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Abstract

Backbone-dependent rotamer libraries are commonly used to assign the side

chain dihedral angles of amino acids when modeling protein structures. Most

rotamer libraries are created by curating protein crystal structure data and

using various methods to extrapolate the existing data to cover all possible

backbone conformations. However, these rotamer libraries may not be suitable

for modeling the structures of cyclic peptides and other constrained peptides

because these molecules frequently sample backbone conformations rarely

seen in the crystal structures of linear proteins. To provide backbone-

dependent side chain information beyond the α-helix, β-sheet, and PPII

regions, we used explicit-solvent metadynamics simulations of model dipep-

tides to create a new rotamer library that has high coverage in the (ϕ, ψ) space.

Furthermore, this approach can be applied to build high-coverage rotamer

libraries for noncanonical amino acids. The resulting Metadynamics of Dipep-

tides for Rotamer Distribution (MEDFORD) rotamer library predicts the side

chain conformations of high-resolution protein crystal structures with similar

accuracy (~80%) to a state-of-the-art rotamer library. Our ability to test the

accuracy of MEDFORD at predicting the side chain dihedral angles of amino

acids in noncanonical backbone conformation is restricted by the limited

structural data available for cyclic peptides. For the cyclic peptide data that are

currently available, MEDFORD and the state-of-the-art rotamer library per-

form comparably. However, the two rotamer libraries indeed make different

rotamer predictions in noncanonical (ϕ, ψ) regions. For noncanonical amino

acids, the MEDFORD rotamer library predicts the χ1 values with approxi-

mately 75% accuracy.

KEYWORD S

cyclic peptides, metadynamics simulations, protein, rotamer library, side chain rotamers

Jennifer C. Mortensen and Jovan Damjanovic contributed equally to this work.

Received: 13 May 2022 Revised: 26 October 2022 Accepted: 28 October 2022

DOI: 10.1002/pro.4491

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.

Protein Science. 2022;31:e4491. wileyonlinelibrary.com/journal/pro 1 of 14

https://doi.org/10.1002/pro.4491

https://orcid.org/0000-0001-8080-337X
https://orcid.org/0000-0002-6019-4738
https://orcid.org/0000-0003-1112-1927
https://orcid.org/0000-0002-1355-389X
https://orcid.org/0000-0001-6460-2877
mailto:yu-shan.lin@tufts.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pro
https://doi.org/10.1002/pro.4491


1 | INTRODUCTION

Since its development in 2010, the Dunbrack backbone-
dependent rotamer library1 has been cited in over
600 papers and is used by common protein modeling soft-
ware packages including Rosetta2 and PyMOL.3 Derived
from protein structural data, this rotamer library provides
the probability of discrete conformations of side chain
dihedral angles (i.e., rotamers) based on the values of the
backbone dihedral angles. While the Dunbrack rotamer
library is highly used, it has limited data for many
regions of the backbone space owing to the natural (ϕ, ψ)
preferences of proteins. This limitation may lower its
accuracy when predicting the side chain conformations
for cyclic peptides, where the ring strain can force the
backbone to sample dihedrals rarely seen in linear
proteins.4–6 Furthermore, while noncanonical amino
acids are of high interest in peptide and protein therapeu-
tic development,7,8 little structural information is cur-
rently available for noncanonical amino acids, making it
difficult to build rotamer libraries for them.9–13

To access uncommon regions of backbone space,
molecular dynamics simulations can be used.14–22 For
example, the Dynameomics backbone-dependent rota-
mer library was created by running molecular dynamics
simulations of proteins at room temperature.14–16 The
resulting rotamer library contains data across most of
backbone space, producing a more thorough picture of
the relationship between the backbone and side chain.
But, to the best of our knowledge, the Dynameomics
rotamer library has not been used in any side chain pre-
diction algorithms and its accuracy in predicting side
chain dihedral angles in proteins has not been studied.

In this work, we propose a new approach to develop
backbone-dependent rotamer libraries with high back-
bone coverage for both canonical and noncanonical
amino acids using explicit-solvent metadynamics simula-
tions23,24 of model dipeptides. By biasing the metady-
namics simulations along (ϕ, ψ) of the dipeptides, we can
obtain high coverage of backbone space with minimal
impact on the side chain energetics. As this approach
does not rely on experimental protein structural data, it
can be applied to noncanonical amino acids as well. For
the dipeptide simulations of canonical amino acids as
well as norleucine (NLE; Figure S1), we use the RSFF2
force field which was recently parameterized to recapitu-
late the backbone and side chain preferences of amino
acids in a coil library and has been shown to have
improved accuracy over other molecular dynamics force
fields.21,22,25 In addition, we simulate dipeptides of five
other noncanonical amino acids (Figure S1):
α-Aminobutyric acid (ABA), citrulline (CIR),
β-(2-naphthyl)-alanine (NAL), N,N-pyrrolidinylglutamine

(PYE),26 and 3-(1,3-thiazol-4-yl)-alanine (TZA). For these
noncanonical amino acids (except NLE), we use the
AMBER ff99SB force field27 in conjunction with the gen-
eralized AMBER force field (GAFF) for missing
parameters.28

The resulting rotamer library, Metadynamics of
Dipeptides for Rotamer Distribution (MEDFORD), pro-
duces side chain rotamer probabilities similar to the Dun-
brack backbone-dependent rotamer library in regions of
backbone space that are highly sampled in protein crystal
structures. Both the MEDFORD and the Dunbrack rota-
mer libraries predict the χ1 values of the canonical amino
acids in high-resolution protein structures with approxi-
mately 80% accuracy. The Dynameomics rotamer library
has low prediction accuracy for some amino acids, possi-
bly due to the force field used to generate the Dynameo-
mics dataset.14,15 In regions of backbone space where the
Dunbrack rotamer library has limited data, the MED-
FORD rotamer library provides additional data about the
relationship between the backbone and side chain con-
formations. For noncanonical amino acids, the MED-
FORD rotamer library also predicts the χ1 values of NLE,
CIR, and ABA with approximately 75% accuracy. We pro-
pose the use of the MEDFORD rotamer library when
studying amino acids in regions of backbone space not
commonly observed in the crystal structures of linear
proteins and when studying noncanonical amino acids.

2 | ROTAMER LIBRARY
DEVELOPMENT

2.1 | Metadynamics simulations

To create a rotamer library with high coverage of the
backbone (ϕ, ψ) space, we performed bias-exchange
metadynamics (BE-META) simulations23,24 of model
dipeptides. Dipeptides of the form Ac-Xaa-NMe were pre-
pared in PyMOL3 (Figure 1a). Xaa here was Arg, Asn,
Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr,
Trp, Tyr, Val, ABA, CIR, NAL, NLE, PYE, or TZA. To
verify simulation convergence, for each amino acid, two
initial structures, S1 and S2, were prepared, one with the
backbone in the α-helical region and one in the β-sheet
region. Each structure was energy minimized and then
solvated with water. Minimal Na+ or Cl� ions were
added to neutralize charges on Arg, Asp, Glu, and Lys.
Each system was then further equilibrated before starting
production runs. An independent simulation was per-
formed for each initial structure, S1 and S2. Simulations
for dipeptides of the canonical amino acids and NLE
were performed with the RSFF2 force field with TIP3P
water in the GROMACS software suite,21,29,30 while
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simulations for dipeptides of the remaining noncanonical
amino acids were performed with the AMBER ff99SB
force field27 in conjunction with GAFF for missing
parameters.28 More details on the simulation set up can
be found in the Supporting Information.

BE-META runs with the equilibrated structures were
performed at 300 K and 1 bar for 200 ns with 2 fs time
steps using the PLUMED 2 plugin for the GROMACS
suite.31 Data were recorded every 500 steps (i.e., 1 ps).

For each system, one biased and five neutral replicas
were used. In the biased replica, a two-dimensional (ϕ,
ψ) bias was applied to enable efficient sampling of the
backbone dihedral space without modifying the side
chain energy landscape. Gaussian hills of 0.1 kJ/mol with
a width of 0.314 rad were added every 4 ps. We also
aimed to obtain the equilibrium structural ensemble and
verify that the resulting Ramachandran plot of each
dipeptide system was consistent with that previously
reported.21,25 In BE-META simulations, the equilibrium
ensemble can be obtained by adding a neutral replica
with no bias.24 To improve the statistics, multiple neutral
replicas can be used.32,33 In this study, we used five neu-
tral replicas. Exchanges between replicas were attempted
every 5 ps.

The backbone and side chain dihedral angles were
calculated for every data point in the last 150 ns of each
BE-META run. To test for simulation convergence, we
calculated the equilibrium (ϕ, ψ) probability distributions
of the neutral replicas of the BE-META runs initiated
from S1 and S2, respectively, and computed the normal-
ized integrated product (NIP) between the two distribu-
tions.34 The NIP values between S1 and S2 for all the
dipeptide systems were greater than 0.99, indicating high
similarity between the two distributions and simulation
convergence. The data from the five neutral and one
biased replicas of the BE-META runs of S1 and S2 were
then combined to create one large dataset for each dipep-
tide, resulting in 1.8 � 106 data points from a total of
1,800 ns of simulation (Figure 2b).

2.2 | Creation of the MEDFORD rotamer
library

To create the MEDFORD rotamer library, we analyzed
the data produced by our BE-META simulations of each
dipeptide system. The backbone-dependent probability of
each side chain rotamer combination, P(χall j ϕ, ψ), was
calculated by dividing the number of data points with the
specific rotamer combination, χall, in the backbone (ϕ, ψ)
bin by the total number of data points in the backbone
(ϕ, ψ) bin. The average χ value of each dihedral angle for
each rotamer combination was also calculated. For rota-
meric side chain dihedrals, three rotamers, r60, r180, and
r300, for each dihedral angle were defined as (0�, 120�],
(120�, 240�], and (240�, 360�], respectively (Figure 1b).
Nonrotameric side chain dihedral angles were split into
rotamers based on the minima of the dihedral angle dis-
tribution (Figure 1c; Figures S2 and S3). A detailed
description of rotameric and nonrotameric side chain
dihedral angles can be found in the Supporting Informa-
tion. The total number of rotamer states for each amino
acid is summarized in Table S1. To study the relationship

FIGURE 1 (a) Stick representations of Ac-Ile-NMe. The

dihedral angles ϕ, ψ , χ1, and χ2 are indicated. (b) Side chain

dihedral distributions (χ1, χ2) for Ac-Ile-NMe. (c) Side chain

dihedral distributions (χ1, χ2) for Ac-Asn-NMe. Black lines indicate

the edge of each rotamer definition.
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between the backbone and χ1, we also computed the
backbone-dependent χ1 probabilities, P(χ1 j ϕ, ψ), with-
out considering the dihedral angle values of the rest of
the side chain. (See Section 5 for additional details.)

The MEDFORD rotamer library is formatted to match
the Dunbrack rotamer library and can be downloaded
from https://github.com/jgaines42/MEDFORD-rotamer-
library.

2.3 | Comparison to existing rotamer
libraries

For the canonical amino acids, we compared the MED-
FORD rotamer library to two existing rotamer libraries,
Dunbrack1 and Dynameomics.15 The Dunbrack 2010
backbone-dependent rotamer library (hereafter referred
to as the Dunbrack rotamer library) was generated by
analyzing protein crystal structures and is considered a
state-of-the-art rotamer library. The Dynameomics
backbone-dependent rotamer library (hereafter referred
to as the Dynameomics rotamer library) was created
from molecular dynamics simulations of proteins. In
each rotamer library, the probability of each side chain
rotamer is reported along with the side chain dihedral
angle values (see Section 5). Because proteins do not
sample the full (ϕ, ψ) space, we investigated the back-
bone coverage of the raw data used to generate the Dun-
brack rotamer library. We binned the raw amino acid
data used to create the Dunbrack rotamer library into
10� � 10� (ϕ, ψ) bins centered on the (ϕ, ψ) values used
to denote the bin. This information was used to define
the “conventional low-coverage (ϕ, ψ) regions” for each
amino acid as backbone regions with <25 data points in
the (ϕ, ψ) bin and the “conventional high-coverage (ϕ,
ψ) regions” as those with ≥25 data points in the
(ϕ, ψ) bin.

To compare the P(χall j ϕ, ψ) distributions between
the Dunbrack, Dynameomics, and MEDFORD rotamer
libraries, we needed to treat the nonrotameric side chains
on the same footing. To do so, we combined the binned
data of the nonrotameric side chains in each previously
published rotamer library into rotamers that matched the
dihedral cutoffs of the MEDFORD rotamer library
(Tables S2–S5). We then calculated the NIP34 values
between the P(χall j ϕ, ψ) distributions from the three
rotamer libraries in the conventional high- and low-
coverage regions of the backbone space, respectively.

For the noncanonical amino acids, we compared the
MEDFORD rotamer library to other available rotamer
libraries. As the NLE side chain is very similar to that of
Met, the rotamer library for Met is often used for NLE.
Therefore, we compared the performance of MEDFORD
on NLE to that of the Dunbrack rotamer library for Met.
In addition, Renfrew et al. developed a protocol, called
MakeRotLib, which can create backbone-dependent rota-
mer libraries for noncanonical amino acids.9 Renfrew
et al. have reported a backbone-dependent rotamer
library for ABA, and we constructed a rotamer library
using MakeRotLib for NLE and CIR to compare the per-
formance of the rotamer libraries constructed using
MakeRotLib to that of MEDFORD for these three nonca-
nonical amino acids.

3 | RESULTS AND DISCUSSION

3.1 | Metadynamics simulations increase
coverage of backbone space

The protein data used to create the Dunbrack rotamer
library have low coverage in most regions of the (ϕ, ψ)
space. For example, in Figure 2a, we see that the (ϕ, ψ) of
Thr is frequently found in the α-helix, β-sheet, and PPII

FIGURE 2 Number of data points in each of the 10� � 10� (ϕ, ψ) bins in the (a) Dunbrack and (b) MEDFORD rotamer libraries for

Thr. The data used for the MEDFORD rotamer library come from both the biased and neutral replicas of BE-META simulations of Thr

dipeptide. The biased replicas show fairly even coverage throughout the whole (ϕ, ψ) space, while the neutral replicas sample mostly the

α-helix, β-sheet, and PPII regions.
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regions but rarely found in other regions of the backbone
space. In fact, 88% of the (ϕ, ψ) bins for Thr contain fewer
than 25 data points (see Table S6 for statistics for the other
amino acids). Looking at all amino acids in the Dunbrack
dataset, we find that most of the residues belong to the
high-coverage regions, with only 4% of residues found in
the low-coverage regions (Figure 3a, blue bar). Looking
instead at cyclic peptides, we found that the noncanonical
(ϕ, ψ) regions are more frequently sampled, with 20% of
cyclic peptide residues found in the low-coverage regions
(Figure 3a, red bar, and Figure 3b, red � 's).

Including the biased replicas from the BE-META sim-
ulation of Ac-Xaa-NMe dipeptides in our analysis
allowed us to obtain high coverage of the full (ϕ, ψ)
space. The added Gaussian biasing potentials removed
the energy barriers between backbone conformations,

allowing efficient sampling. As an example, in Figure 2b,
the BE-META simulations of Thr dipeptide sample the
full (ϕ, ψ) space with more than 25 data points in every
(ϕ, ψ) bin and more than 100 data points in 97% of the
(ϕ, ψ) bins (Table S6). Therefore, BE-META simulations
allowed us to create a new rotamer library with improved
statistics for (ϕ, ψ) regions that are rarely sampled by lin-
ear proteins.

3.2 | MEDFORD contains different
rotamer probability distributions than
existing rotamer libraries, particularly in
the protein low-coverage regions

We next sought to compare the side chain dihedral distri-
butions in the Dunbrack, Dynameomics, and MEDFORD
rotamer libraries. Visual inspection of the P(χ1 j ϕ, ψ) dis-
tributions for various amino acids between the three rota-
mer libraries reveals differences in the probability
distributions. As an example, Figure 4a–c show the
backbone-dependent probability of the three χ1 rotamers
of Thr, and Figure 4d shows the probability of the most
likely rotamer in each (ϕ, ψ) bin. The probability distri-
bution from Dynameomics is quite different from the
other two rotamer libraries. The Dunbrack and MED-
FORD rotamer libraries also differ when ϕ > 0�, corre-
sponding to regions where the Dunbrack rotamer library
has low coverage (Figure 2a).

We quantified the similarity between the three rota-
mer libraries by calculating the NIP34 between their side
chain probability distributions, P(χall j ϕ, ψ). Figure 5
shows that the three rotamer libraries have rather similar
P(χall j ϕ, ψ) distributions for Leu, Phe, and Tyr, espe-
cially for regions with high coverage (NIP > 0.9). When
comparing the Dunbrack and MEDFORD rotamer librar-
ies, for regions with high coverage in the Dunbrack data-
set, the two rotamer libraries have highly similar P(χall j
ϕ, ψ) distributions with NIP generally >0.9 (Figure 5b,
left column). This result confirms that our simulation
methods create side chain distributions that are consis-
tent with those observed in protein crystal structures. A
noticeable exception is Trp, where the NIP is only 0.80
between the MEDFORD and the Dunbrack rotamer
libraries in the high-coverage region. The strong similar-
ity between the MEDFORD and Dunbrack rotamer
libraries in the high-coverage areas is consistent with pre-
vious studies that have shown that the full protein envi-
ronment is not needed to produce accurate χ1 side chain
rotamer distributions.35–40 Instead, the conformation of
χ1 is based on short-range interactions with the backbone
and the backbone-dependent χ1 rotamer preferences are
fully present at the peptide level.41

FIGURE 3 (a) Percentage of residues in (ϕ, ψ) bins with “low
coverage” in the Dunbrack rotamer library (Dun), and in a dataset

of cyclic peptides (CP). Low coverage is defined as a 10� � 10� (ϕ,
ψ) bin containing <25 data points in the dataset used to create the

Dunbrack rotamer library. (b) Location of the 181 (ϕ, ψ) values

observed in the cyclic peptide dataset overlaid on the average

frequency of backbone conformations from the Dunbrack rotamer

library. Points in the conventional “high-coverage” (ϕ, ψ) bins are
marked in green, “low-coverage” in red. (c) Frequency of each

amino acid in the cyclic peptide dataset
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Looking instead at low-coverage regions, the P(χall j
ϕ, ψ) distributions of the MEDFORD and Dunbrack

rotamer libraries are less similar, with NIP values as low
as 0.71 (Figure 5b, right column). Lower NIP values indi-
cate larger differences between the Dunbrack and MED-
FORD rotamer libraries. These differences could be due
to inaccuracy in the extrapolation method used to gener-
ate rotamer probabilities for low-coverage regions for the
Dunbrack rotamer library or inaccuracy in the RSFF2
force field used to create the MEDFORD rotamer library.

For most amino acids, comparison of the Dynameo-
mics rotamer library to either the Dunbrack (Figure 5a)
or the MEDFORD rotamer library (Figure 5c) show dif-
ferent P(χall j ϕ, ψ) distributions with NIP values general-
ly <0.9 in the high-coverage regions (left column), and
even lower values for regions with low coverage (right
column). The significant differences between the Dun-
brack and Dynameomics rotamer libraries suggest that
the simulations used to create the Dynameomics rotamer
library did not reproduce the side chain dihedral distribu-
tions found in natural protein structures. Dynameomics
was developed using the ENCAD force field14,42–44 which
may have resulted in atypical interactions between the
backbone and side chains. Alternatively, the Dynameo-
mics simulations were run in water, intending to have
better predictions for proteins in aqueous solutions.14 It is
possible that some amino acids—for example, Asp, Lys,
and Ser, which have very low NIP between the Dunbrack
and Dynameomics rotamer libraries—have particularly
pronounced differences between the side chain prefer-
ences in a protein in water and in crystal structures.

FIGURE 4 (a–c) Backbone-dependent probability of each χ1 rotamer for Thr and (d) the most probable χ1 rotamer colored by

probability for χ1 = 60� (red), χ1 = 180� (blue), and χ1 = 300� (green) in the Dunbrack (top), Dynameomics (middle), and MEDFORD

(bottom) rotamer libraries

FIGURE 5 Similarity of P(χall j ϕ, ψ) distributions between
(a) the Dunbrack and Dynameomics rotamer libraries, (b) the

Dunbrack and MEDFORD rotamer libraries, and (c) the

Dynameomics and MEDFORD rotamer libraries, for regions of (ϕ,

ψ) with high coverage in Dunbrack (left columns) and regions with

low coverage (right columns)
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3.3 | P(χ 1 j ϕ, ψ) depends strongly on
local interactions between the side chain
and backbone

Further analysis of the MEDFORD rotamer library
revealed similarities between P(χ1 j ϕ, ψ) distributions of
different amino acids. In Figure 6, we show the NIP
values between the P(χ1 j ϕ, ψ) distributions of all pairs
of amino acids, clustered using a nearest-neighbor search.
The amino acids form six clusters: (1) Leu, His, Trp, Tyr,
Phe, Gln, Lys, Met, Arg, and Glu, (2) Cys and Asn,
(3) Ser, (4) Asp, (5) Val and Ile, and (6) Thr. These results
are similar to those previously reported by Jiang et al. by
analyzing the χ1, ϕ, and ψ distributions in a coil library45

and highlight the influence of the polarity and branching
of the side chain close to the backbone on the P(χ1 j ϕ, ψ)
distribution (Figure S4). By grouping amino acids by their
P(χ1 j ϕ, ψ) distributions, we can assess the side chain
prediction accuracy of each rotamer library based on the
type of side chain present.

3.4 | The MEDFORD rotamer library has
comparable prediction accuracy to the
Dunbrack rotamer library

We assessed the ability of the Dunbrack rotamer library,
the Dynameomics rotamer library, and our new MED-
FORD rotamer library to predict experimental side chain
dihedral angles using two methods (“Top ranked

rotamer” and “Rosetta repacking”). In the first method,
we compared the top ranked rotamer in each rotamer
library to the experimental data without the use of a
repacking algorithm; in the second method, we imple-
mented the rotamer libraries in Rosetta46 and evaluated
the accuracy of the rotamer libraries after repacking
using Rosetta (see Sections 5.3–5.4).

3.4.1 | HQ54

Figure 7 shows that both the Dunbrack and MEDFORD
rotamer libraries have high χ1 prediction accuracy across
all amino acids in the HQ54 protein dataset. When we

FIGURE 6 Similarity between P(χ1j ϕ, ψ) distributions from
the MEDFORD rotamer library. For this analysis, the rotamer

definition of χ1 in Val was swapped to match the assignments of χ1
in Ile.

FIGURE 7 Average χ1 prediction accuracy for amino acids in

the HQ54 dataset of protein structures using each rotamer library

(a) by selecting the rotamer with the highest probability in the

rotamer libraries or (b) after Rosetta repacking. A prediction is

considered accurate when χ1 is predicted within 20� of the crystal
structure value. Shaded regions show the standard deviation found

using five-fold cross validation.
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select the highest-probability rotamer as the prediction,
the Dunbrack and MEDFORD rotamer libraries predict
the χ1 dihedral angles for different types of amino acids
in the HQ54 dataset with an average accuracy of 75% and
73%, respectively (Figure 7a). After repacking in Rosetta,
the accuracies further increase (Figure 7b). Surprisingly,
the Dynameomics rotamer library performs poorly for
Asn, Asp, Ser, Thr, Ile, and Val, that is, amino acids with
polar Cγ or Cδ atoms and β-branched amino acids when
selecting the top ranked rotamers as the predictions
(Figure 7a, yellow curve); after Rosetta repacking, the
accuracies for Asn, Val, and Ile greatly improve, while
the accuracies for Ser, Asp, and Thr remain
relatively low.

Predictions for the combined side chain dihedral
angles for amino acids with χ2, χ3, and χ4 have lower
accuracy for all three rotamer libraries (Figure S5a) due
to the weaker relationship between these dihedrals and
the backbone. This issue is often dealt with by using an
additional energy function that incorporates both the
backbone and surrounding protein environment to pre-
dict the full side chain structure of long amino acids.1,47,48

Indeed, after repacking using Rosetta, we see that both
accuracies for predicting χ1 (Figure 7b) and all χ
(Figure S5b) generally increase. However, it remains diffi-
cult to predict all the χ angles for long side chains, such
as those of Gln, Lys, Arg, and Glu. It should be noted that
the predictions are compared against X-ray structures. It
is possible that in solution, these side chains might sam-
ple a different conformation or multiple conformations.

3.4.2 | Cyclic peptide dataset

Next, we assessed the ability of the Dunbrack, Dynameo-
mics, and MEDFORD rotamer libraries to predict the
side chain dihedral angles of cyclic peptides. Unfortu-
nately, there are currently very few data points in the
cyclic peptide dataset (Figure 3c). In Figure S6, we show
the prediction accuracy for those amino acids that have
25 or more instances in the cyclic peptide dataset, that is,
Leu, Phe, and Val. The MEDFORD rotamer library has
similar performance to the Dunbrack rotamer library for
these three amino acids. As seen with the prediction for
the HQ54 residues, the Dynameomics rotamer library in
general performs worse than the other two rotamer
libraries.

3.4.3 | High- versus low-coverage regions

We expected that sufficient sampling of the full backbone
space in the MEDFORD rotamer library would improve

prediction accuracy of amino acids in the regions that
have low coverage in the Dunbrack rotamer library.
However, the MEDFORD rotamer library performs very
similarly to the Dunbrack rotamer library in both the
conventional high- and low-coverage backbone regions
for the HQ54 and cyclic peptide datasets (Figure 8). To
further investigate this unexpected result, we identified
the (ϕ, ψ) bins where the two rotamer libraries make dif-
ferent χ1 rotamer predictions (dotted areas in Figure 9
and Figure S7), and overlaid them with the (ϕ, ψ) free
energy landscape calculated from the neutral replicas
from the BE-META simulations for each dipeptide
(Figure 9 and Figure S7). The regions of backbone space
with different χ1 rotamer predictions span a wide range
of the free energy landscape. Amino acids in the low-
coverage regions in the HQ54 and cyclic peptide datasets
(circles and triangles in Figure 9 and Figure S7) are typi-
cally found near the edges of the canonical regions, in
areas with the same rotamer prediction from the Dun-
brack and MEDFORD rotamer libraries. The similarity
between the predictions made by the Dunbrack and
MEDFORD rotamer libraries near the canonical regions
suggests that the extrapolation method used to create the
Dunbrack rotamer library was sufficient to produce accu-
rate rotamer predictions in these regions.

It is difficult to evaluate and distinguish the perfor-
mances of the Dunbrack and MEDFORD rotamer librar-
ies in the conventional low-coverage regions due to the

FIGURE 8 Prediction accuracy of χ1 for amino acids in the

HQ54 dataset (left) and cyclic peptide dataset (right) by the

Dunbrack (blue), Dynameomics (yellow), and MEDFORD (green)

rotamer libraries split by low-coverage and high-coverage regions of

(ϕ, ψ) space by selecting the rotamer with the highest probability in

the rotamer libraries. A prediction is accurate when each dihedral

angle is predicted within 20� of the crystal structure value.
Coverage is defined based on the Dunbrack dataset. Error bars

show the standard deviation from five-fold cross validation.
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limited protein and cyclic peptide data available in these
regions (note the large error bars for the low-coverage
datasets in Figure 8). Backbone conformations with dif-
ferent predictions from Dunbrack and MEDFORD are
often found in the noncanonical backbone regions, which
tend to have higher free energy. However, some of these
(ϕ, ψ) conformations have free energy values that are
accessible by proteins and cyclic peptides (Figure 9 and
Figure S7). A larger library of cyclic peptides or proteins
with backbone conformations in noncanonical regions
would allow for a stronger comparison of the Dunbrack
and MEDFORD rotamer libraries. The MEDFORD rota-
mer library has substantially higher sampling than the
Dunbrack rotamer library in the noncanonical (Φ,
ψ) regions, and the two rotamer libraries behave less sim-
ilarly in these regions. Although we expect the MED-
FORD rotamer library may perform better than the
Dunbrack rotamer library in these regions, unfortunately,
there are currently insufficient data to draw such conclu-
sions on the prediction accuracy, and the two rotamer
libraries have rather similar performance.

3.5 | The MEDFORD rotamer library
predicts the side chains of noncanonical
amino acids with approximately 75%
accuracy

Using explicit-solvent BE-META simulations, we con-
structed rotamer libraries for six noncanonical amino
acids, ABA, CIR, NAL, NLE, PYE,26 and TZA

(Figure S1). We were able to find 20, 20, 5, 37, 3, and
1 examples of ABA, CIR, NAL, NLE, PYE, and TZA,
respectively, in the PDB. We tested the performance of
the MEDFORD rotamer library on the amino acids with
more than 15 instances in the PDB: NLE (37), ABA (20),
and CIR (20). We found that the MEDFORD rotamer
library predicts the side chains of NLE, ABA, and CIR
with approximately 60% accuracy when using the top
ranked rotamers and 75% accuracy after repacking in
Rosetta (Figure 10). The MEDFORD rotamer library also
shows comparable or better performance compared to
the previously reported rotamer libraries for the three
noncanonical amino acids. However, it should be noted
the amount of data made it difficult to establish the
uncertainties of these results.

4 | CONCLUSIONS

Using data from explicit-solvent metadynamics simula-
tions of dipeptides, we created a backbone-dependent
rotamer library, MEDFORD, that has extensive data in
all (ϕ, ψ) regions. We found that the MEDFORD rotamer
library has similar P(χall j ϕ, ψ) distributions to the Dun-
brack backbone-dependent rotamer library for (ϕ, ψ)
regions where the Dunbrack dataset has high coverage. It

FIGURE 10 Prediction accuracy of χ1 for amino acids in the

noncanonical amino acid dataset (a) by selecting the rotamer with

the highest probability in the rotamer libraries or (b) after Rosetta

repacking. A prediction is accurate when χ1 is predicted within 20�

of the crystal structure value.

FIGURE 9 The (ϕ, ψ) locations of Ser in the low-coverage

backbone regions from HQ54 (blue circles) and the cyclic peptide

dataset (blue triangles) overlaid with the (ϕ, ψ) free energy profile

calculated using the neutral replicas from the Ser dipeptide BE-

META simulations (shown in kBT). The black dots mark the (ϕ, ψ)

bins for which the Dunbrack and MEDFORD rotamer libraries

make different χ1 rotamer predictions.
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also predicts side chain conformations for proteins with
similar accuracy. However, the probability distributions
from the two rotamer libraries differ in many (ϕ, ψ) areas
where the Dunbrack dataset has low coverage. The
approach of using explicit-solvent metadynamics simula-
tions of dipeptides to generate high-coverage rotamer
libraries can also be applied to noncanonical amino acids.
We find that the MEDFORD rotamer library can predict
χ1 of noncanonical amino acids with an accuracy of
around 75%.

5 | MATERIALS AND METHODS

5.1 | Creating the MEDFORD rotamer
library

Following the example of the Dunbrack rotamer library,
the backbone space was divided into a 10� � 10� grid
where the bin name identifies the center of that bin. For
example, (ϕ = 10�, ψ = 10�) contains data with
5� ≤ ϕ < 15� and 5� ≤ ψ < 15�. Each data point was
assigned to a 10� � 10� (ϕ, ψ) bin and a side chain rota-
mer combination (e.g., χ1 = r60, χ2 = r180). For rota-
meric side chain dihedrals, three rotamers, r60, r180, and
r300, for each dihedral angle were defined as (0�, 120�],
(120�, 240�], and (240�, 360�], respectively (Figure 1b).
For nonrotameric side chain dihedrals, we divided the
dihedral space into rotamers based on the minima of the
dihedral angle distribution (Figure 1c). To define the
edges of the rotamer states for nonrotameric amino acids
with two dihedral angles (Asn, Asp, His, Phe, Trp, and
Tyr), three backbone-independent P(χ2 j χ1 = Y) plots
were made where Y = r60, r180, and r300. The minimum
value(s) for each P(χ2 j χ1 = Y) plot were used as the rota-
mer cutoffs, resulting in the rotamer states as defined in
Table S1. For nonrotameric amino acids with three dihe-
dral angles (Gln and Glu), nine P(χ3 j χ1 = Y1, χ2 = Y2)
plots were made where Yi = r60, r180, and r300 and the
minimum value(s) for each P(χ3 j χ1 = Y1, χ2 = Y2) were
saved as the rotamer cutoffs. The resulting χ cutoffs are
presented in Figures S2 and S3.

5.2 | Description of two previously
reported rotamer libraries: The Dunbrack
rotamer library and the Dynameomics
rotamer library

5.2.1 | The Dunbrack rotamer library

The Dunbrack 2010 backbone-dependent rotamer library
was generated by analyzing 3,985 protein chains from

3,845 protein crystal structures with resolution ≤ 1.8 Å,
R factor ≤ 0.22, and mutual sequence identity ≤50%.1

Adaptive kernel density estimates were used to calculate
the density of (ϕ, ψ) for each side chain rotamer
rX ,ρ ϕ, ψ jrXð Þ. Bayes' rule was then used to invert these
densities to P(rX j ϕ, ψ) values. The resulting rotamer
library reports the rotamer probabilities of rotameric side
chains in each 10� � 10� (ϕ, ψ) bin. Nonrotameric side
chain dihedrals are reported in both 10� and 30� bins. In
this paper, we used the version of the rotamer library
with 5% kernel smoothing, which provides a balance
between rotamer details and smoothed probabilities, and
30� bins for nonrotameric side chains. To evaluate the
coverage of the Dunbrack rotamer library, we binned the
raw amino acid data into 10� � 10� (ϕ, ψ) bins centered
on the (ϕ, ψ) values used to denote the bin. This informa-
tion was used to define conventional low-coverage (ϕ, ψ)
regions for each amino acid as backbone regions
with<25 data points in the (ϕ, ψ) bin and conventional
high-coverage (ϕ, ψ) regions as those with≥25 data
points in the (ϕ, ψ) bin.

5.2.2 | The Dynameomics rotamer library

The Dynameomics backbone-dependent rotamer library
was created from molecular dynamics simulations of
807 proteins.15 Simulations of the native state of each
protein were run at 298 K using the in lucem molecular
mechanics package (ilmm) with the ENCAD force
field.7,30–32 The resulting dataset contains over 51,000
data points for each amino acid residue in each protein.
Combined across all 807 proteins, the dataset covers over
97% of the (ϕ, ψ) space.9 Backbone-dependent rotamer
probabilities were calculated as the percentage of data
points of a rotamer in each 10� � 10� (ϕ, ψ) bin. Because
the simulations used to create this dataset sampled most
of the (ϕ, ψ) space, no smoothing or extrapolation was
done to produce the rotamer library. Nonrotameric side
chain dihedrals were reported with bin widths of 60� in
Asn, Asp, Gln, Glu, and His, 90� for those in Phe and
Tyr, and 120� for Trp.

5.3 | Test datasets for determining
prediction accuracy

5.3.1 | HQ54

To assess the accuracy of the Dunbrack, Dynameomics,
and MEDFORD rotamer libraries, we used the three rota-
mer libraries to predict the side chain dihedrals in a data-
set of high-resolution proteins called HQ54.49 This
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dataset was chosen to represent the highest quality of
protein structures and contains 54 high-resolution, non-
redundant, monomeric protein crystal structures. From
the 54 proteins, we created a dataset of amino acids with
one or more side chain dihedral angle, that is, excluding
Ala, Gly, and Pro. Amino acids with missing heavy atoms
were removed and amide flips were corrected using the
Reduce software package.50 The resulting dataset con-
tains a total of 5,567 data points.

5.3.2 | Cyclic peptide dataset

To assess the accuracy of each rotamer library on regions
of backbone space less commonly found in proteins, we
also created a dataset of amino acids from head-to-tail
cyclic peptides. Cyclic peptides were curated from collec-
tions of cyclic peptides reported in three recent
papers.6,51,52 From the cyclic peptide datasets in these
three papers, we obtained a list of head-to-tail cyclic pep-
tides with at least one natural, side chain containing, L-
amino acid. We further filtered this list by removing
equal-length cyclic peptides with more than 75%
sequence identity. The resulting list contained 52 cyclic
peptides with lengths from 4 to 13 amino acids. From
these cyclic peptide structures, we extracted amino acid
residues with one or more side chain dihedral angle, that
is, excluding Ala, Gly, and Pro. Amino acid residues were
included in the dataset if they had L-chirality at Cα, a
trans peptide bond preceding and succeeding the amino
acid, and were unmethylated. The resulting dataset con-
tains 181 L-amino acids from 52 cyclic peptides with a
composition as shown in Figure 3c. The full composition
of the cyclic peptide dataset can be found in Tables S7
and S8. However, as seen in Figure 3c, the cyclic peptide
dataset has very limited data: All amino acids have ≤40
data points, and for most of the amino acids except Leu,
Phe, and Val, there are fewer than 25 examples.

5.3.3 | Noncanonical amino acid dataset

To assess the accuracy of the rotamer libraries for nonca-
nonical amino acids, we searched the Protein Data Bank
for high resolution structures (≤ 2.5 Å) containing ABA,
CIR, NAL, NLE, PYE, and TZA. Each resulting structure
was manually inspected to ensure that the noncanonical
amino acid was indeed present. Amino acids were
removed from the list if they had D-chirality or a cis pep-
tide bond preceding or succeeding the amino acid. We
also filtered the dataset for sequence similarity, removing
the structure with poorer resolution if the same chain
was present in a second structure in our dataset. The

resulting datasets contained 20 ABA, 20 CIR, 5 NAL,
37 NLE, 3 PYE, and 1 TZA amino acids. Because there
are very few NAL (5), PYE (3), and TZA (1) examples,
sidechain predictions and analysis were only performed
on NLE (37), ABA (20), and CIR (20).

5.4 | Methods for evaluating prediction
accuracy

Each applicable rotamer library was used to predict the
side chain dihedrals of each amino acid in the HQ54, the
cyclic peptide, and the noncanonical amino acid datasets
using two methods. In the first method (top ranked rota-
mer), for each amino acid, the rotamer χall with the high-
est backbone-dependent probability in the rotamer
library was selected. The corresponding dihedral values
of that rotamer (χ1, χ2, etc.) were then compared to the
experimental data.

For the HQ54 and the noncanonical amino acid data-
sets, we also used a second method (Rosetta repacking)
to evaluate prediction accuracy of the three rotamer
libraries. We used Rosetta to allow for the use of rotamer
libraries in conjunction with a built-in scoring function
for protein side chain packing.46 By default, natural
amino acids are handled by Rosetta's implementation of
the Dunbrack rotamer library. Additional rotamer librar-
ies may only be included as MakeRotLib-format libraries
used for noncanonical amino acids.9 With this in mind,
we created copies of the parameter files for the natural
amino acids used in this work, and edited them to
include new three-letter codes and pointers to the rota-
mer library to be tested, converted to MakeRotLib format.
Since Rosetta distinguishes between free sulfhydryl and
disulfide bonded cysteine outside of the parameters file,
we could not easily replicate this functionality and thus
elected to omit cysteine from this benchmark. In the
parameter files for the remaining amino acids, we also
removed the ROTAMER_AA parameter line, as well as
the annotation describing the amino acid as canonical,
from the parameter files. Since several terms of the
Rosetta ref2015 scoring function can only be applied to
amino acids recognized by Rosetta as natural, instead of
using the default implementation of the Dunbrack rota-
mer library, we converted the Dunbrack rotamer library
to the MakeRotLib format as well and tested it alongside
MEDFORD and Dynameomics. PDB files were edited to
include the new three-letter codes, and packing was per-
formed using Rosetta's fixbb utility. The NATAA com-
mand was included in the packer resfile to prevent
mutations. In addition, the -ignore_zero_occupancy false
flag was passed to fixbb in order to ensure that all atoms
from the provided structure files would be loaded, instead
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of poorly resolved atoms being omitted altogether. It
should be noted that several PDB's (1JBE and 2DFB in
the HQ54 dataset; 2WFJ, 4KTY, 4OKF, 5OCK, 5OCX,
5UHR, and 5W89 in the noncanonical amino acid data-
set) were excluded from the analysis using Rosetta
repacking because the protein chains contain residues
such as pyroglutamic acid, (2 S)-2-amino-7-methoxy-
7-oxoheptanoic acid, and 2,3-didehydroalanine that we
were unable to treat properly in Rosetta.

All calculations were performed on the full PDB
structures. However, for the accuracy analysis, if multiple
chains were present in the crystal structure, we only con-
sidered the first chain in our analysis. The prediction was
considered accurate if all dihedrals were within 20� of
the experimental values. If a crystal structure has multi-
ple conformations present for an amino acid residue, the
prediction was compared to all of the conformations and
considered accurate if all dihedral angles were within 20�

in any of the experimental conformations. We also
assessed the ability of each rotamer library to predict χ1
alone by selecting the rotamer conformation, χall, with
the highest probability but only comparing its χ1 predic-
tion to the crystal structure value. To assess the variabil-
ity of our results, we performed a five-fold cross
validation, randomly splitting each dataset into five
groups, and calculating the percentage of amino acids
predicted correctly in each group.
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