations
to obtain a better depiction of spatiotemporal variations of
PM2.5, in support of air quality management and impact
studies. Statistical methods (machine learning, etc.) or
numerical methods by combing chemical transport modeling
and observations with data assimilation techniques are typically
applied, yet the significance of site placement has not been well
considered in these studies. In this work, we seek to derive a
spatially complete distribution of PM2.5 across China using
ground-level site measurements. We applied five POD-based
sensor placement algorithms to identify optimal site locations
and systematically compared their reconstruction ability.
Additionally, we discussed how sensor quantity, locations,
and dimension of modes affect the accuracy of reconstruction.
We demonstrated that QR pivot is relatively more reliable in
deciding optimal monitoring site locations. When the number
of planned sites (sensors) is limited, using lower number of
modes would yield lower estimation errors. However, the
dimension of POD modes has little impact on reconstruction
quality when sufficient sensors are available. The locations of

sites guided by QR pivot algorithm are mainly located in
regions where PM2.5 pollution is severe. We compared the
reconstruction of PM2.5 pollution based on QR pivot-guided
sites and existing CNEMC sites, and we found that QR pivot-
guided sites are superior to existing sites with respect to
reconstruction accuracy.

The current planning of monitoring stations is likely to miss
sources of pollution in less-populated regions, while our QR
pivot-guided sites are planned based on the severity of PM2.5
pollution. This planning methodology has additional potentials
in chemical data assimilation studies as duplicate information
from concentrated stations is not likely to boost the
performance. Previously, we used CNEMC-observed PM2.5
to constrain modeled spatiotemporal variations of PM2.5 in
northern China with a three-dimensional variational data
assimilation system.18 We used only one station in each city to
avoid duplicate information, while observation constraints over
suburban and rural regions were not sufficient due to lack of
monitoring stations. With a better plan of placing monitoring
sites, these issues would be better addressed. Furthermore, as
OSP is a pervasive problem in various fields, such as ocean
modeling, fluid flow control, and aerodynamics, our work also
offers inspiration and guidance for selecting sensor locations in
other disciplines. In practical implementation, cost is an
important concern as the costs of site construction and
maintenance vary across locations due to terrain, environment,
and other factors. Therefore, how to make a cost-effective
planning of monitoring sites needs further investigations.
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■ ABBREVIATION

Dimensions
N dimension of the state
P number of sensors (measurements/interpolation points)
K number of POD modes
Q number of snapshots
Matrices

×U N Q data matrix with Q snapshots
×N K matrix of POD modes

×C P N measurement matrix (matrix representation
form of m)

Θ = CΦ product of measurement matrix and basis matrix
×M K K ΘTΘ or the gappy inner product of ΦT and Φ
×D N K interpolation matrix in DEIM

Q unitary matrix from QR factorization
R upper triangular matrix from QR factorization

×N K
K

tailored basis of rank K in QR column pivoting
×D N N permutation matrix in QR column pivoting

Vectors

u N data vector
a K POD coefficient vector

k N POD basis (kth column of Φ)

u N Gappy vector
m N mask vector
b K unknown POD coefficient vector
u N reconstruction of ũ

f K Gappy inner product of ũ and Φ (Section 2.1)
c K coefficient vector
y P observations/measurements
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