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Abstract

Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and

An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M

or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred labora-

tory colony strain that was developed around 12 years ago by crosses between mosquitoes

from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited

genetic diversity because of small starting populations (founder effect) and subsequent fluc-

tuations in colony size. Here we describe the characterisation of the chromosomal form(s)

present in the Keele line, and investigate the diversity present in the colony using microsatel-

lite markers on chromosome 3. We also characterise the large 2La inversion on chromo-

some 2. The results indicate that only the M-form of the chromosome X marker is present in

the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably

S-form. Levels of diversity were relatively high, as indicated by a mean number of microsat-

ellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of

the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal

proportions. The Keele colony has a mixed M- and S-form origin, and in common with the

PEST strain, we propose continuing to denote it as an An. gambiae s.s. line.

Introduction

Anopheles gambiae sensu lato is the major vector of malaria in sub-saharan Africa, consisting

of eight morphologically indistinguishable species. An. gambiae sensu stricto exists in two

molecular forms, denoted M and S, which can be distinguished by differences in a 4Mb region

located centromerically on the X chromosome, including fixed SNPs within 2.3kb intergenic

spacer region in the multicopy rDNA located on the X chromosome [1,2], or an M-specific

insertion of a short interspersed transposable element (SINE200) [3]. Recently it was proposed
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that the M- and S-forms are named as separate species [4], with the M-form taking the name

Anopheles coluzzii and the S-form retaining the name An. gambiae s.s.
The two molecular forms differ in their geographical distribution and ecological niches, as

well as in important phenotypic traits such as resistance to insecticides and to desiccation

(reviewed in Lehmann and Diabate (2008) [5]). S-form An. gambiae are distributed across

most of sub-saharan Africa, usually breeding in temporary aquatic habitats, and are associated

with rainy seasons. M-form An. gambiae have a similar distribution to S-form in West and

Central Africa, but are apparently absent east of the Great Rift Valley; they are able to exploit

permanent breeding sites such as those associated with human activity, and breed year round

[5–8]. The mechanisms driving divergence and speciation of the two molecular forms do not

appear to be based on post-zygotic isolation, since laboratory crosses of M- and S-forms pro-

duce fully fertile male and female offspring [4,9]. Instead, spatial segregation of the two forms

in mating swarms [10–12], or assortative mating behaviour [13] probably contributes to the

usually very low rates of hybridisation seen in natural An. gambiae populations where the two

forms are sympatric [12,14], although hybridisation can reach up to 20% in some sympatric

populations [15–17], particularly at the extremes of the geographical distribution of sympatry

[18]. Genetic divergence between the two forms in nature has been extensively studied, and

was found to be widely distributed across the M- and S-form genomes, supporting the separa-

tion of the two forms into species [19–23].

The Keele mosquito strain was developed approximately 12 years ago as an outbred An.

gambiae s.s. strain for use in experimental selection of malaria-resistant and -susceptible lines

[24], and was established in Glasgow in 2002 directly from Keele University, where the line

was generated. The chromosomal form has not previously been investigated, and it is usually

referred to as an An. gambiae s.s. line. Its status now that An. gambiae s.s. has been divided into

two species is uncertain.

The line was developed by balanced interbreeding of 4 existing laboratory colonies: ZAN U,

Ifakara, KIL and G3 [24]. The first three of these colonies originated in East Africa (Zanzibar

in 1984; Ifakara (Tanzania) in 1996; Marangu (Tanzania) in 1975 respectively); only the G3

line is from West Africa (MacCarthy Island, The Gambia, in 1975). Therefore, 3 of the 4 strains

are expected to have been S-form at their original isolation, because of their East African ori-

gin. The G3 line could originally have been M, S or even a mixture, since hybrid M/S forms

have been observed in The Gambia [16,18]. The generation of the Keele line involved initial

crosses of 50 individuals of each sex between the strains KIL and Ifakara, and ZANU and G3,

and the offspring of these two crosses were then mated to produce the Keele strain[24]. Keele

mosquitoes are therefore likely to have a mixed origin from M- and S- form parents.

Laboratory colonies of mosquitoes usually exhibit considerable loss of diversity because of

small starting populations (founder effect) and subsequent fluctuations in colony size [25,26].

Although the Keele strain was originally developed as an outbred line, the level of diversity of

the strain has not previously been characterised. Microsatellites, especially those on chromo-

some 3 where there seems to be little restriction on gene flow [27], have been used previously

to examine diversity in laboratory colonies, including the G3 line [26]. These analyses revealed

reduced microsatellite diversity in two laboratory colonies relative to wild-caught mosquitoes

from Mali, with an eightfold reduction in mean number of alleles found in eight microsatellite

loci on chromosome 3 [26]. Wild-caught mosquitoes also had an abundance of rare alleles

(frequency� 0.05) which are less likely to be sampled in the relatively small starting popula-

tions for laboratory colonies.

Chromosomal inversions contribute to the substructuring of An. gambiae subpopulations

and their adaptation to different environments [28–31]. A much-studied large inversion poly-

morphism on chromosome 2L (2La or 2L+a) has been associated with adaptation to aridity:
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An. coluzzii larvae homozygous for 2La have been shown to have enhanced thermal tolerance

[32], and An. gambiae s.s. adults have enhanced resistance to desiccation [33,34]. Allele fre-

quencies of the 2La/2L+a vary spatially and temporally with respect to the degree of humidity

in East and West Africa [35]. Both the 2La and the 2L+a karyotypes are found in An. gambiae
s.s. and An. coluzzii, but with spatial variations in the frequency; the chromosomal arrange-

ments assort independently of molecular form in the field, and probably predate the speciation

process [8]. The 2La/2L+a karyotypes present in the Keele line have not previously been

established.

Materials and Methods

DNA extraction from mosquitoes

The Keele colony held at Glasgow University is usually maintained at many thousands of indi-

viduals, with an average daily pupal collection of between 200 and 500 individuals, and 2000–

3000 adults per large mating cage. Mosquitoes are allowed to mate naturally within each cage.

Pupae for the study were selected randomly from different pupal trays over several days. 60

pupae were collected initially over 2–3 days for analysis of colony diversity, and an additional

90 pupae were collected for the evaluation of M and S forms at a later time point.

DNA was extracted from individual pupae from the Keele line of An. gambiae s.s. using the

DNeasy spin column protocol (Qiagen). The sex of each pupa was first determined by exami-

nation of the terminalia [36]. Pupae were frozen at -20˚C overnight and then processed to

extract DNA according to the manufacturer’s protocol. Each pupa generated 200μl of genomic

DNA.

Determination of M- and S-forms

Fixed single nucleotide differences in the rDNA intergenic spacer region on the X chromo-

some are used to define the M- and S- chromosomal forms [1,2,37]. We used a published

PCR-RFLP method which amplifies a 390bp product including the polymorphic site at posi-

tion 581 of the IGS rDNA region [38]; M-forms have a T in this position whereas S-forms have

a C. The PCR product was then digested with HhaI (recognition site GCG^C), resulting in

fragments of 257bp, 110bp and 23bp from S form, and 367bp and 23bp from M form.

3μl of DNA from each pupa was amplified in a final volume of 28μl containing 1x PCR

Buffer, 1mM MgCl2, 0.2mM dNTPs, 12.5ng primer UN (5’-GTGTGCCCCTTCCTCGATGT-

3’), 6.25ng primer GA (5’-CTGGTTTGGTCGGCACGTTT-3’), and 1 unit Taq DNA polymer-

ase, using the reaction conditions of an initial denaturation step 94˚C for 3 minutes, and then

30 cycles of 94˚C for 30s, 50˚C for 45s, 72˚C for 60s, with a final extension step of 7 minutes at

72˚C. 12μl of the PCR product was digested at 37˚C overnight with 1U of HhaI enzyme in 1 x

NE Buffer 4 and 1 x BSA in a 15μl reaction volume. 7μl of the digested PCR product was run

on a 2% agarose gel containing ethidium bromide and visualised by UV transillumination.

Undigested PCR product (5μl) was included for comparison to check for digestion; the

digested product is clearly smaller than the undigested product for the M-form, and two bands

are visible for the S-form (in both cases the 23bp band is not visible on a gel).

Microsatellite analysis of chromosome 3

Four published microsatellite loci (all dinucleotide repeats) on chromosome 3 [39,40] were

chosen for analysis of diversity in the Keele colony. The markers were chosen to be spread

along the chromosome; their published locations are shown in Table 1. 2μl of mosquito DNA

from each pupa was amplified in a final volume of 20μl containing 1x PCR Buffer, 1mM
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MgCl2, 0.2mM dNTPs, 10nM of each primer and 1 unit Taq DNA polymerase, using the reac-

tion conditions in Table 1. 7μl of PCR product was run for 4–6 hours on high resolution gels

consisting of a 4% MetaPhor agarose gel (Lonza UK), containing ethidium bromide, and visu-

alised by UV transillumination. PCR product sizes were estimated by comparison with a 25bp

ladder using band size estimation software (Labworks, UVP, UK). Sizes were pooled into bins

spanning 4 bp for each locus, taking into account the repeat size of 2 bp in these microsatellites

and the estimated resolution for Metaphor Agarose of 3 bp (Lonza, UK).

Analysis of inversions on chromosome 2

The inversion on the left arm of chromosome 2 known as 2La / 2L+a was analysed using a pub-

lished PCR strategy [41]. 2μl of mosquito DNA from each pupa was amplified in a final volume

of 20μl containing 1x PCR Buffer (1.5mM MgCl2), 0.2mM dNTPs, 10nM of each primer

(Table 2) and 1 unit Taq DNA polymerase, using the reaction conditions of an initial denatur-

ation step 94˚C for 2 minutes, and then 30 cycles of 94˚C for 30s, 55˚C for 30s, 70˚C for 45s,

with a final extension step of 10 minutes at 70˚C. 10μl of each PCR product was run on a 1.5%

agarose gel containing ethidium bromide and visualised by UV transillumination.

Results

Determination of M- and S-forms

150 An. gambiae Keele mosquito pupae were analysed of which 63% were female. A PCR prod-

uct of 390bp for the IGS rDNA region was amplified and digested from all 150 DNA samples.

All digested PCR products were 367bp, indicating that only the M-form of this locus (T at

position 581) was present in the colony (M frequency: 100% (95% confidence interval 97.5–

100%)). No hybrid individuals were seen.

Table 1. Microsatellite markers on chromosome 3. Distance represents the cumulative genetic distances from the most distal markers, and is taken from

[39].

Marker name Distance (cM) Forward Primer Reverse Primer Amplification conditions

Ag3H93a 0 TCCCCAGCTCACCCTTCAAG GGTTGCATGTTTGGATAGCG • 95˚C for 5min

• 30 cycles of [95˚C for 20s/55˚C for 30s/72˚C for 30s]

• 72˚C for 10min

Ag3H119b 29.1 GGTTGATGCTGAAGAGTGGG ATGCCAGCGGATACGATTCG • 95˚C for 5min

• 30 cycles of [95˚C for 30s/53˚C for 30s/72˚C f˚C 30s]

• 72˚C for 10min

Ag3H88b 61.8 TGCGGCGGTAAAGCATCAAC CCGGTAACACTGCGCCGAC as for Ag3H93

Ag3H817b 93.7 ACTGGTCCGTTGCTGCGCG ATGAGTGAATGGTGCGCTGG • 95˚C for 5min

• 30 cycles of [95˚C for 30s/53˚C for 30s/65˚C for 30s]

• 65˚C for 10min

aPrimer sequences taken from Lanzaro et al., 1995.
bPrimer sequences taken from Zheng et al., 1996

doi:10.1371/journal.pone.0168999.t001

Table 2. PCR primers used to type the chromosome 2 inversion 2La/2L+a [41].

Chromosome 2 Arrangement Forward Primer Reverse Primer Expected PCR product size (bp)

2La 23A2: CTCGAAGGGACAGCGAATTA 27A2: ACACATGCTCCTTGTGAACG 492

2L+a 23A2: CTCGAAGGGACAGCGAATTA DPCross5: GGTATTTCTGGTCACTCTGTTGG 207

doi:10.1371/journal.pone.0168999.t002
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Microsatellite analysis of chromosome 3

The number of alleles seen at each of the 4 microsatellite markers in shown in Table 3. Some

alleles were seen in only one mosquito, giving a low allele frequency of<0.05, but no allele pre-

dominated in the Keele colony for any of the 4 microsatellite loci.

Analysis of inversions on chromosome 2

Both the 2La and 2L+a chromosomal arrangements were found to be present in the Keele col-

ony, with similar allele frequencies (Table 4). The numbers of homozygotes and heterozygotes

was not significantly different to those expected under Hardy-Weinberg equilibrium (χ2 =

0.446, P = 0.800).

Discussion

Analysis of the Keele colony unexpectedly revealed only the M-form of the rDNA marker on

the X chromosome used to distinguish the two forms. Three of the four laboratory strains

from which the Keele strain was established originated in East Africa, and therefore were

expected to be S-form, although contamination of any of the lines with the opposite rDNA

form prior to the development of the Keele strain cannot be discounted. It is unclear when or

why the S-form marker on the X chromosome was lost in the Keele line; the initial crosses to

generate the line [24] involved progeny of two probable S-form lines mating with the offspring

of a cross between a probable M and a probable S-form line: early generations of the Keele line

must have had S-form individuals or hybrids. Hybrids of M- and S-forms occur readily in the

laboratory, as do as back-crosses to either M- or S- form parents, and the hybrids and their

backcrosses were found to be fully fertile, with similar egg batch size, hatching rate, and larval

development success under laboratory conditions [9]. Observed fitness differences of M- and

S-forms under laboratory conditions include minor differences in the time to hatching of eggs,

with S eggs hatching slightly earlier than M [42], higher longevity of virgin female M-forms

Table 3. Allele frequencies (freq.) for least and most common alleles at each locus for the Keele colony.

Locus na no. alleles Freq most common allele Freq least common allele

Ag3H88 25 9 0.16 0.04

Ag3H93 31 7 0.258 0.032

Ag3H817 41 4 0.463 0.073

Ag3H119 39 5 0.487 0.077

mean 34 6.25 0.342 0.056

se 3.697 1.109 0.080 0.011

an = number of mosquitoes analysed

doi:10.1371/journal.pone.0168999.t003

Table 4. Frequency of 2La/2l+a genotypes in the Keele colony (n = 161).

Number Proportion

Genotype Heterozygous 84 0.522

Homozygous 2La/2La 46 0.286

Homozygous 2L+a/2L+a 31 0.193

Allele frequency 2La 176 0.547

2L+a 146 0.453

doi:10.1371/journal.pone.0168999.t004
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[5], and a larger body size of M-form females, which correlated in that study with larger egg

batches in M-form than S-form [43]. The latter two factors could, over time, lead to increases

in the frequency of M-form mosquitoes in a mixed colony. However in the face of repeated

inter-form mating, it is difficult to imagine how the rDNA marker used to discriminate the M-

and S-forms would remain linked to the fitness differences unless the genes responsible for

these traits were strongly linked to the X-chromosome locus.

Under natural conditions in most of sub-saharan Africa, males form swarms of only one

chromosomal form, and mating is generally assortative [10–13]. The mechanism for premat-

ing isolation is not fully understood, but differences in wing widths in populations where M-

and S-forms mate assortatively lend support to the hypothesis that mosquitoes choose a mate

based on wing-beat frequencies [44,45]. However direct measurements from M- and S-form

mosquitoes failed to show significant differences in their fundamental harmonic (wing beat)

frequencies [46]. Mating of Anopheles in the laboratory does not appear to involve typical

swarm formation, and adaptation/colonisation involves selecting for mating in the restricted

space of a cage (stenogamy) [47,48]. The Keele line within the Glasgow insectaries does form

small swarms, and females enter the swarms to mate (unpublished observations), but the

majority of mating in a colony probably occurs outside of swarms.

The Keele colony undoubtedly had a mixed M- and S-form origin, and the colony existing

today is expected to have a hybrid genome with contributions from the four parent lines. It is

similar in this respect to the An. gambiae PEST strain, chosen as the first Anopheles genome

project [49]; the strain was generated in a series of crossing steps between different colonies

from Kenya (S-form) and Nigeria (M-form) [https://www.vectorbase.org/organisms/

anopheles-gambiae/pest]. Since this strain is commonly referred to as An. gambiae s.s., despite

having M- and S-form heritage, we propose that the Keele strain should also continue to be

referred to as An. gambiae s.s.; the hybrid name An. coluzzii × An. gambiae s.s. may be more

correct, if the rules applied to the nomenclature for inter-species hybrid plants (including the

F1, subsequent generations, back-crosses and combinations of these) were to be followed [50],

but is excessively long.

Microsatellite locus analysis of the Keele colony revealed an unexpectedly high level of alle-

lic diversity at 4 microsatellite loci, with an average of 6.25 alleles (range 4–9) seen in the 4

microsatellite loci we examined on chromosome 3. Previous analyses of laboratory colonies

e.g. Norris et al., 2001 [26], had shown reduced diversity compared to wild-caught mosquitoes,

with an average number of alleles of 2.33 (G3 colony, range 1–6) and 3.67 (Mopti colony,

range 2–6), using 9 microsatellites on chromosome 3. Two of the microsatellites used in their

study, Ag3H88 and Ag3H119, were also used in our analysis of the Keele strain. For Ag3H88
both the Mopti and G3 colonies (n = 32 for each) had only 2 alleles present in the published

study [26], whereas in our study, 9 alleles were observed in 25 mosquitoes of the Keele line.

Analysis of Ag3H88 diversity in wild-caught mosquitoes revealed an average of 8 alleles in pop-

ulations from 12 African countries (n = 967 mosquitoes), including a population (n = 23) from

McCarthy Island (the origin of the G3 line) with 9 alleles at this locus [51]. For Ag3H119, previ-

ous characterisation of the Mopti and G3 colonies revealed 1 and 6 alleles respectively [26],

compared to 5 alleles seen in the Keele colony. A previous study of wild-caught An. gambiae
diversity in 9 Tanzanian locations found 10 alleles in total for this microsatellite in 638 individ-

uals, with an average of 6.22 alleles per sample site (mosquito numbers sampled per location

ranged from 30–106) [52]. Microsatellite diversity in the Keele line therefore appears to be

higher than in previously-analysed laboratory colonies, although it does not reach the diversity

observed in wild-caught mosquitoes, where large numbers of alleles, many at low frequencies

(<0.05) are frequently observed [26,40]. This increased diversity may reflect the generation of

the Keele colony by balanced interbreeding of 4 laboratory colonies, with offspring from 50
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matings for each of the pairs (KIL x Ifakara and ZAN U x G3) then mated to produce the

Keele line [24].

Finally the two karyotypes of the large inversion on chromosome 2 (2La/2L+a) are both

present in the Keele colony at approximately equal frequencies, and mosquitoes appear to

mate randomly with respect to this marker.
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