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Abstract: Lipidomics is an emerging field, where the structures, functions and dynamic 

changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of 

lipids in human physiological and pathological processes, lipidomics is attracting more and 

more attentions. However, because of the diversity and complexity of lipids, lipid analysis 

is still full of challenges. The recent development of methods for lipid extraction and 

analysis and the combination with bioinformatics technology greatly push forward the 

study of lipidomics. Among them, mass spectrometry (MS) is the most important technology 

for lipid analysis. In this review, the methodology based on MS for lipid analysis was 

introduced. It is believed that along with the rapid development of MS and its further 

applications to lipid analysis, more functional lipids will be identified as biomarkers and 

therapeutic targets and for the study of the mechanisms of disease. 
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1. Introduction 

Lipidomics was firstly put forward in 2003 [1], in which the structures, functions and dynamic 

changes of lipids in cells, tissues or body fluids are investigated. Recently, it has been widely 
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recognized that lipids are central to the regulation and control of cellular function and disease [2]. 

Therefore, lipidomics has gained a lot of attention and become an emerging field of basic and 

translational research. To date, the basic concept, research progress and potential application in drug 

development of lipidomics have been reviewed [3–6]. In this review, we focus on the mass spectrometry 

methodology for lipid analysis. 

Lipids are composed of eight categories; around 1.68 million species. The large amount of categories 

and the extremely complex structures of lipids lead to a formidable challenge to fully analyze all lipids. 

Nowadays, there are two strategies to analyze lipids: targeted lipids analysis and  

non-targeted lipid analysis. The targeted lipids analysis focuses on known lipids, and develops a 

specific method with a high sensitivity for the quantitative analysis of these specific lipids. Non-targeted 

lipids analysis aims to detect every lipid species simultaneously. In order to successfully realize the 

qualitative and quantitative analysis of lipids, many analytical methods have been developed for the 

analysis of lipids, including thin-layer chromatography (TLC) [7–9], gas chromatography (GC) [10–13], 

liquid chromatography (LC), enzyme-linked immunosorbent assays (ELISA) [14], nuclear magnetic 

resonance (NMR) [15,16] and mass spectrometry (MS) [17,18]. Among them, the MS-based method is 

the best in terms of high sensitivity and specificity, high throughput and high accuracy. In particular, 

the extensive use of electrospray ionization for lipid analysis and the improvement of mass analyzers 

in mass spectrometer, including the combination of different mass analyzers and the development of  

a high-resolution mass analyzer, has greatly increased the performance of MS in lipid analysis and 

revived lipid studies. In addition, the biological system is extremely complex, and it is required to 

extract the lipids from the biological system for further analysis. Furthermore, the studies in lipidomics 

have generated overwhelming amounts of data, which need bioinformatics technology to aid in data 

processing for acquiring meaningful biology information. Taken together, lipid analysis needs a serial 

of methods and technologies, including lipid extraction methods, MS-based analytical technologies 

and bioinformatics tools. A flowchart of the study of lipidomics is shown in Figure 1. 

Figure 1. A flowchart of the study of lipidomics (ST, sulfatide). 
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Herein, the methods for lipids extraction before MS detection, the ionization technologies, the mass 

analyzers and their applications to lipid analysis by MS are described in detail in this review. 

Moreover, the bioinformatics technology for data processing is also briefly discussed. New methods 

for lipid analysis are expected to improve the capability of lipid analysis, more functional lipids are also 

expected to be identified as biomarkers and therapeutic targets and for the study of the mechanisms  

of diseases. 

2. The Methods for Lipid Extraction  

Extracting lipids from the complex biological system is usually the first step for lipid analysis. After 

extraction, the proteins and some minerals are removed; therefore, the biological system becomes 

simple, which facilitates lipid analysis. A simple and reproducible extraction method is necessary for 

cross-validation of lipid data obtained in different laboratories. 

So far, the most widely used extraction method was developed in the 1950s by Blight and  

Dyer [19], in which a mixture of methanol, chloroform and water (1:1:0.9, v/v/v) are used, and phase 

separation is involved. Lipids are dissolved in organic solvents, and proteins and other hydrophilic 

materials are removed after phase separation. The original Bligh and Dyer method (the BD method) 

is suitable for extracting major phospholipids, but not hydrophilic lipids, like lysophosphatidic acid,  

sphingosine-1-phosphate, sulfatide, etc. Modifications of the BD method have been made to increase 

the efficiency of extracting lipids. Among them, Yatomi et al. has included KCl, HCl and NH4OH in 

their extraction method to optimize extraction [20]. Milder acid, such as citric acid, has been used to 

replace HCl [21,22]. In addition, butanol instead of methanol and chloroform has been used in several 

labs as the optimized method for the extraction of lipids [21–23]. However, there is a concern that  

the acidic or alkaline conditions would induce the hydrolysis of endogenous lipids, resulting in the 

artificial generation of lipids [21]. For example, plasmalogens (alkenyl-acyl lipids) are extremely 

sensitive towards even traces of acids and produce a lysophospholipid and a fatty aldehyde. In 

addition, it is very hard for butanol to be evaporated, which makes the process very time-consuming. 

Recently, Matyash and co-workers developed a methyl-tert-butyl ether (MTBE)-based method to 

extract lipids [24], which allowed the faster and cleaner recovery of most of the major lipid classes. 

We also reported a methanol method, utilizing a single methanol solvent and involving only one  

single step of centrifugation to extract phospholipids and sphingolipids, which has been proven to  

be extremely simple, effective and reproducible [25]. For apolar lipids, like triacylglycerides, it was 

reported that the hexane-isopropanol method was best [26]. 

Other than the extraction method for the unbiased recovery of the lipid species mentioned above, 

the methods with high selectivity have been proposed for specific lipid extraction. For example,  

Dennis et al. reported that a prepurification and enrichment of free fatty acid can be achieved with  

the application of a bi-phasic solution of acidified methanol and isooctane [27]. In addition, a metal 

complex called “Phos-tag” can be used for the selective extraction of lysophosphatidic acid (LPA) and 

sphingosine-1-phosphate (S1P) [28]. Wenk et al. have selectively extracted phospho-monoester lipids by 

an imidazolium polymer, and after derivatization with trimethylsilyldiazomethane (TMS-diazomethane), 

they successfully determined the long-chain base phosphates (LCB-Ps, e.g., sphingosine-1-phosphate) [29]. 

Moreover, this is particularly effective for selectively extracting some lipids on the basis of their 



Int. J. Mol. Sci. 2014, 15 10495 

 

 

discrepancy in the adsorption capability on solid phase extraction columns through different eluents [30–32]. 

For instance, it is possible to remove those lipids with a high content using the Ostra 96 plate (Waters), 

such as phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, while other components can 

be accumulated [33]. 

Lipid extraction should have more attention be paid to it, and before MS detection, the efficiency 

and reproducibility of the extraction method should be carefully tested, and the degradation and 

artificial generation of lipids should be avoided during the process of extraction. Furthermore, the 

whole process for lipid extraction should be as simple as possible to improve its operability. 

3. The Ionization Technologies of MS 

The extensive use of MS in lipids analysis is due to the development of ionization technologies. 

Different ionization technologies in MS were exploited for lipids analysis. 

3.1. Electron Ionization (EI) and Chemical Ionization (CI) 

Electron ionization (EI) is widely used in mass spectrometry, especially for the analysis of gases 

and volatile organic molecules, in which high energetic electrons interact with gas phase atoms or 

molecules to produce ions [34]. Denkert used GC-EI MS to comprehensively analyze ovarian tumor 

tissue’s metabolites, which showed that 51 metabolites were significantly different between borderline 

tumors and carcinomas tumors [35]. EI MS has been used in the determination of sterol [36], 

cholesterol [37] and fatty acids [38], while derivation is necessary for these nonvolatile compounds. 

For example, esterification is required for fatty acid analysis by GC-EI MS (Figure 2) [38,39]. 

Figure 2. Reaction scheme for the derivatization of fatty acids. (a) Esterification of a fatty 

acid by CH3I and (b) acid-catalyzed esterification of a fatty acid. 

 

The molecular ion signal in EI MS analysis is usually weak due to the high energy collision. 

Therefore, chemical ionization (CI) was developed to generate an easily identifiable intact molecular 

ion species, in which ions are produced through the collision of the analyte with ions of a reagent gas 

with lower energy, which are present in the ion source. Dennis’s group utilized pentafluorobenzyl 

bromide for derivatization of fatty acids and then employed negative chemical ionization (NCI) to 

successfully detect the intact signal of the molecular ion for fatty acids [27]. 

However, it should be noted that the EI/CI MS-based method for lipid analysis is limited, because of 

the unpleasant derivative steps and low sensitivity, which have restrained its further application in  

lipid analysis. 
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3.2. Fast Atom Bombardment (FAB) 

Fast atom bombardment (FAB) has been widely used to identify the structure of nonvolatile  

lipids, including fatty acids [40], monoacylglycerols [41], glycerophospholipids [42,43] and  

sphingolipids [44,45]. However, given the complexity of lipid extracts and the inconvenience when 

conjugating the chromatography and FAB MS, intensive efforts need to be carried out to effectively 

quantitatively analyze lipids by FAB MS. 

3.3. Matrix-Assisted Laser Desorption Ionization (MALDI) 

MALDI-MS is widely used in the analyses of organic synthetic compounds, peptides and proteins 

for the determination of molecular ions. However, the lipid identification using MALDI-MS has been 

limited, due to less likely existence of a proper matrix. Although the molecular weights of the different 

matrices are in the range of about 150–200 g/mol, photoreactions, such as trimerizations [46] occurring 

upon laser irradiation, as well as incomplete matrix cluster decomposition and adduct formation, may 

generate a multitude of matrix peaks at higher m/z values (100–500 Da), which suppress or obscure  

the lipid signals with a molecular weight lower than 500 Da. In addition, the lipid extracts from a 

biological sample are usually a complex system, where the interferences and discriminations of different 

molecules make it more difficult to analyze. The choice of matrix is the most important issue for a 

successful MALDI-MS analysis. Among all of the matrixes, 2,5-dihydroxybenzoic acid (DHB) is 

predominantly used as a matrix in lipid studies. [47]. In addition, trihydroxyacetophenone (THA) [48], 

p-nitroaniline (PNA) [49], 9-aminoacridine hemihydrates (9-AA) [50] or ionic liquid matrices [51] 

were introduced, which demonstrated high sensitivity in the analysis of some specific lipids. Metal 

oxide was also chosen as a matrix for the analysis of lipid extracts from bacterial and algal  

sources [52], to avoid the interference of the traditional organic matrix. Recently, a report demonstrated 

that an aqueous suspension of citrate-capped gold nanoparticles (AuNPs) as a matrix could selectively 

detect triacylglycerols (TAGs) under high phosphatidylcholines (PCs) conditions [53], showing the 

feasibility of developing a new matrix for the selective determination of lipids. 

In addition, MALDI-MS analysis has the disadvantages of rather poor reproducibility, mainly 

originating from the heterogeneity of the matrix-analyte crystals, which leads to MALDI-MS being 

heavily criticized for its quantitative analysis. A uniform matrix-analyte cocrystal minimizes the need 

to search for sweet spots, and more importantly, it avoids the variability of signal intensity across 

different locations on the target surface due to the heterogeneous crystals and greatly improves  

spot-to-spot reproducibility, which provides a basis for the quantitative analysis by MALDI-MS.  

In our group, a uniform matrix-analyte cocrystal was realized for the quantitative analysis of plasma 

lysophosphatidylcholines (LPCs) with the assistance of polystyrene (PS) colloidal spheres. PS spheres 

have superior monodispersed properties and can self-assemble to form photonic crystals. The 

cocrystals of the matrix and analyte deposited on the surface of photonic crystals distribute evenly,  

and the spot-to-spot reproducibility was satisfied with a relative standard derivation (RSD) lower  

than 4.1% [54]. 
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MALDI-MS can combine with TLC and LC for lipids analysis. For example, Ida et al. found that 

the content of 10 lipids distinctly decreased in the plasma from a cystic fibrosis patient, while the 

content of sphingomyelin d18:0 (SM d18:0) increased by TLC-MALDI-MS analysis [55]. 

Figure 3. Schematic representation of the MALDI-IMS work flow. 

 

Recent advances in MALDI-MS techniques of lipid analysis have led to the direct analysis of  

tissue slices with the MALDI imaging mass spectrometry (IMS) (Figure 3) [56]. The most promising 

advantage of MALDI-IMS is the reality to perform lipid analysis, avoiding extraction and/or 

separation steps, and to display the in situ information [57,58]. Setou et al. recently performed 

MALDI-IMS upon teeth with periodontal disease and found that an accumulation and infiltration of 

LPC to the root surface were related to periodontal disease [59]. High-resolution (HR) MALDI-IMS is 

an emerging application for the comprehensive and detailed analysis of the spatial distribution of 

ionized molecules in situ on tissue slides, and 26 molecules as highly expressed were identified in 

prostate carcinoma by HR MALDI-IMS [60]. Furthermore, MALDI-IMS can be even employed in 

single-cell lipid imaging. Römpp et al. combined high spatial resolution, high mass accuracy and  

high mass resolution MS for imaging a single Hela cell, and numerous compounds, including  

small metabolites, such as adenine, guanine and cholesterol, as well as different lipid classes, such as 

phosphatidylcholine, sphingomyelin, diglycerides and triglycerides were imaged in an individual spot 

of 7 μm in diameter [61]. 

It should be noted that the MALDI-MS analysis of lipids is still full of challenges. For example, 

only those rich lipids in extracts or on the tissue sections can be analyzed by MALDI-MS. It is critical  

to develop a new matrix for the selective determination of lipids with a low content. In addition,  

the stable-isotope labeling of molecules as an internal standard is an attractive technique that enables 

the quantitative analysis of specific molecules in a complicated system by MALDI-MS [62,63], but it is 

impossible to synthesize all required stable-isotope labeled compounds. The capability of quantification by 

MALDI-MS still needs to be improved. 



Int. J. Mol. Sci. 2014, 15 10498 

 

 

3.4. Electrospray Ionization (ESI), Atmosphere Pressure Chemical Ionization (APCI), Atmosphere 

Pressure Photoionization (APPI) and Desorption Electrospray Ionization (DESI) 

ESI is the major ionization method in MS for lipid analysis from body fluid, cell, bacteria, virus and 

tissue. “Shotgun” lipidomics was firstly proposed by Han and Gross in 2003 [1], in which ESI-MS was 

used for the direct analysis of lipids without pre-separation by LC. By tuning the pH value, like neutral 

pH in negative ion detection mode, or adding some specific ionization reagents in solution, like LiOH 

in positive ion detection mode, the lipids can be selectively detected [1,64]. Han et al. found that the 

sphingomyelin decreased, while ceramide increased in the brain of Alzheimer’s patients using this 

technology [65]. However, the phenomenon of mutual conversion and ion suppression among 

different lipids may lead to a systemic error when detecting complex lipid extracts by direct 

analysis of ESI-MS [17,66]. For example, in the ionization source, it is easy for LPC to lose the 

choline group and become artificial LPA, and therefore, this interferes with the measurement of LPA. 

Usually, to overcome these problems, a separation by liquid chromatography (LC) is needed. The HPLC 

separation before ESI-MS detection was established for the accurate measurement of LPA [66]. ESI is 

an efficient interface between LC and the mass spectrometer, which permits direct analysis of lipids  

as they are separated by LC, thus combining the power of LC with mass spectrometric analysis.  

The introduction of LC minimized the ion suppression effect. Moreover, the retention time in the LC 

column could also be used as another parameter for the identification of a compound other than the  

MS signal. For instance, Ecker et al. utilized the ultra performance liquid chromatography electrospray 

ionization tandem mass spectrometry (UPLC-ESI-SRM/MS) method to analyze the seven kinds of 

arachidic acids, and although some derivative molecular weights are same, they can be identified by their 

retention time on the column [67]. 2D-HPLC coupled to ESI was also developed to study the lipid 

metabolism disorder in many diseases, including obesity, hypertension, diabetes and liver cancer.  

Xu et al. used a novel on-line stop-flow 2D LC method coupled with QTOF-MS to analyze complex 

lipids in a plasma sample, which identified 372 lipids [68]. This group also applied on-line 

comprehensive silver-ion liquid chromatography (silver-ion LC) coupled with reversed-phase liquid 

chromatography (RPLC) to the analysis of an edible peanut oil and a mouse liver extract. As a result, 

28 TAGs from the peanut oil and 44 TAGs from the mouse liver were identified [68,69]. 

ESI is also easily hyphenated to other separation technologies, like capillary electrophoresis [70] 

and a microfluidic system [71]. Because the microfluidic technique can integrate different functions on 

one single chip, such as the lysis of cells, the capture of lipids and the elution of captured lipids from  

a solid phase for the microscale purification of lipids, it may present a highly efficient technique for 

comprehensive lipidomics research. 

Recently atmosphere pressure chemical ionization (APCI), atmosphere pressure photoionization (APPI) 

and desorption electrospray ionization (DESI) were also developed for lipid analysis. In APCI, the 

solvent acts as the chemical ionization (CI) reagent gas to ionize the samples. In APPI, a Krypton lamp 

producing ultraviolet light ionizes gas phase analytes. Compared with ESI, which only uses electrical 

fields to generate charged droplets and subsequent analyte ions by ion evaporation, APCI and APPI 

could provide additional mechanisms to ionize analytes. For nonpolar lipids, which cannot form charged 

droplets in solutions, APCI and APPI were more suitable for their analysis [69,70]. Moreover APCI and 

APPI are less susceptible to the effect of ionization suppression and salt buffer effects than ESI [71–74]. 
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In 2013, Tian et al. compared these three ionization technologies for plasma metabolome analysis  

and showed that each of them has its own advantage over the other two techniques for certain  

types of metabolites in plasma [75]. ESI is very sensitive for detecting glycerophosphocholines, 

glycerophosphoethanolamines, acyl carnitines, bile acids, sulfate, etc. APCI is suitable for analyzing 

cyclic alcohols, fatty acids and linoleic acids. APPI is proven to be appropriate in detecting steroids, 

sphingolipids, some amino acids, nucleosides and purines in plasma [75]. DESI was first introduced by 

Cooks in 2005 [76], which is an ambient ionization technique, where a solvent is used for the localized 

extraction of molecules followed by electrospray ionization. DESI offers greater advantages with 

respect to clinical applications, as it can be performed under ambient conditions with minimal sample 

preparation, making it suitable for direct tissue analysis [77]. Hanna used DESI for the metabolic 

profile within lymph nodes and found that the metabolic constituent of the cancerous lymph nodes was 

similar to that of the primary tumor site [78]. 

ESI tandem MS (MS/MS) was also employed for locating double bond position in lipids. After 

derivatization by ozone [79,80], pyrrolidides [81], trimethylsilyloxy [82] or dimethyl disulfide [83], 

the derivatives yield easily recognizable key fragments, which allow for a determination of the position 

of the double bond. Recently, methods based on olefin cross-metathesis [84] and charge-remote 

fragmentation [85,86] were also proposed for the determination of double-bond positions. However, 

there still remains a need for simple and reliable methods to identify the double-bond positions with 

high accuracy and capacity for complex lipids with multi double-bonds [84].  

Although ESI/APCI/APPI MS or MS/MS are extremely powerful, it is still a big challenge to 

identify all the lipids. Some lipids with multi-phosphate groups, like phosphoinositide, should be 

derived firstly to improve the sensitivity of detection [87]. Some lipids’ structures, like saccharolipids, 

are so complicated, that it is still a difficult task to analyze them [88]. The discrimination of isomers of 

lipids, like cardiolipins, is always a challenge for any MS method. In addition, the reproducibility 

needs to be considered for quantitative lipids analysis. 

4. The Mass Analyzers of MS 

Besides the ion source, the mass analyzer in a mass spectrometer is an extremely important part. 

There are many kinds of mass analyzers, including the sector magnetic analyzer, the quadrupole (Q) 

analyzer, the ion trap (IT) analyzer, the time of flight (TOF) analyzer, the Fourier-transform ion 

cyclotron resonance (FTICR) analyzer and the orbitrap analyzer. The high resolution mass analyzers, 

including FTICR and orbitrap, have significantly influenced the research of lipidomics, which especially 

facilitated direct infusion ESI MS for the simultaneous analysis of multiple lipid classes without the need 

for prior separation [89,90]. For example, a shotgun lipidomics approach that relies on orbitrap was 

established for the quantification of total lipid extracts [91]. In addition, high-resolution MS improves 

the confidence of molecular species assignment and the accuracy of their quantification. The fact of 

the below 2-ppm error in molecular weight allows the data to be retroactively searched and analyzed to 

characterize lipids [92]. 

Furthermore, with the development of tandem mass spectrometry, the analysis ability of mass 

spectrometry has greatly improved. QTOF-MS is usually used for non-targeted lipid analysis, which 

detects many metabolites simultaneously and is very helpful for drawing the metabolic disorder 
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network. By UPLC-ESI QTOF-MS, Choi et al. found that the plasma lipids changed significantly after 

Rosuvastatin introduction, which will be helpful for understanding the side-effect mechanism caused 

by Rosuvastatin [93]. In addition, a triple quadrupole mass analyzer has been widely used in targeted 

lipids analysis. There are several detection modes in the triple quadrupole mass spectrometer, 

including full scan mode, single ion monitor (SIM), selected reaction monitor (SRM), multi-reaction 

monitor (MRM), precursor ion scan (PIS), neutral loss scan (NLS) and daughter ion scan (DIS). Using 

single detection mode, the triple quadrupole mass spectrometer can selectively detect one or one kind 

of lipid with high sensitivity and accuracy [94]. For example, by the MRM detection mode, we found 

that the plasma lysophosphatidylcholine (LPC) levels in colorectal cancer (CRC) patients were 

significantly decreased, which could be used as potential diagnostic markers for CRC disease [95]. 

Likewise, only some specific leukotrienes are found to be related with lung cancer by MRM detect 

mode analysis [96]. While taking these detection modes together, a novel multi-dimension mass 

spectrometry (MDMS) strategy was proposed for multiple lipids identification and quantification [97]. 

A full scan was firstly performed, and then DIS, PIS and NLS were executed in the MDMS strategy. 

MDMS can map the complete information for each individual molecular species, and therefore, it can 

be used to identify each molecular species in a complex lipidome. 

It is believed that along with the rapid development of MS, in particular the development of mass 

analyzers and their further applications to lipid analysis, more functional lipids will be elucidated and 

identified as biomarkers and therapeutic targets. 

5. The Bioinformatics Technology for Data Processing 

The study of lipidomics, especially non-targeted lipid analysis, has generated overwhelming 

amounts of data, which need bioinformatics technology to aid in data processing for acquiring 

meaningful biology information. Data processing usually includes three parts: (1) principal component 

analysis (PCA) and partial least squares discriminate analysis (PLS-DA) to search for differential lipids; 

(2) database retrieval combined with MS/MS spectra for the identification of differential lipids;  

and (3) data interpretation for acquiring meaningful biology information. There exist numerous kinds of 

data-processing software, for example Progenesis from Waters, Clinpro from Bruker, etc.  

Some organizations, like the lipid metabolite and pathways strategy (LIPID MAPS, 

http://www.lipidmaps.org/resources/tutorials/bioinformaticstools.html), the human metabolome database 

(HMDB, http://www.hmdb.ca/spectra/spectra/ms/search), Chemspider (www.chemspider.com), etc., 

which provide free access to their database. In addition, some websites, like www.metaboanalyst.ca, 

were established for aiding in data processing, free of charge. Under the assistance of analytical software, 

more of the functional lipidome will be identified, which will greatly enhance the understanding of the 

mechanisms of disease and push forward the development of lipidomics. 

6. Outlooks and Perspectives 

Lipidomics is an inter-disciplinary field in which analytical chemistry is used for the determination 

of the structure and content and molecule biology is used for identification of lipid function. 

Lipidomics is also an emerging field of basic and translational research. These years of research efforts, 

especially the development of the lipid metabolite and pathways strategy (LIPID MAPS), funded by 
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NIH, have greatly pushed forward the study of lipidomics. However, lipidomics still remains at an 

early stage, and some issues needed to be solved. Firstly, the sample pretreatment procedures, 

including collection, transportation, conservation and extraction, need to be standardized; Secondly, 

the analytical methods and data obtained have to be cross-validated in different laboratories; Thirdly, 

analytical approaches for the accurate analysis of some lipids, such as gangliosides, phosphoinositides, 

pregnenolone, etc., are still lacking; Fourthly, still less attention has been paid to improving the data 

interpretation, and the informatics technologies are urgently expected to be improved for acquiring 

meaningful biology information from lipid data. 

Acknowledgments 

This work was supported by the Science and Technology Program of Beijing Municipality  

(No. Z 131100005213009). 

Author Contributions 

L.L. wrote the manuscript, drew the figure and revised the manuscript; Z.Z. designed the 

manuscript, revised the manuscript and funded; Other authors provided valuable suggestions and 

helped to search references. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1 Han, X.L.; Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of 

biological samples by ESI mass spectrometry: A bridge to lipidomics. J. Lipid Res. 2003, 44, 

1071–1079. 

2 Li, F.; Prestwich, G.D. Functional Lipidomics; CRC Press: Boca Raton, FL, USA, 2005; p. 2. 

3 Shevchenko, A.; Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol.  

Cell Biol. 2010, 11, 593–598. 

4 Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they 

behave. Nat. Rev. Mol. Cell Biol. 2010, 29, 112–124. 

5 Lam, S.M.; Shui, G. Lipidomics as a principal tool for advancing biomedical research.  

J. Genet. Genomics 2013, 40, 375–390. 

6 Wenk, M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 2005, 4, 594–610. 

7 Fuchs, B.; Süß, R.; Teubera, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer 

chromatography—A review of the current state. J. Chromatogr. A 2011, 1218, 2754–2774. 

8 Malins, D.C.; Mangold, H.K. Analysis of complex lipid mixtures by thin-layer chromatography 

and complementary methods. J. Am. Oil Chem. Soc. 1960, 37, 576–578. 

9 Ramstedt, B.; Leppimaki, P.; Axberg, M.; Slotte, J.P. Analysis of natural and synthetic 

sphingomyelins using high-performance thin-layer chromatography. Eur. J. Biochem. 1999, 266, 

997–1002. 



Int. J. Mol. Sci. 2014, 15 10502 

 

 

10 Tang, B.; Row, K.H. Development of gas chromatography analysis of fatty acids in marine 

organisms. J. Chromatogr. Sci. 2013, 51, 599–607. 

11 Volin, P. Analysis of steroidal lipids by gas and liquid chromatography. J. Chromatogr. A 2001, 

935, 125–140. 

12 Yang, Z.; Parrish, C.C.; Helleur, R.J. Automated gas chromatographic method for neutral lipid 

carbon number profiles in marine samples. J. Chromatogr. Sci. 1996, 34, 556–568. 

13 Saeed, S.; Howell, N.K. High-performance liquid chromatography and spectroscopic studies on 

fish oil oxidation products extracted from frozen atlantic mackerel. J. Am. Oil Chem. Soc. 1999, 

76, 391–397. 

14 Goodridge, C.F.; Beaudry, R.M.; Pestka, J.J.; Smith, D.M. ELISA for monitoring lipid oxidation 

in chicken myofibrils through quantification of hexanal-protein adducts. J. Agric. Food Chem. 

2003, 17, 7533–7539. 

15 Igarashi, T.; Aursand, M.; Hirata, Y.; Gribbestad, I.S.; Wada, S.; Nonaka, M. Nondestructive 

quantitative determination of docosahexaenoic acid and n-3 fatty acids in fish oils by high-resolution 

1H nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 2003, 77, 737–748. 

16 Knothe, G.; Kenar, J.A. Determination of the fatty acid profile by 1H NMR spectroscopy. Eur. J. 

Lipid Sci. Technol. 2004, 106, 88–96. 

17 Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes.  

Annu. Rev. Biochem. 2011, 80, 301–325. 

18 Welti, R.; Wang, X.M. Lipid species profiling: A high-throughput approach to identifylipid 

compositional changes and determine the function of genes involved in lipid metabolism and 

signaling. Curr. Opin. Plant Biol. 2004, 7, 337–344. 

19 Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J.  

Biochem. Physiol. 1959, 37, 911–917. 

20 Yatomi, Y.; Ohmori, T.; Rile, G.; Kazama, F.; Okamoto, H.; Sano, T.; Satoh , K.; Kume, S.;  

Tigyi, G.; Igarashi, Y. Sphingosine-1-phosphate as a major bioactive lysophospholipid that is 

released from platelets and interacts with endothelial cells. Blood 2000, 96, 3431–3438. 

21 Scherer, M.; Schmitz, G.; Liebisch, G. High-throughput analysis of sphingosine 1-phosphate, 

sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid 

chromatography-tandem mass spectrometry. Clin. Chem. 2009, 55, 1218–1222. 

22 Murph, M.; Tanaka, T.; Peng, J.; Felix, E.; Liu, S.; Trost, R.; Godwin, A.K.; Newman, R.;  

Mills, G. Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: 

Potential biomarkers for cancer diagnosis. Methods Enzymol. 2007, 433, 1–25. 

23 Baker, D.L.; Morrison, P.; Miller, B.; Riely, C.A.; Tolley, B.; Westermann, A.M.; Bonfrer, J.M.; 

Bais, E.; Moolenaar, W.H.; Tigyi, G. Plasma lysophosphatidic acid concentration and ovarian 

cancer. J. Am. Med. Assoc. 2002, 287, 3081–3082. 

24 Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by 

methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1346. 

25 Zhao, Z.W.; Xu, Y. An extremely simple method for extraction of lysophospholipids and 

phospholipids from blood samples. J. Lipid Res. 2010, 51, 652–659. 



Int. J. Mol. Sci. 2014, 15 10503 

 

 

26 Reis, A.; Rudnitskaya, A.; Blackburn, G.J.; Mohd-Fauzi, N.; Pitt, A.R.; Spickett, C.M.  

A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL.  

J. Lipid Res. 2013, 54, 1812–1824 

27 Quehenberger, O.; Armando, A.M.; Dennis, E.A. High sensitivity quantitative lipidomics analysis of 

fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta 

2011, 1811, 648–656. 

28 Morishige, J.; Urikura, M.; Takagi, H.; Hirano, K.; Koike, T.; Tanaka, T.; Satouchi, K. A clean-up 

technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-

phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a 

phosphate-capture molecule, Phos-tag. Rapid Commun. Mass Spectrom. 2010, 24, 1075–1084. 

29 Narayanaswamy, P.; Shinde, S.; Sulc, R.; Kraut, R.; Staples, G.; Thiam, C.H.; Grimm, R.; 

Sellergren, B.; Torta, F.; Wenk, M.R. Lipidomic “Deep Profiling”: An enhanced workflow to 

reveal new molecular species of signaling lipids. Anal. Chem. 2014, 86, 3043–3047. 

30 Ruiz, J.; Antequera, T.; Andres, A.I.; Petron, M.J.; Muriel, E. Improvement of a solid phase extraction 

method for analysis of lipid fractions in muscle foods. Anal. Chim. Acta 2004, 520, 201–205. 

31 Newman, A.E.; Chin, E.H.; Schmidt, K.L.; Bond , L.; Wynne-Edwards, K.E.; Soma, K.K. 

Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to 

radioimmunoassay. Gen. Comp. Endocrinol. 2008, 155, 503–510. 

32 Firl, N.; Kienberger, H.; Hauser, T.; Rychlik, M. Determination of the fatty acid profile of neutral 

lipids, free fatty acids and phospholipids inhuman plasma. Clin. Chem. Lab. Med. 2013, 51, 799–810. 

33 Tulipani, S.; Llorach, R.; Urpi-Sarda, M.; Andres-Lacueva, C. Comparative analysis of sample 

preparation methods to handle the complexity of the blood fluid metabolome: When less is more. 

Anal. Chem. 2013, 85, 341–348. 

34 Hoffman, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley 

and Son: Chichester, WS, UK, 2007. 

35 Denkert, C.; Budczies, J.; Kind, T.; Weichert, W.; Tablack, P.; Sehouli, J.; Niesporek, S.; Könsgen, D.; 

Dietel, M.; Fiehn, O. Mass spectrometry-based metabolic profiling reveals different metabolite 

patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006, 66, 

10795–10804. 

36 Ahmida, H.S.; Bertucci, P.; Franzo, L.; Massoud, R.; Cortese, C.; Lala, A.; Federici, G. 

Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas 

chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM).  

J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 842, 43–47. 

37 Son, H.H.; Moon, J.Y.; Seo, H.S.; Kim, H.H.; Chung, B.C.; Choi, M.H. High-temperature  

GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina.  

J. Lipid Res. 2014, 55, 155–162. 

38 Lin, Y.H.; Salem, N., Jr.; Wells, E.M.; Zhou, W.; Loewke, J.D.; Brown, J.A.; Lands, W.E.; 

Goldman, L.R.; Hibbeln, J.R. Automated high-throughput fatty acid analysis of umbilical cord 

serum and application to an epidemiological study. Lipids 2012, 47, 527–539. 

39 Barkawi, L.S.; Cohen, J.D. A method for concurrent diazomethane synthesis and substrate 

methylation in a 96-sample format. Nat. Protoc. 2010, 5, 1619–1626. 



Int. J. Mol. Sci. 2014, 15 10504 

 

 

40 Ji. H.; Voinov, V.G.; Deinzer, M.L.; Barofsky, D.F. Distinguishing between cis/trans isomers of 

monounsaturated fatty acids by FAB MS. Anal. Chem. 2007, 79, 1519–1522. 

41 Gil, J.H.; Hong, J.Y.; Jung, J.H.; Kim, K.J.; Hong, J. Structural determination of monoacylglycerols 

extracted from marine sponge by fast atom bombardment tandem mass spectrometry.  

Rapid Commun. Mass Spectrom. 2007, 21, 1264–1270. 

42 Hong, J.; Kim, Y.H.; Gil, J.H.; Cho, K.; Jung, J.H.; Han, S.Y. Structural determination of 

hexadecanoic lysophosphatidylcholine regioisomers by fast atom bombardment tandem mass 

spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 2089–2093. 

43 Korachi, M.; Blinkhorn, A.S.; Drucker, D.B. Analysis of phospholipid molecular species 

distributions by fast atom bombardment mass spectrometry (FAB-MS). Eur. J. Lipid Sci. Technol. 

2002, 104, 50–56. 

44 Ohashi, Y.; Tanaka, T.; Akashi, S.; Morimoto, S.; Kishimoto, Y.; Nagai, Y. Squid nerve 

sphingomyelin containing an unusual sphingoid base. J. Lipid Res. 2000, 41, 1118–1124. 

45 Ahn, Y.M.; Lee, W.W.; Jung, J.H.; Lee, S.G.; Hong, J. Structural determination of 

glucosylceramides isolated from marine sponge by fast atom bombardment collision-induced 

dissociation linked scan at constant B/E. J. Mass Spectrom. 2009, 44, 1698–1708. 

46 Hoyer, T.; Tuszynski, W.; Lienau, C. Ultrafast photodimerization dynamics in α-cyano-4-

hydroxycinnamic and sinapinic acid crystals. Chem. Phys. Lett. 2007, 443, 107–112. 

47 Fuchs, B.; Schiller, J. Recent developments of useful MALDI matrices for the mass spectrometric 

characterization of apolar compounds. Curr. Org. Chem. 2009, 13, 1664–1681. 

48 Fujita, T.; Fujino, T.; Hirabayashi, K.; Korenaga, T. MALDI mass spectrometry using  

2,4,6-trihydroxyacetophenone and 2,4-dihydroxyacetophenone with cyclodextrins: Suppression of 

matrix-related ions in low-molecular-weight region. Anal. Sci. 2010, 26, 743–748. 

49 Steven, R.T.; Race, A.M.; Bunch, J. para-Nitroaniline is a promising matrix for MALDI-MS 

imaging on intermediate pressure MS systems. J. Am. Soc. Mass Spectrom. 2013, 24, 801–804. 

50 Fuchs, B.; Bischoff, A.; Süss, R.; Teuber, K.; Schürenberg, M.; Suckau, D.; Schiller, J. 

Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures:  

A negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected 

example. Anal. Bioanal. Chem. 2009, 395, 2479–2487. 

51 Bonnel, D.; Franck, J.; Mériaux, C.; Salzet, M.; Fournier, I. Ionic matrices pre-spotted matrix-assisted 

laser desorption/ionization plates for patient maker following in course of treatment, drug 

titration, and MALDI mass spectrometry imaging. Anal. Biochem. 2013, 434, 187–198. 

52 McAlpin, C.R.; Voorhees, K.J.; Corpuz, A.R.; Richards, R.M. Analysis of lipids: Metal oxide 

laser ionization mass spectrometry. Anal. Chem. 2012, 84, 7677–7683. 

53 Son, J.; Lee, G.; Cha, S. Direct analysis of triacylglycerols from crude lipid mixtures by gold 

nanoparticle-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 

2014, 25, 891–894. 

54 Wei, Y.B.; Li, S.M.; Wang, J.X.; Shu, C.Y.; Liu, J.A.; Xiong, S.X.; Song, J.W.; Zhang, J.J.; Zhao, Z.W. 

Polystyrene spheres-assisted matrix-assisted laser desorption ionization mass spectrometry for 

quantitative analysis of plasma lysophosphatidylcholines. Anal. Chem. 2013, 85, 4729–4734. 



Int. J. Mol. Sci. 2014, 15 10505 

 

 

55 Ida, C.G.; Giuseppe, A.; Jais, J.P.; Sands, D.; Nowakowska, A.; Colas, J.; Sermet-Gaudelus, I.; 

Schuerenberg, M.; Piomelli, D.; Edelman, A. A novel lipidomic strategy reveals plasma 

phospholipid signatures associated with respiratory disease severity in cystic fibrosis patients. 

PLoS One 2009, 4, e7735. 

56 Franck, J.; Arafah, K.; Elayed, M.; Bonnel, D.; Vergara, D.; Jacquet, A.; Vinatier, D.; Wisztorski, M.; 

Day, R.; Fournier, I. MALDI imaging mass spectrometry. Mol. Cell. Proteomics 2009, 8, 2023–2033. 

57 Griffiths, R.L.; Sarsby, J.; Guggenheim, E.J.; Race, A.M.; Steven, R.T.; Fear, J.; Lalor, P.F.; 

Bunch, J. Formal lithium fixation improves direct analysis of lipids in tissue by mass spectrometry. 

Anal. Chem. 2013, 85, 7146–7153. 

58 Longuespée, R.; Boyon, C.; Desmons, A.; Kerdraon, O.; Leblanc, E.; Farré, I.; Vinatier, D.; Day, R.; 

Fournier, I.; Salzet, M. Spectroimmunohistochemistry: A novel form of MALDI mass spectrometry 

imaging coupled to immunohistochemistry for tracking antibodies. OMICS 2014, 18, 132–141. 

59 Hirano, H.; Masaki, N.; Hayasaka, T.; Watanabe, Y.; Masumoto, K.; Nagata, T.; Katou, F.;  

Setou, M. Matrix-assisted laser desorption/ionization imaging mass spectrometry revealed traces 

of dental problem associated with dental structure. Anal. Bioanal. Chem. 2014, 406, 1355–1363. 

60 Goto, T.; Terada, N.; Inoue, T.; Nakayama, K.; Okada, Y.; Yoshikawa, T.; Miyazaki, Y.; Uegaki, M.; 

Sumiyoshi, S.; Kobayashi, T. The expression profile of phosphatidylinositol in high spatial 

resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One. 

2014, 28, e90242. 

61 Schober, Y.; Guenther, S.; Spengler, B.; Römpp, A. Single cell matrix-assisted laser 

desorption/ionization mass spectrometry imaging. Anal. Chem. 2012, 84, 6293–6297. 

62 Barnaby, O.; Wa, C.; Cerny, R.L.; Clarke, W.; Hage, D.S. Quantitative analysis of human Serum 

albumin using 16O/18O-labeling and matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry. Clin. Chim. Acta 2010, 411, 1102–1110. 

63 Ye, H.P.; Hill, J.; Kauffman, J.; Han, X.L. Qualitative and quantitative comparison of brand name 

and generic protein pharmaceuticals using isotope tags for relative and absolute quantification and 

matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Anal. Biochem. 

2010, 400, 46–55. 

64 Han, X.L.; Gross, R.W. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis 

and quantitation of cellular lipidomes directly from crude extracts of biological samples.  

Mass Spectrom. Rev. 2005, 24, 367–412. 

65 Han, X.L.; Rozen, S.; Boyle, S.H.; Hellegers, C.; Cheng, H.; Burke, J.R.; Welsh-Bohmer, K.A.; 

Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolomics in early Alzheimer’s disease: Identification 

of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 2011, 6, e21643. 

66 Zhao, Z.W.; Xu, Y. Measurement of endogenous lysophosphatidic acid by ESI-MS/MS in plasma 

samples requires pre-separation of lysophosphatidylcholine. J. Chromatogr. B 2009, 877, 3739–3742. 

67 Sterz, K.; Scherer, G.; Ecker, J. A simple and robust UPLC-SRM/MS method to quantify urinary 

eicosanoids. J. Lipid Res.2012, 53, 1026–1036. 

68 Wang, S.Y.; Li, J.; Shi, X.Z.; Qiao, L.Z.; Lu, X.; Xu, G.W. A novel stop-flow two-dimensional 

liquid chromatography-mass spectrometry method for lipid analysis. J. Chromatogr. A 2013, 

1321, 65–72. 



Int. J. Mol. Sci. 2014, 15 10506 

 

 

69 Chen, S.; Yin, P.; Zhao, X.; Xing, W.; Hu, C.; Zhou, L.; Xu, G.W. Serum lipid profiling of patients 

with chronic hepatitis B, cirrhosis, and hepatocellular carcinoma by ultra-fast LC/IT-TOF MS. 

Electrophoresis 2013, 34, 2848–2856. 

70 Gao, F.; Zhang, Z.X.; Fu, X.F.; Li, W.; Wang, T.; Liu, H.W. Analysis of phospholipids by NACE 

with on-line ESI-MS. Electrophoresis 2007, 28, 1418–1425. 

71 Sun, T.; Pawlowski, S.; Johnson, M.E. Highly efficient microscale purification of 

glycerophospholipids by microfluidic cell lysis and lipid extraction for lipidomics profiling.  

Anal. Chem. 2011, 83, 6628–6634. 

72 Donota, F.; Cazalsc, G.; Gunataa, Z.; Egronc, D.; Malingeb, J.; Struba, C.; Fontanaa, A.;  

Schorr-Galindo, S. Analysis of neutral lipids from microalgae by HPLC-ELSD and  

APCI-MS/MS. J. Chromatogr. B 2013, 98–106. 

73 Mei, H.; Hsieh, Y.S.; Nardo, C.; Xu, X.Y.; Wang, S.Y.; Ng, K.; Korfmacher, W.A. Investigation of 

matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric 

assays: Application to drug discovery. Rapid Commun. Mass Spectrom. 2003, 17, 97–103. 

74 Hanold, K.A.; Fischer, S.M.; Cormia, P.H.; Miller, C.E.; Syage, J.A. Atmospheric pressure 

photoionization 1: General properties for LC/MS. Anal. Chem. 2004, 76, 2842–2851. 

75 Tian, H.; Bai, J.; An, Z.; Chen, Y.; Zhang, R.; He, J.; Bi, X.; Song, Y.; Abliz Z. Plasma 

metabolome analysis by integrated ionization rapid-resolution liquid chromatography/tandem 

mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 2071–2080. 

76 Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient 

conditions with desorption electrospray ionization. Science 2004, 306, 471–473. 

77 Eberlin, L.S.; Norton, I.; Dill, A.L.; Golby, A.J.; Ligon, K.L.; Santagata, S.; Cooks, R.G.;  

Agar, N.Y. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res. 

2012, 72, 645–654. 

78 Abbassi-Ghadi, N.; Veselkov, K.; Kumar, S.; Huang, J.; Jones, E.; Strittmatter, N.; Kudo, H.; 

Goldin, R.; Takáts, Z.; Hanna, G.B. Discrimination of lymph node metastases using desorption 

electrospray ionisation-mass spectrometry imaging. Chem. Commun. 2014, 50, 3661–3664. 

79 Thomas, M.; Mitchell, T.; Harman, D.; Deeley, J.; Nealon, J.; Blanksby, S. Ozone-induced 

dissociation: Elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 

2008, 80, 303–311. 

80 Thomas, M.; Mitchell, T.; Harman, D.; Deeley, J.; Murphy, R.; Blanksby, S. Elucidation of double 

bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal. Chem. 

2007, 79, 5013–5022. 

81 Andersson, B.; Holman, R. Pyrrolidides for mass spectrometric determination of the position of 

the double bond in monounsaturated fatty acids. Lipids 1973, 9, 185–190. 

82 Capella, P.; Zorzut, C. Determination of double bond position in monounsaturated fatty acid esters by 

mass spectrometry of their trimethylsilyloxy derivatives. Anal. Chem. 1968, 40, 1458–1463. 

83 Buser, H.; Arn, H.; Guerin, P.; Rauscher S. Determination of double bond position in  

mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal. Chem.1983, 

55, 818–822. 

84 Kwon, K.; Lee, S.; Oh, D.; Kim, S. Simple determination of double-bond positions in long-chain 

olefins by cross-metathesis. Angew. Chem. Int. Ed. 2011, 50, 8275–8278. 



Int. J. Mol. Sci. 2014, 15 10507 

 

 

85 Hsu, F.; Turk, J. Elucidation of the double-bond position of long-chain unsaturated fatty acids by 

multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc.  

Mass Spectrom. 2008, 19, 1673–1680. 

86 Castro-Perez, J.; Roddy, T.; Nibbering, N.; Shah, V.; McLaren, D.; Previs, S.; Attygalle, A.; 

Herath, K.; Chen, Z.; Wang, S. Localization of fatty acyl and double bond positions in 

phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass 

spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 1552–1567. 

87 Wakelam, M.J.O.; Clark, J. Methods for analyzing phosphoinositides using mass spectrometry. 

Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 758–762. 

88 Kilár, A.; Dörnyei, Á.; Kocsis, B. Structural characterization of bacterial lipopolysaccharides with 

mass spectrometry and on- and off-line separation techniques. Mass Spectrom. Rev. 2013, 32, 90–117. 

89 Li, F.; Qin, X.; Chen, H.; Qui, L.; Guo, Y.; Liu, H.; Chen, G.; Song, G.; Wang, X.; Li, F.  

Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion 

electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. 

Mass Spectrom. 2013, 27, 24–34. 

90 Becker, L.; Poutaraud, A.; Hamm, G.; Muller, J.F.; Merdinoglu, D.; Carré, V.; Chaimbault, P. 

Metabolic study of grapevine leaves infected by downy mildew using negative ion  

electrospray-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chim. Acta 2013, 

795, 44–51. 

91 Schuhmann, K.; Herzog, R.; Schwudke, D.; Metelmann-Strupat, W.; Bornstein, S.R.; Shevchenko, A. 

Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass 

spectrometers. Anal. Chem. 2011, 83, 5480–5487. 

92 Bird, S.S.; Marur, V.R.; Sniatynski, M.J.; Greenberg, H.K.; Kristal, B.S. Serum lipidomics 

profiling using LC-MS and high-energy collisional dissociation fragmentation: Focus on 

triglyceride detection and characterization. Anal. Chem. 2011, 83, 6648–6657. 

93 Choi, J.M.; Kim, T.E.; Cho, J.Y.; Lee, H.J.; Jung, B.H. Development of lipidomic platform and 

phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. 

J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 944, 157–165. 

94 Seppanen-Laakso, T.; Oresic, M. How to study lipidomes. J. Mol. Endocrinol. 2009, 42, 185–190. 

95 Zhao, Z.W.; Xiao, Y.J.; Elson, P.; Tan, H.Y.; Plummer, S.J.; Berk, M.; Aung, P.P.; Lavery, I.C.; 

Achkar, J.P.; Li, L. Plasma lysophosphatidylcholine levels: Potential biomarkers for colorectal 

cancer. J. Clin. Oncol. 2007, 25, 2696–2701. 

96 Poczobutt, J.M.; Gijon, M.; Amin, J.; Hanson, D.; Li, H.; Walker, D.; Weiser-Evans, M.; Lu, X.; 

Murphy, R.C.; Nemenoff, R.A. Eicosanoid profiling in an orthotopic model of lung cancer 

progression by mass spectrometry demonstrates selective production of leukotrienes by 

inflammatory cells of the microenvironment. PLoS One 2013, 8, e79633. 

97 Han, X.L.; Yang, K.; Gross, R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics 

and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012, 31, 134–178. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


