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Abstract
Background For the segmentation of medical imaging data, a multitude of precise but very specific algorithms exist. In previous
studies, we investigated the possibility of segmenting MRI data to determine cerebrospinal fluid and brain volume using a
classical machine learning algorithm. It demonstrated good clinical usability and a very accurate correlation of the volumes to
the single area determination in a reproducible axial layer. This study aims to investigate whether these established segmentation
algorithms can be transferred to new, more generalizable deep learning algorithms employing an extended transfer learning
procedure and whether medically meaningful segmentation is possible.
Methods Ninety-five routinely performed true FISP MRI sequences were retrospectively analyzed in 43 patients with pediatric
hydrocephalus. Using a freely available and clinically established segmentation algorithm based on a hidden Markov random
field model, four classes of segmentation (brain, cerebrospinal fluid (CSF), background, and tissue) were generated. Fifty-nine
randomly selected data sets (10,432 slices) were used as a training data set. Images were augmented for contrast, brightness, and
random left/right and X/Y translation. A convolutional neural network (CNN) for semantic image segmentation composed of an
encoder and corresponding decoder subnetwork was set up. The network was pre-initialized with layers and weights from a pre-
trained VGG 16 model. Following the network was trained with the labeled image data set. A validation data set of 18 scans
(3289 slices) was used tomonitor the performance as the deep CNN trained. The classification results were tested on 18 randomly
allocated labeled data sets (3319 slices) and on a T2-weighted BrainWeb data set with known ground truth.
Results The segmentation of clinical test data provided reliable results (global accuracy 0.90, Dice coefficient 0.86), while the
CNN segmentation of data from the BrainWeb data set showed comparable results (global accuracy 0.89, Dice coefficient 0.84).
The segmentation of the BrainWeb data set with the classical FAST algorithm produced consistent findings (global accuracy
0.90, Dice coefficient 0.87). Likewise, the area development of brain and CSF in the long-term clinical course of three patients
was presented.
Conclusion Using the presented methods, we showed that conventional segmentation algorithms can be transferred to new
advances in deep learning with comparable accuracy, generating a large number of training data sets with relatively little effort.
A clinically meaningful segmentation possibility was demonstrated.
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Abbreviations
CSF Cerebrospinal fluid
VP shunt Ventriculoperitoneal shunt
ETV Endoscopic third ventriculostomy
MRI Magnetic resonance imaging
ABrain Planar area of brain in cm2

ACSF Planar area of CSF in cm2

FSL Functional Magnetic Resonance
Imaging of the Brain Software Library

BET Brain extraction tool
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FAST FMRIB’s Automated Segmentation Tool
true FISP True fast imaging with steady state

precession
SD Standard deviation
TP True positive
FN False negative
FP False positive
BFScore Boundary contour matching score
IoU Intersection-over-union
CNN Convolutional neural network

Background

The analysis of medical image data sets with the help of deep
learning algorithms can be of great benefit for extended pa-
tient care and specialized diagnostics. Today, these algorithms
can provide a solid foundation for segmenting and categoriz-
ing image data of any modalities [14, 22, 31].

In principle, deep-learning procedures are inspired by the
anatomy of biologically occurring neural networks. The net-
works are composed of artificial neurons that are organized in
multiple layers and that are connected between consecutive
layers. Each neuron receives, weighs, and processes incoming
signals and passes them on to further neurons in the next layer.
The transmission of stimuli between artificial neurons is
modeled mathematically. As in the biological model, the
transmission of stimuli is characterized by the input signals
(excitation and inhibition) and by the connection strength
(weights) to the neurons of the deeper layers [21, 29].

The signal processing starts with the input layer, which
receives external signals and which is passed on to an output
layer via several hidden layers. In the output layer, the final
classification results. The data processing within the network
takes place in an increasing abstraction of the input signal. In
the case ofMRI recognition and classification, the input signal
could be one MRI slide. In the first layers, for example, the
recognition of surfaces and edges takes place; in the following
layers, the compositions of shapes are recognized; and finally,
possibly using further (deeper) layers, the input image is clas-
sified based on the recognition of individual features [3, 21].

The detailed structure and architecture of artificial neural
networks vary greatly, and different procedures have been
established depending on the area of application [14].
Today, convolutional neural networks (CNNs) are the most
common and established standard for processing image data.
These particular subspecies are inspired by the principle of the
receptive field in biological signal processing of visual sig-
nals. Similar to the biological model, individual neighboring
artificial neurons react to overlapping parts of the upstream
visual field [9]. CNNs are very memory-efficient and provide
comparably robust image recognition.

Compared with biological models, the learning mechanism
of artificial neural networks is highly variable and compara-
tively ineffective. Unlike the biological model, standard net-
works do not learn during use but have to be trained with
separate data in the first step to perform a classification task.
Once trained, the network then remains static in further appli-
cations but solves classification tasks extremely fast. In most
cases, supervised learning takes place when known data is
transferred to the neural network. For learning, a mathematical
method, backpropagation, is usually used: many pre-
segmented or classified images are needed to train a neural
network. First, the known input images are sequentially fed
into the untrained network and classification is calculated. In
comparison with the known basic truth, the classification error
is calculated from this. In the following, the weights of the
neuron connections are then slowly adjusted based on the
error rate to approach the desired classification. In this way,
a lot of known training data is required and the data is repeated
cyclically and a respective computing time or powerful hard-
ware is needed. The advantage is that the weights are adjusted
independently of user interaction until sufficient classification
accuracy is achieved [21, 29].

However, the data set must be large enough so that the
network does not adapt too much to the training data set. If
there is not enough data present during training, the training
data set is well recognized, but the sensitivity decreases during
the classification of unknown data in later use (overfitting)
[34]. Overfitting can also occur if the desired modality, se-
quence, or organ system do not have a sufficient number of
data sets. To increase the data to a certain amount, augmenta-
tion is the method of choice, for example by changing the size,
rotation, or position of the training image data randomly.

Providing that sufficient amount of data for training is a
considerable challenge. There is a huge amount of available
medical imaging data in archives; however, this is not classi-
fied and therefore not available for training. It is particularly
advantageous for segmentation if large amounts of available
data are labeled with known ground truth. Each pixel or voxel
of the data set indicates which class of organ or tissue it rep-
resents [14]. As this classification is typically done manually,
it is an extremely time-consuming and expensive method.
Therefore, already publicly available, pre-segmented training
data sets are often used, which are only available in limited
numbers and densities.

To overcome this issue and to generate large densities of
labeled data, classical established algorithms could be part of
the solution. Classical algorithms developed prior to the era of
deep learning provide valid segmentation by filtering algo-
rithms or individually adapting machine learning algorithms
to address very specific questions, such as the segmentation of
the human brain [25].While these algorithms offer remarkable
results for specific issues, they are often not clinically
established due to their high technical complexity and the
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specificity of the problem. For general brain segmentation,
several different algorithms already exist, but all of which fail
to have a significant clinical implementation. The possibilities
consist of semi-automatic segmentation [27], atlas-based [5]
to extended algorithms with classical machine learning proce-
dures [35, 39, 41]. Nevertheless, the implementation of volu-
metric analysis of the cerebral compartments brain and CSF
also characterize an extended technical challenge as most of
the algorithms are neither readily available nor free to use.

In our previous studies [10, 11], we addressed the segmen-
tation of MRI data from children with hydrocephalus as a
specific issue. Thin-layer true FISP data sets were used here,
which in a T2-weighted approach provided reliable informa-
tion on the anatomy and the amount of CSF [30]. Especially in
the case of early childhood hydrocephalus, it is important to
assess both the amount of cerebrospinal fluid and the brain
volume as this crucial time of brain development determines
the outcome [23, 24]. The CSF quantity yields information as
to whether or not a therapy such as the implantation of a
ventriculoperitoneal (VP) shunt or an endoscopic third
ventriculostomy (ETV) may be successful. The development
process of the brain volume, on the other hand, is more im-
portant for cognitive development and, thus, the outcome of
the patient. Therapy of childhood hydrocephalus and its as-
sessment should, therefore, be directed towards influencing
the best neurocognitive outcome and thus should not only be
assessed on ventricular size or CSF volume but also with
information on brain volume.

For this reason, we implemented a well-known and widely
used algorithm (FAST [42], FSL FMRIB Software Library
[15]) for segmenting 3D data sets of hydrocephalic patients.
FAST uses a robust segmentation algorithm based on a hidden
Markov random field model, taking spatial orientation into
account. The algorithm has already been implemented and
adjusted into clinical practice and offers a reliable segmenta-
tion [25].We could demonstrate that changes under therapy in
brain volume and CSF can be reliably estimated automatically
with this algorithm [10]. For this approach, however, the ex-
istence of the complete data set is required. For this reason, we
investigated in the next step whether the area of CSF and brain
on a representative 2D axial slice in the middle of the brain
including the Foramen Monro would be sufficient. A very
good correlation of volume and area was found so that an
estimation of the clinical course is possible based solely on a
single 2D layer [11].

Through this previous work [10, 12], a large amount of pre-
segmented data was generated using the FAST algorithm.
This study investigates whether a pre-initialized CNN
(VGG16) can be trained in an extended transfer learning pro-
cess with the generated segmented data and reliably deliver
segmentation results. Furthermore, this paper examines
whether the algorithm is capable of producing suitable seg-
mentation results with known data. To do this, the BrainWeb

data set [20] containing an artificially generated T2 data set
with known ground truth is used. In the final step, it is evalu-
ated whether the course of therapy can be assessed in clinical
examples, as in the preliminary work on the segmentation of a
single layer.

Methods

Study cohort

Ninety-five routinely performed true FISP MRI sequences
(1 mm isovoxel) were retrospectively analyzed in 47 patients
with pediatric hydrocephalus (male n = 24, mean 5.8 ±
5.4 years, posthemorrhagic hydrocephalus n = 14, obstructive
hydrocephalus n = 30, postmeningitic hydrocephalus n = 1,
external hydrocephalus n = 2). Postoperative imaging was in-
cluded of n = 20 patients following a ventriculoperitoneal
shunt (VP shunt) and n = 12 patients after endoscopic third
ventriculostomy (ETV).

Ground image segmentation

As performed in the previous studies [10, 12], a total of 95
routinely performed MRIs were evaluated using the freely
available FMRIB Software Library (FSL). After preprocess-
ing, the 3D data sets were fed into an automated script-based
processing pipeline, consisting of the following steps: The
first step was the masking of the inner skull compartments
with the Brain Extraction Tool (BET) [33]. Subsequently, a
2-class segmentation into brain matter and CSF was carried
out with FAST [42] with the result of 3-dimensional masks for
the individual compartments. The segmentation of the remain-
ing classes for tissue and background was performed using a
threshold value (initially 30 units). If necessary, the threshold
value was adjusted manually.

Each data set was visually inspected after segmentation to
ensure a proper segmentation.

Training and test data sets

Data analysis was performed with Matlab Deep Learning
Toolbox (MATLAB, (2019), version 9.5.0 (R2019b),
Natick, Massachusetts: The MathWorks Inc.)

Axial, anterior-posterior oriented sections were generated
from the 3D MRT files and stored as geometry corrected
image files with a 1-mm voxel resolution (256 × 180). With
the previous segmentation, appropriately labeled image data
were created with four classes (CSF, brain, tissue, back-
ground). Since some of the structural data sets also included
neck tissue, basal, or head incisions without relevant tissue
apically, only axial layers that showed brain tissue in the seg-
mentation were selected. The complete data set was randomly
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split case wise so that 60% of the images (10,432 slices) were
used as training data, 20% as validation data (3319 slices), and
20% test data (3289 slices). Since contrast and brightness
values for MRIs differ significantly, image augmentation for
these values was performed. Additionally, to the native train-
ing image, four images with the combinations of enhanced (+
100%) or decreased (− 50%) contrast level and enhanced (+
30%) or decreased (− 30%) brightness level were created.
Additionally, random left/right translation and random X/Y
translation of ± 10 pixels were used for data augmentation.

As the data set is pre-segmented data by the FAST algo-
rithm with residual uncertainty, an additional test data set with
known ground truth was created. For this purpose, the T2-
weighted data set of the BrainWeb data set [20] (slice thick-
ness 1 mm, noise 3%, intensity non-uniformity 20%) was
used. The labels were taken from the available Anatomical
Model of Normal Brain according to the above requirements
and a corresponding labeled data set was generated. This re-
sulted in an additional 111 labeled test images with known
ground truth.

Training of the segmentation network

A convolutional neural network (CNN) for semantic image
segmentation composed of an encoder and corresponding de-
coder subnetwork was set up [2]. The network was pre-
initialized with layers and weights from a pre-trained VGG
16 model [32].

The network used a pixel classification layer to predict the
categorical label for every pixel in the input images. Class
frequency of CSF (8.6%), brain (22.1%), tissue (14.3%), and
background (55.0%) was obtained. Since the class “CSF”was
underrepresented in the training data, a class weighting was
carried out to balance classes.

A stochastic gradient descent with momentum (0.9) opti-
mizer was used and a regularization term for the weights to the
loss function was added with a weight decay of 0.0005. Cross-
entropy was used as a loss function for optimizing the classi-
fication model. The initial learning rate was set to 0.001.
Furthermore, the learning rate was reduced by a factor of 0.3
every 10 epochs. The network was tested against the valida-
tion data set every epoch to stop training when the validation
accuracy converged. This prevented the network from
overfitting on the training data set. The trainingwas conducted
on a single GPU (NVIDIA GeForce GTX 1060). The valida-
tion accuracy converged after 6000 repetitions.

Validation of segmentation

The accuracy of the segmentation of the neural network was
evaluated by segmenting the deferred test data and the
BrainWeb data set. Accuracy scores and exemplary segmen-
tation results are illustrated for both groups.

For comparability of the segmentation results, the follow-
ing scores were calculated:

Accuracy as the ratio of correctly classified pixels to the
total number of pixels.

Accuracy ¼ TP

TPþ FN
TP—true positive; FN—false negative

The boundary contour matching score (Mean BFScore)
indicates how well the predicted boundary of each class
matches the true boundary, defined as the harmonic mean of
precision (Pc) and recall (Rc).

Mean BFScore ¼ 2 Pc Rc

Pcþ Rc

The Intersection over Union (IoU, Jaccard similarity coef-
ficient) indicating the amount of overlap per class.

IoU ¼ TP

TPþ FPþ FN
FP—false positive

And the commonly used Sørensen-Dice similarity coeffi-
cient.

Dice coefficient ¼ 2TP

2TPþ FPþ FN

Additionally, confusion matrices were computed to illus-
trate the true and predicted classes for both data sets.

Results

Classification results test data

The classification results of the trained CNNwere validated in
5046 randomly allocated test images (30% of the total data
set). Table 1 and Fig. 1 give a detailed overview of the clas-
sification results as well as for the four classes’ brain, CSF,
tissue, and background. Figure 2 shows exemplary segmenta-
tion results of individual patients with FAST and CNN.

Table 1 Classification results for global classification and each class
separately of the clinical test data set. Accuracy, IoU (intersection-over-
union), mean BFScore (boundary contour matching score), and Dice
coefficient are reported for each class

Accuracy IoU Mean BFScore Dice coefficient

Global 0.90 0.74 0.83 0.86

CSF 0.86 0.68 0.70 0.81

Brain 0.85 0.79 0.79 0.88

Tissue 0.81 0.59 0.74 0.74

Background 0.95 0.94 0.84 0.97
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CNN segmentation results of the BrainWeb data set

Additional validation of the segmentation was performed
using the BrainWeb data set with known ground truth. This
data set is a simulated T2-weighted data set. The segmentation
results are shown in Table 2 and the confusion matrix in
Fig. 3. Single layers of the BrainWeb data set with the seg-
mentation results are shown in Fig. 5.

FAST segmentation results of the BrainWeb data set

For better comparability, the segmentation results of the
FAST algorithm are also shown using the BrainWeb data.
Table 3 and Fig. 4 display the validation data, while the seg-
mentation of the individual layers is shown in Fig. 5.

Therapy course examples

To demonstrate the clinical viability of the segmentation re-
sults, ACSF and ABrain are presented in selected childhood
hydrocephalus patients with varying clinical courses. Figure 6
exhibits the underlying MRI slides at the level of the foramen
of Monro as well as the area segmentation results of FAST
and CNN.

Discussion

In this work, we described how a classical, established ma-
chine learning algorithm can be conveyed to the modern
method of segmentation using a pre-trained CNN in a double
transfer learning algorithm.With existing specialized classical
algorithms, it is relatively easy to create adequate training data

sets with sufficiently accurate labeling. Moreover, it is possi-
ble to train a CNN with this large data set. The segmentation
by the CNN provides valid results and is comparable with the
segmentation results of the original algorithm. This can ensure
valid segmentation with clinical data that is consistent with the
results of the classical algorithm.

Ground truth image segmentation to generate
training data

The segmentation performance of the established FAST
algorithm was transferred to our network by using its
previously generated training data. Considering this
ground truth in terms of reliability, the used FAST al-
gorithm within the applied FSL-Toolbox [15] provided
accurate segmentation results. FAST uses a robust seg-
mentation algorithm based on a hidden Markov random
field model, taking into account the spatial orientation
of every voxel. The advantage of this algorithm is that
segmentation can take place unaffected by the large an-
atomical variability often found in childhood hydroceph-
alus. Methods using atlas-based segmentation reach their
limits in the case of severe anatomical changes, as the
sometimes grotesquely altered ventricular cavities are
often located far away from the conventional probability
space. The FAST algorithm was evaluated in our previ-
ous studies in pediatric hydrocephalus. Each segmenta-
tion performed was reviewed and verified by medical
professionals. An accurate segmentation for CSF and
brain matter was found, and changes under therapy
could be reliably assessed [10, 12].

In the MRBrainS Challenge [25], an external validation of
the FAST algorithm took place. Three freely available
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Fig. 1 Confusion matrix of the
segmentation result of the clinical
test data. The columns represent
the predicted class and the rows
represent the true class. Data
presented in % of classified pixels
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segmentation toolboxes were evaluated (SPM 12 [25],
Freesurfer [6], and FAST). FAST reached comparable good
Dice coefficients of 93% for brain and 70% for CSF. The
segmentation results of the MRBrainS Challenge are not

directly commensurate, as the data sets used were T1, IR,
and FLAIR sequences.

Due to the higher CSF contrast in the used modeled T2-
sequence of the BrainWeb data set for internal validation, the
FAST algorithm even performed better in our study with 80%
Dice coefficient for CSF and comparing 92% for brain.

It appears therefore advantageous and appropriate to use
existing algorithms to generate the labeled training data sets.
The accuracy of the segmentation is clinically significant, and
large amounts of data can be generated in a relatively short
time. However, if the data must first be segmented manually,
the costs and time involved are very considerable and less
training data can be generated, leading to poorer segmentation
results. Nevertheless, one can assume a very accurate ground
truth by manual segmentation.

Fig. 2 Segmentation examples of
clinical test data set. From left to
right: original T2-weighted true
FISP images, ground truth seg-
mentation (FAST, CSF yellow,
brain blue, tissue green, back-
ground red), segmentation result
of CNN, differences of segmen-
tation (deviant classes in green
and pink, concordant classes
greyscale). From top to bottom: 1-
year-old toddler with posthemor-
rhagic hydrocephalus, preopera-
tive imaging; 9-month-old toddler
with occlusive hydrocephalus,
preoperative imaging; 3-year-old
girl with occlusive hydrocepha-
lus, control imaging 18 months
postimplantation of a gravity
compensated VP shunt; 12-year-
old boy with occlusive hydro-
cephalus, 12 months after post
implantation of a gravity com-
pensated VP shunt. Particularly
noteworthy are the susceptibility
artifacts of the shunt valve in the
patients of the last two rows (*)
resulting in a false classification
of FAST and CNN in this area

Table 2 Classification results of the CNN for global classification and
each class separately of the BrainWeb data set

Accuracy IoU Mean BFScore Dice coefficient

Global 0.89 0.72 0.76 0.84

CSF 0.95 0.44 0.79 0.61

Brain 0.82 0.80 0.77 0.89

Tissue 0.82 0.71 0.57 0.83

Background 0.95 0.93 0.91 0.96
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Segmentation results of the CNN

As a comparable study in literature, Han et al. used manual
segmentation of 600 data sets to determine CSF without brain
in early childhood hydrocephalus [13]. The algorithm in this
study achieved a Dice coefficient for CSF of 88%. In another
recent study by Klimont et al., the segmentation was per-
formed with a U-net using 85 CT data sets in pediatric hydro-
cephalus. The segmentation was likewise performed manual-
ly. Here, CSF without brain volume was considered. In this
study, a Dice coefficient CSF of 95% could be achieved [18].

Overall, our segmentation results of the CNN on the
BrainWeb data set were very accurate; however, the Dice
coefficient cut off was marginally inferior due to slightly
higher false negative values in the tissue area, particularly in
the lower layers. As these areas are not included in the classi-
fication of the FAST algorithm due to the previous extraction
of the brain by BET, the previous masking of the inner skull
spaces appears to be advantageous here. Furthermore, in the
classical T2 sequences, the tissue fat signal was overrepresent-
ed when compared with the underlying training data with true

FISP sequences. The used true FISP sequences in our study
are comparatively fast and offer high spatial resolution and
excellent CSF contrast, making them therefore optimal for
imaging pathologies of the CSF system [30].

The validation of the deferred clinical data sets shows op-
timal results with an overall accuracy of 90% and Dice coef-
ficient for brain of 88% and CSF of 81%. The Mandell group
achieved comparable values for brain (94%) and weaker re-
sults for CSF (57–67%) in the segmentation of pediatric hy-
drocephalus patients [24]. Han et al. achieved a Dice coeffi-
cient for CSF of 88%; a brain segmentationwas not performed
here [13]. With our method, clinically relevant areas or chang-
es in volume can be detected. Figure 6 illustrates by the patient
examples that the calculated areas can map an accurate course
of CSF and brain mass making it possible to visualize clini-
cally relevant changes.

Network structure and transfer learning

In regard to the network structure and training data set in our
study, we followed a multiple transfer learning approach.
Transfer learning describes the ability of a system to use the
knowledge acquired in a previous task for a new classification
[4]. The study used a pre-initialized CNN designed for visual
recognition (VGG 16), upon which the original weightings of
the network were adopted and then fine-tuned with the train-
ing data. The closer the classification tasks of the networks are
to each other, the better the classification accuracy can be
achieved through transfer learning. Even if the original tasks
are further apart, it could be shown that maintaining the
weightings was more effective than randomizing the initiali-
zation of the network [34, 40]. This is similar to the studies
with prenatal images by Wu et al. [37], who used the original
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Table 3 Classification results of the FAST algorithm for global
classification and each class separately of the BrainWeb data set

Accuracy IoU Mean BFScore Dice coefficient

Global 0.90 0.77 0.73 0.87

CSF 0.90 0.67 0.88 0.80

Brain 0.98 0.85 0.73 0.92

Tissue 0.71 0.65 0.55 0.79

Background 0.94 0.92 0.76 0.96
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weights from a general network (VGG 16) and then fine-tuned
on the training data.

3D volumetry and 2D image segmentation

With the CNN segmentation algorithm described, both a two-
dimensional (area determination) and a three-dimensional
(volumetry) can be performed. As demonstrated in our previ-
ous work [10] and by other authors [23, 26, 36], 3D volumetry
is an advancedmethod for quantitative and precise monitoring
of the course of therapy in childhood hydrocephalus.
Furthermore, only quantitative data on changes in brain and
CSF provide an accurate foundation for comparing different
treatment modalities. Previous volumetry studies have shown
that the neurocognitive outcome depends primarily on the
development of brain mass. In particular, the CSF volume
may be less significant than the course of the brain volume
when examining cognitive, motor, and speech development. It
is postulated that these neurocognitive changes are caused by
white matter lesions due to increased brain pressure and ven-
tricular dilatation [7]. The volume effect of the brain mass
would be a rather indirect sign to estimate these alterations.
Therefore, the approach of determining the three-dimensional
CSF and brain volume is preferable and a more objective basis
for a comprehensive treatment evaluation [23, 24].

Howbeit, the volumetry method requires a complete 3D
data set and significant computing time and power. The com-
puting effort can be reduced through automation as previously
shown [10]. Furthermore, patients with congenital hydroceph-
alus often require several MRI examinations to evaluate the
course of their disease, especially concerning any necessary
interventions or to check the functionality of an ETV or a VP
shunt. Although MRI scans have no radiation exposure and

are therefore preferred to CT scans for follow-up checks, sig-
nificantly longer examination time is required. This poses a
problem for younger children in particular as they often can-
not lie still for the entire duration of the examination and the
quality of the MRI images is therefore significantly limited by
movement artifacts. For this reason, sedation during the ex-
amination is almost always necessary in children [28].

The proposed method of planar area determination elimi-
nates some of these disadvantages. There is no need for a
complete thin-sliced 3D data set as an artifact-free slice in
the plane of the foramen of Monro would be sufficient. The
area result correlates excellently with the volumes of the com-
partments, and faster non-3D sequences can be used as a basis
for an area-based evaluation. For a follow-up examination, it
would be conceivable to perform only a short sequence in-
cluding the proposed reference plane of high quality. Due to
the excellent correlation, a reliable prediction of CSF and
brain volume seems to be possible from the area data [11].

Limitations of the study

The clinically reliable calculation of the volume of an area
determination in 2D resulted in the use of a 2D CNN as the
basic network structure. Due to the excellent initial data situ-
ation with the available high-resolution 3D data sets and the
already existing exact segmentation, a 3D CNN for the seg-
mentation would also have been conceivable. Based on the
higher spatial information in 3D, a greater accuracy of the
segmentation could have been expected. While the benefits
of 3D CNNs have been demonstrated in preliminary studies
[8, 17], using a 3Dmodel would have significantly influenced
the clinical applicability of the method. As with the FAST
algorithm, the complete 3D data set would have had to be

Fig. 4 Confusion matrix of the
FAST algorithm segmentation
result of the BrainWeb data set.
Columns represent the predicted
class and rows the true class. Data
presented in % of classified pixels
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available artifact-free and in digital form and the processing of
the data would have required increased technical and time
expenditure. The pre-trained 2D CNN, which was developed
within the scope of this study, can be easily transferred to e.g.
a smartphone app, which could be used for volume estimation
via screenshot in the clinical routine.

A general limitation of the comparability of study
results is that only a certain number of validated test
data sets are available for different modalities. For ex-
ample, there are pre-segmented test data sets of the
MRBrainS Challenge [25] in the modalities FLAIR (flu-
id-attenuated inversion recovery), IR (inversion recov-
ery), and T1, but not for T2-weighted images. Pre-
segmented true FISP data sets are not available at all
to our knowledge. The used BrainWeb data set consists
of artificially simulated MRI data and was originally

designed to validate various segmentation algorithms as
a known basic truth [20]. It exhibits similarity of image
morphological structures to in vivo acquired MRI data
[20, 38] and is used frequently in studies for verifica-
tion purposes [1, 16, 19].

With the proposed method, misclassifications were found
in the area of susceptibility artifacts of the shunt implant since
there was often complete signal annihilation. One disadvan-
tage of our method is that systematic errors made by the un-
derlying segmentation algorithm are learned by the CNN. An
example of this can be seen in Fig. 2. Here, FAST and later
CNN consistently incorrectly evaluate the susceptibility arti-
facts of the shunt system as tissue area. Of course, extinction
artifacts pose a challenge to all algorithms, and possibilities of
recognizing these artifacts and extrapolating them must be
investigated in the future.

Fig. 5 CNN and FAST
segmentation examples of
BrainWeb data set. From left to
right: original T2-weighted im-
ages, ground truth segmentation
(FAST, CSF yellow, brain blue,
tissue green, background red),
segmentation result of CNN, dif-
ferences of segmentation (deviant
classes in green and pink, con-
cordant classes grey). From top to
bottom: ascending slices of the
same data set
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Conclusion

Transfer learning from established classical segmentation al-
gorithms via deep learning techniques is a promising method
to establish a reliable segmentation. Large data sets can be
created rather quickly, which are needed to achieve reliable
segmentation accuracy through network training. With the
created segmentation algorithm, MRI data can be segmented
with reliable accuracy and the clinical course of brain and CSF
development can be traced.

The presented area determination on a single layer
allows an exact estimation of the volume of brain and
CSF. These deep learning algorithms can be integrated
into other applications e.g. via tensor flow. It would be
logical to integrate the algorithms into a mobile phone
app to allow broad access to this method. Thus, quan-
titative therapy monitoring in pediatric hydrocephalus
therapy could be performed in daily practice and serve
as a precise basis for future analysis and comparison of
treatment options.

For a further generalization of the method, additional train-
ing of the network using other common imaging modalities is
required. To expand this method to adult hydrocephalus, seg-
mentation of CT data is necessary. For future research, it must
be shown that an even more precise segmentation outside the
intracranial spaces can be achieved, e.g. by additional proba-
bilistic masks. Furthermore, it must be demonstrated how sus-
ceptibility artifacts can be extrapolated e.g. by mirroring the
opposite side or by further deep-learning procedures.

Acknowledgments We thank Heather Smith for her help with
proofreading.

Funding Information Open Access funding provided by Projekt DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institu-
tional and/or national research committee (University Hospital Tübingen,

0 1 2 3 4
Age in years

30

35

40

A
C

S
F

 in
 c

m
²

0 1 2 3 4
Age in years

50

100

150

A
B

ra
in

 in
 c

m
²

2 2.5 3 3.5 4 4.5 5
Age in years

24

25

26

27

28

A
C

S
F

 in
 c

m
²

CNN
FAST

2 2.5 3 3.5 4 4.5 5
Age in years

50

100

150

A
B

ra
in

 in
 c

m
² CNN

FAST

9 10 11 12 13 14 15
Age in years

45

50

55

A
C

S
F

 in
 c

m
²

9 10 11 12 13 14 15
Age in years

50

100

150

A
B

ra
in

 in
 c

m
²

Fig. 6 Exemplary clinical follow-up data. From left to right: original
MRI-data on the level of the foramen of Monro, diagrams for ACSF
and ABrain determined by CNN and FAST, diagrams for the estimated
areas by CNN and FAST on the left. Each data point is represented by the
MRI-images on the left. Top: implantation of a gravity-compensated VP
shunt in an infant with occlusive hydrocephalus at the age of 9 months.
The regular decrease in CSF volume and an increase in brain volume are
reflected in area estimates in control imaging at the age of 4 years.
Middle: primary VP shunt implantation in a 2-year-old boy with post-
hemorrhagic hydrocephalus, left is the pre-op scan. A slight increase of
ventricular size was observed in the further course (second MRI from
left). The adjustable valve unit was readjusted. In the subsequent MRI

controls, a further decrease of CSF and an increase in brain mass oc-
curred. Bottom: postoperative course imaging of a girl with occlusive
hydrocephalus after early childhood implantation of a VP shunt. After
an initial complication-free course with regular CSF drainage (initial pic-
ture at the age of 9 years on the left), there was an increasing
underdrainage symptomatology with fatigue and headache. The subse-
quent control MRI showed a strong increase in ventricular space.
Afterward, at the age of 13 years, operative shunt revision was performed
with the immediate postoperative improvement of the symptoms. The
control MRT examination showed a comparative decrease in the CSF
spaces after revision
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Comments

In this study, the authors build on their experience of classical machine
learning algorithms and MRI segmentation in paediatric hydrocephalus.
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in 47 patients, including a number of post- VP shunt and ETV patients.
60% of these scans are used to train a convolutional neural network,
which is then validated and tested against the remaining 40%. The authors
conclude that this method allows accurate segmentation of images into
brain, CSF, tissue and background.

They present specific examples and demonstrate that these
interpretations are clinically meaningful.

They note problems with artefacts such as shunts, which require
further development.

As machine learning becomes more relevant to medical, and
particularly radiological, practice, this study, as applied to paediatric
hydrocephalus, represents a useful addition to the current literature.

This methodology can easily provide accurate volumes of brain and
CSF, allowing not only monitoring of clinical trajectory in these patients,
who often require multiple scans over short periods of time, but also
research into the relationship of brain volume and cognition.
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