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Pooling is an attractive strategy in screening infected specimens, especially for rare diseases. An essential step of performing the
pooled test is to determine the group size. Sometimes, equal group size is not appropriate due to population heterogeneity. In this
case, varying group sizes are preferred and could be determined while individual information is available. In this study, we propose
a sequential procedure to determine varying group sizes through fully utilizing available information. .is procedure is data
driven. Simulations show that it has good performance in estimating parameters.

1. Introduction

Routine monitoring or large scale of screening usually oc-
curs in biomedical research to identify infected specimens
[1–4]. However, some test kits, e.g., nucleic acid
amplification test (NAAT), are expensive [2, 5].
.erefore, the expense during a large-scale monitoring
process is usually a financial burden if resource is limited
[6–8]. .e strategy of pooling biospecimens is attractive to
address this issue [9–11], which was first used during World
War II to screen for syphilis [12]. .is strategy is firstly to
pool specimens into groups and then screen these groups. If
a group tests negative, all specimens in this group will be
declared negative; otherwise, continue to perform individual
test. When the prevalence is low, the total number of tests
using pooling will be far less than that using the individual
test. Due to its efficiency and cost saving, pooling is now
applied in many fields, such as agriculture [13], genetics
[14, 15], HIV/AIDS [16, 17] and blood screening [18], and
environmental epidemiology [19, 20].

.e gain of pooling mainly depends on the pooling
algorithm. Assuming homogeneity of the population,
dozens of papers have investigated the problem how to
design an efficient algorithm [21–25]. However, this as-
sumption might be violated in practical application [26–28].
While individual information is available, it is of interest to
estimate individual-level prevalence through incorporating

such information. Note that only group-level status is ob-
served, e.g., positive or negative. .is problem has been
studied in parametric context through the framework of
binary regression models [29–31], and also in
semiparametric [32, 33] or nonparametric context
[34, 35]. However, aforementioned work mostly uses a
single group size that is determined in advance.

A set of pool sizes might be more appropriate while
considering population heterogeneity. For example,
varying pool sizes were used to estimate the infection
prevalence of Myxobolus cerebralis, which causes whirling
disease, among free-ranging salmonid fish collected from
the Truckee River in Nevada and California [36]. In a study
of estimating the prevalence of several viruses in carna-
tions grown in nursery glasshouses in Victoria, sequential
pooled testing involving several pool sizes was adopted
[37]. Using a single group size might be optimal for some
estimates but far from others, especially when we have
little information ahead of the experiment [37, 38]. More
work is better on this issue since the benefit of pooling
algorithm mainly depend on the choice of pool size
[38–40]. In this study, we propose a pooling strategy with
varying pool sizes through taking advantage of individual
information. Our procedure is a data-driven pooling al-
gorithm, where groups are formed sequentially. Its per-
formance is extensively investigated by simulations and a
real data set.
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2. Methods

2.1. Notations and Background. Suppose N specimens are
assigned intom groups each with size ki for i � 1, 2, . . . , m. zi

denotes the observed status of the ith group, and Xij denotes
the covariates of the jth specimen in the ith group for j �

1, . . . , ki and i � 1, . . . , m. .e observations are zi, Xij, j �􏽮

1, . . . , ki, i � 1, . . . , m}, where Xij � 1, x1,ij, . . . , xd−1,ij􏽮 􏽯
T
.

Here, the notation AT represents the transpose of matrix A.
.e sensitivity and specificity of the screening tool are
denoted by Se and Sp, respectively. .e full likelihood
function is

L(β; z, X) � 􏽙
m

i�1
Se − r 􏽙

ki

j�1
1−pij􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

zi

· 1− Se + r 􏽙

ki

j�1
1−pij􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

1−zi

,

(1)

where r � Se + Sp − 1 and pij � g(β0 + β1x1,ij + · · · +

βd−1xd−1, ij) � g(XT
ijβ). .e parameter β is defined by

β � β0, β1, . . . , βd−1􏼈 􏼉
T, and the function g−1(·) is a known,

monotone, and differentiable link function.
Sometimes there might be a maximum admissible group

size kmax, e.g., a large group size might bring the dilution
effect. .erefore, we should carefully choose an appropri-
ate group size that is smaller than kmax. Define a set K �

1, 2, . . . , kmax{ }, and denote it by k � k1, . . . , km􏼈 􏼉, ki ∈K,

i � 1, . . . , m. Once the group size k is determined, we could
obtain the estimator of β through maximum likelihood
function L(β, z, X). .e Fisher information matrix of the
parameter β could be rewritten as follows:

I(β, k) � 􏽘
m

i�1

Gi ki, β( 􏼁GT
i ki, β( 􏼁

Ci β, ki( 􏼁
, (2)

where

Hi ki, β( 􏼁 � −
1
ki

􏽘

ki

j�1
log 1−g X

T
ijβ􏼐 􏼑􏼐 􏼑,

Gi ki, β( 􏼁 �
z

zβ
Hi ki, β( 􏼁,

Ci β, ki( 􏼁 � Se − rexp−kiHi ki,β( )􏼒 􏼓 1− Se + rexp−kiHi ki,β( )􏼒 􏼓

· r
−2

k
−2
i exp2kiHi ki,β( ).

(3)

.e calculation of Fisher information I(β, k) is pre-
sented in Supplemental Material (Available here). To obtain
a better estimator 􏽢β, we try to find k that maximizes Fisher
information I(β, k). However, individual-level measure-
ments make it difficult to achieve this goal.

.e Fisher information I(β, k) defined in (2) involves a
measurement Hi(β, ki), along with its functions Gi(ki, β)

Table 1: .e performance of estimators using different pooling procedures.

(Se, Sp) A

m � 1000 m � 500
β0 β1 β0 β1

Mean MSE Mean MSE Mean MSE Mean MSE

X ∼ N (2, 1.5)

(0.99, 0.99)

PSV −3.003 0.020 0.401 0.002 −3.001 0.043 0.401 0.004
PSF(k∗) −3.002 0.010 0.402 0.002 −3.006 0.022 0.403 0.004
PSF(5) −3.007 0.134 0.402 0.010 −3.018 0.289 0.405 0.021
PSF(10) −3.006 0.021 0.403 0.003 −3.009 0.042 0.403 0.005

(0.95, 0.95)

PSV −3.002 0.026 0.402 0.003 −2.999 0.050 0.401 0.005
PSF(k∗) −3.006 0.022 0.403 0.003 −3.009 0.041 0.406 0.006
PSF(5) −3.008 0.162 0.403 0.012 −2.997 0.317 0.400 0.023
PSF(10) −3.004 0.026 0.403 0.003 −2.998 0.052 0.401 0.006

(0.9, 0.9)

PSV −3.001 0.034 0.402 0.003 −2.991 0.071 0.395 0.007
PSF(k∗) −3.004 0.035 0.404 0.004 −3.007 0.074 0.404 0.010
PSF(5) −2.974 0.225 0.394 0.016 −2.993 0.418 0.399 0.031
PSF(10) −3.004 0.038 0.404 0.005 −3.008 0.077 0.404 0.010

X∼ Γ (2.5, 0.8)

(0.99, 0.99)

PSV −2.991 0.041 0.397 0.004 −2.997 0.020 0.399 0.002
PSF(k∗) −3.006 0.020 0.404 0.003 −3.002 0.010 0.402 0.002
PSF(5) −2.973 0.281 0.393 0.020 −3.002 0.136 0.400 0.010
PSF(10) −3.002 0.042 0.402 0.005 −3.004 0.021 0.402 0.002

(0.95, 0.95)

PSV −3.000 0.053 0.401 0.005 −2.998 0.026 0.400 0.003
PSF(k∗) −3.010 0.041 0.404 0.006 −3.007 0.020 0.404 0.003
PSF(5) −3.060 0.324 0.416 0.023 −3.015 0.171 0.405 0.012
PSF(10) −3.003 0.053 0.402 0.007 −3.006 0.027 0.403 0.003

(0.9, 0.9)

PSV −2.989 0.072 0.398 0.007 −2.992 0.034 0.399 0.004
PSF(k∗) −3.017 0.075 0.408 0.010 −3.001 0.033 0.402 0.004
PSF(5) −3.012 0.379 0.403 0.028 −2.995 0.198 0.398 0.014
PSF(10) −3.018 0.075 0.409 0.010 −3.003 0.035 0.402 0.005
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and Ci(β, ki). According to Delaigle and Hall [41],
􏽑​ ki

j�1(1−g(XT
ijβ)) is generally close to (1−g(X

T
i β))ki ,

where Xi � 1/ki􏽐
ki

j�1Xij. .is closeness let the Fisher
information reduce to the following format: I(β, k) �

􏽐
m
i�1Zi(β)Zi(β)T/Ci(β, ki), where Zi(β) � g′(X

T
i β)Xi/(1−

g(X
T

i β)). .en, we propose to determine the group sizes
through minimizing all Ci(β, ki) with respect to ki for
i � 1, . . . , m.

Note that the aforementioned approximate approach
requires the pools are homogeneous. .ere are two
methods to obtain homogeneous pool: reorder the speci-
mens according to similarity of covariants or based on
individual risk probability. .e latter is adopted in this
study. Following the method in McMahan et al. [42], the
procedure of forming homogeneous pool is as follows.
Firstly, use training data or prior knowledge to obtain an
initial estimator β(0) [42]. Secondly, sort the specimens by
their risk probability. Let G denotes the set which contains
total covariants of enrolled specimens, G � x1, . . . , xN􏼈 􏼉,

where N is the number of specimens and xi is the covariant
of the ith specimen. Sort G by risk probability
pi � g(xTi β

(0)) in the descending order, and obtain a sorted
set Gs � xs1, · · · , xsN􏼈 􏼉. .e remaining procedure is directly
performed on this sorted set.

2.2. Sequential Adaptive Pooling Algorithm. Our strategy is
an adaptive design, which is often adopted in the biological
experiment and also in the pooled test [22]. Before stating
the algorithm, we need the following result. Suppose the
specimens are assigned for the first l− 1 groups with the
corresponding group sizes k1, . . . , kl−1􏼈 􏼉. Let nl � 􏽐

l
j�1kj for

l≥ 1 and n0 � 0. Denote Wl(β) � −log(1−g((xsnl−1+1)
Tβ)).

.en the group size for the next group, kl, equals kmax if
kmax ≤ ϕ0/Wl(β

(0)). Here, ϕ0 is the root of an equation
2Se(1− Se)(ϕ− 1)e2ϕ + r(2Se − 1)(ϕ− 2)eϕ + 2r2 � 0 and is
approximately 1.8414..e proof of this result is presented in
Supplemental Material (Available here). Our pooling
strategy is described as follows:

Step 1. Label the specimens according to the ordering of Gs.
For example, label the specimen with covariants xs1 by
number 1. Assign specimens with labels up to kmax into lth

group.

Step 2. Calculate the corresponding function
Cl(β

(0), k), k ∈K and c0 � ϕ0/Wl(β
(0)). If kmax ≤ c0, defines

kl by kmax, choose the group size kl which minimizes the
function Cl(β

(0), k), kl � argmink∈KCl(β
(0), k). Define the

set of covariants Gl � xsnl− 1+1, . . . , xsnl
􏽮 􏽯.
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Figure 1: .e relative bias of the parameters β0 and β1. .e distribution of covariant is set by N(2, 1.5) (top two panels) and Γ(2.5, 0.8)

(bottom two panels), with the fixed number of groups m � 1000.
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Step 3. Let Gs � Gs/Gl, l � l + 1. Repeat Step 2 to form the
next group in the same way until all specimens are assigned.

Step 4. Screen the groups and obtain maximum likelihood
estimator of β.

Note that this is a data-driven pooling strategy. Addi-
tionally, the above procedure does not strictly require that all
specimens are enrolled before screening since the set Gs is
dynamic and could be renewed by new enrolled specimens.

2.3. Numerical Results. In this section, we proceed to
evaluate the performance of our proposed procedure.
Name it by PSV, which is pooling strategy with varied
group sizes. For comparison, we also present the results
of pooling strategy with a single group size k, named by
PSS(k). .e group size k for PSS(k) is given in advance,
e.g., k � 5, 10, or could be determined by the average
prevalence of those enrolled samples. For the latter, we
determine the optimal single group size k∗ by minimizing
the variance of 􏽢p.

To investigate the performance of these methods, define
the link function g(·) as the logistic function
g(u) � 1/(1 + exp(−u)). .en, individual prevalence is
obtained through the following model:

log
pij

1−pij

� β0 + β1x1,ij + · · · + βd−1xd−1,ij,

i � 1, . . . , m, j � 1, . . . , ki.

(4)

We first consider a single covariant (d � 2), following
the normal distribution N(2, 1.5) or the gamma distri-
bution Γ(2.5, 0.8). .e corresponding parameters are set by
β0 � −3 and β1 � 0.4. .e samples are generated under
these settings, and the procedures are repeated by M �

5000 times. We report the estimators 􏽢β0 and 􏽢β1, along with
their mean square error (MSE) in Table 1 under different
settings of sensitivity, specificity, and the number of
groups. In Figure 1, we further report the relative bias of the
parameters.

Table 1 shows that all procedures have similar perfor-
mance except PSF [5]. While using the procedure PSF, we
have to choose a group size in advance. It is crucial for a
group testing algorithm since the precision of estimators
severely depend on the group size. In our setting, the average
of individual prevalence is about 0.0997, and the corre-
sponding optimal single group size is mostly k∗ � 13, 12, 11
for (Se, Sp) � (0.99, 0.99), (0.95, 0.95), and (0.9, 0.9) re-
spectively. Consequently, the procedure PSF [10] has better
performance than PSF [5] since the latter procedure uses a
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Figure 2: .e relative bias of the parameters β0 − β3 under Model I: x1 ∼ Γ(2.5, 0.8), x2 ∼ B(0.3), and x3 ∼ N(1, 0.5), with the number of
groups m � 1000.
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too smaller group size. Figure 1 further shows the relative
bias of the parameters, β0 and β1. Our procedure with
varying group sizes, PSV, has very good performance under
different scenarios. .e procedure PSF [5] still has the
poorest performance on the measurement of relative bias. As
data-driven pooling strategies, PSV and PSF (k∗) both show
good performance, but PSV has smaller bias, which is a
desired characteristic.

We proceed to consider the model (2) with d � 4. De-
note the single variable in the above setting by x1. We add
two more variables: x2 follows the binomial distribution
B(0.3) and x3 follows the normal distribution N(1, 0.5).
.en, the model (2) is

logit pij􏼐 􏼑 � β0 + β1x1,ij + β2x2,ij + β3x3,ij,

i � 1, . . . , m, j � 1, . . . , ki.
(5)

Specifically, denote by “Model I”: x1 ∼ Γ(2.5, 0.8),
x2 ∼ B(0.3), x3 ∼ N(1, 0.5), and “Model II”: x1 ∼ N(2, 1.5),
x2 ∼ B(0.3), x3 ∼ N(1, 0.5). Set the parameters by β0 � −3,
β1 � 0.4, β2 � 1, and β3 � −0.5. In Figure 2, we report the
relative bias of the estimators 􏽢β0 − 􏽢β3 under Model I. Fur-
thermore, define a measurement of R � (1/4)􏽐

4
l�1|(

􏽢βl −
βl)/βl| to calculate the overall relative bias. .e results are
reported in Figure 3.

Figure 2 shows that our procedure PSV performs best
among the four procedures. It is a similar result as shown in

Figure 1. .e overall relative bias of these estimators re-
ported in Figure 3 also confirms such property. It also reveals
that pooling procedures using a single group size are not
desired for a heterogeneous population, even the group size
is carefully chosen, e.g., k∗.

2.4.AnIllustrativeApplication. Verstraeten et al. conducted
a surveillance study in Kenya to monitor a trend in HIV
risk over time [43]. .e samples were collected from
pregnant women, along with potential risk covariants such
as age, parity, and education level. .ey used a common
group size of 10 to estimate the seroprevalence of HIV.
However, the individual prevalence of HIV is related with
those risk covariants, e.g., the risk of HIV might tend to
increase with age. For this data set, Vansteelandt et al.
reported a set of group sizes varying between 5 and 12
under cost-precision trade-off [40].

We proceed to illustrate our pooling strategy based on
part of these data published in [44]. .ey reported N � 428
individuals enrolled in the experiment, including their age
(x1) and education level (x2). Using model presented in [2],
the individual prevalence pij follows the model: logit(pij) �

β0 + β1x1,ij + β2x2,ij, i � 1, . . . , m, j � 1, . . . , ki with N �

􏽐
m
i�1ki. Let the initial estimator be β(0) � [−2,−0.05, 0.5].

Using our proposed pooling strategies PSV and PSF(k∗), the
group sizes are listed in Table 2. Correspondingly, we obtain
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􏽢βl − βl)/βl|. Model I: x1 ∼ Γ(2.5, 0.8), x2 ∼ B(0.3), and
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estimators: 􏽢β � [−2.909,−0.033, 0.473] using PSV and 􏽢β �

[−3.011,−0.028, 0.443] using PSF(k∗).

3. Discussion

In biological and epidemiological studies, there is growing
interest in developing methods for a more accurate result
but less cost. Group testing is such a cost saving strategy.
In this study, we developed a pooling strategy that uses
varying group sizes while individual information is
available. .is strategy is attractive since it only depends
on the information of enrolled specimens and does not
require a group size chosen in advance. Due to the
characteristic of data-driven and theoretical justification,
the procedure, “PSV,” proposed in this study has a robust
performance under different settings. It is convenient for
practical application since we do not have to worry about
how to choose an appropriate group size.

Varying group sizes are reasonable to be used when the
target population is diverse. For example, a sequential
testing procedure using several group sizes is adopted to
estimate virus infection levels of carnation populations
grown in glasshouses since different carnation populations
were expected to have a wide range of infection levels [45].
We could pool more specimens into one group if the
probability of testing positive is small. It sounds reasonable
to balance the probability of testing positive for each group,
a way to mimic the situation when all enrolled specimens
are homogeneous.

In this study, we also propose a procedure using a single
group size k∗ determined by minimizing the variance of
estimator of the prevalence. We could choose this pro-
cedure if we prefer a simple procedure or the diversity
among the specimens to be screened is ignorable. Besides,
we did not consider the cost of collecting specimens. If a
test is much more expensive than that of collecting spec-
imens, then the cost of tests is the main consideration in a
project involving large-scale screening. Otherwise, it is
necessary to take into account the overall cost of collecting
and test while using the pooling strategy.
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