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Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs), in the
treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured
cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve
as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The
second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native) bone marrow (BM)
MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation,
markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1) may have the strongest translational
value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required
for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.

1. Introduction

BM MSCs were discovered in the late 1970s by a group
led by a Russian-born scientist Alexander Friedenstein,
who showed that BM contains a population of plastic-
adherent, highly proliferative cells, that were able to form
colony of fibroblasts (hence the name colony-forming
unit-fibroblasts, CFU-F) [1, 2]. Following implantation in
diffusion chambers, CFU-Fs spontaneously formed bone,
cartilage, and fibrous tissue in vivo [3]. Whereas Friedenstein
termed them “determined osteogenic progenitors” [4], the
subsequent findings of their multipotentiality toward other
mesenchymal lineages led Arnold Caplan to coin the term
“mesenchymal stem cells” [5], in analogy to “hematopoietic
stem cells” (HSC), which were the best described adult stem
cell type at the time.

2. Potency Markers of Cultured MSCs

The first definitive markers of MSCs were proposed in a
pioneering study of Pittenger et al., the group who also

developed robust and reproducible in vitro assays of MSC
multipotentiality towards bone, cartilage, and fat lineages
[6]. These BM MSC markers included SH2 and SH3,
later shown to correspond to CD105 and CD73 molecules,
respectively [7, 8]. Of note, CD stands for “cluster of
differentiation”, the standard nomenclature for cell surface
molecules. These two markers alongside CD90 are positively
expressed on MSCs and remain the primary molecules used
to identify MSCs by the International Society of Cell Therapy
(ISCT) position statement [9]. The ISCT position statement
also advices that MSCs should be negative for the expression
of CD11b or CD14, CD19 or CD79a, CD34, CD45, and
HLA-DR [9]. This is primarily to allow the exclusion of
haematopoetic cells which may contaminate MSC cultures.

CD105, also known as endoglin, is the TGF-beta receptor
III, which potentially plays a role in TGF-beta signalling
during MSC chondrogenic differentiation [7]. CD73 is an
ecto-5′-nucleotidase, which is known to be involved in
BM stromal interactions [8], MSC migration [10], and,
potentially, MSC modulation of adaptive immunity [11].
The exact function of the CD90 (Thy1 antigen) is less well
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defined. It has been proposed to mediate cell-cell interactions
[12, 13], involved in adhesion of monocytes and leukocytes
to endothelial cells and fibroblasts [14, 15], and may have a
role in the stromal adherence of CD34+ cells [16].

Cultured MSCs are uniformly and strongly positive for
CD105, CD90, and CD73, regardless of their passage or
time in culture [6, 17]. However, CD105 and CD73 are also
expressed on skin fibroblasts [18, 19], cells with a much
lower ability to proliferate and differentiate, compared to
BM MSCs [6, 19]. Furthermore, another plastic-adherent
cell type that is able to propagate in vitro—umbilical
vein endothelial cells—is also CD105 and CD73 positive
[20, 21]. This implies that sole demonstration of CD105
and CD73 expression without CD90 on adherent cultured
cells is insufficient to prove their MSC identity. Another
disadvantage of CD73 and CD105 is a limited cross-reactivity
of anti-human antibodies with animal cells (Table 1), an
issue that will be discussed later in the paper.

A complication regarding the long-term cultivation of
MSCs was raised when Prockop’s group showed a reduction
in their colony-forming efficiency with increasing passage
[22]. Earlier passage MSCs were documented to have better
colony-forming efficiency compared to later passages [22].
This phenomenon was shown to be linked with telomere
erosion [23] and later described as “in vitro MSC ageing”
[24]. These ideas were further extended by Wagner et al.
who showed that alterations in phenotype, differentiation
potential, gene expression, and miRNA patterns “are not
restricted to later passages, but are continuously acquired
with increasing passage” from the first passage onwards
[25]. The fact that CD105, CD73, and CD90 are expressed
at similar levels in early-passage (potent) and late-passage
(aged, presenescent) MSCs indicates that their value maybe
limited only to basic MSC characterization. The limitation
of these markers is further demonstrated by the fact that
although CD73 and CD105 are expressed on clonally derived
MSCs [6], only 1/3 of these clones are truly multipotential
[6]. This suggests that CD73 and CD105 expression may not
be directly linked with MSC differentiation capacity.

Stro-1 was another molecule described to be highly
specific for BM CFU-F [26]. However, the Stro-1 antigen
remains unclustered, limiting its widespread use in human
and animal experimentation. Interestingly, Stro-1 expres-
sion is downregulated during prolonged culture [26]. The
function of Stro-1 on MSCs remains largely unknown; in
one study, Stro-1+-expanded MSCs were reported to have
a better homing capacity, compared to expanded Stro-1−

MSCs, suggesting its potential role in MSC migration and
attachment to extracellular matrix [27]. In 2003, Gronthos
et al. refined their CFU-F isolation strategy, with the
addition of CD106 (VCAM-1) as another MSC marker [28].
Sorting for double-positive cells (Stro-1+CD106+) yielded
cell fractions highly enriched for CFU-F [28]. Similar to
Stro-1, CD106 expression appears to decline in MSCs at
later passages [17, 29, 30]. In contrast to CD105 and CD73,
CD106 expression is also strongly downregulated in MSCs
after differentiation to adipo-, osteo-, and chondrocytes,
suggesting that it may indeed be a marker of the most
potent/undifferentiated cells within expanded MSC cultures

[31]. Another recently proposed possibility is that similar
to Stro-1, CD106 (VCAM-1) expression on cultured MSCs
is also related to their homing, migration, and adhesion
capabilities [29].

Based on these and similar published findings, one
can conclude that there exist two categories of markers
for cultured MSCs. One category includes molecules that
are stably expressed in vitro, with little difference between
donors and little correlation with culture’s in vitro history
and ageing status (such as CD73, CD90, and CD105). The
other, “second-tier” group of markers contains molecules
which show dependency on donor or culture “age” or any
other variables such as cell homing/attachment properties
or cell seeding density (such as Stro-1 or CD106). Another
example is PODXL, a sialomucin in the CD34 family, which
marks highly proliferative MSCs in low-density, low-passage
cultures and is downregulated in high-density cultures [33].
It is tempting to speculate that second-tier markers may
be reflective of the MSC maturity or potency status at
the single-cell level; if this stands true, a combination of
markers from both groups will be needed for quality-control
of MSC batches with characterized levels of potency. A
concerted effort from different laboratories is needed to
validate previously reported “second-tier” markers in respect
to donor age, culture conditions, and seeding densities and
to validate correlations and reproducibility between different
centers.

A good example of such joint effort can be illustrated in
Wagner et al., where candidate gene expression markers were
validated in 4 centers across Europe [34]. High variability
between centers was found [34] and the measurement of
MSC methylation status was proposed to be a better way
of monitoring in vitro MSC ageing [34, 35]. Alternatively,
the lengths of telomeres in cultured MSCs may serve as a
“true” indicator of MSC age in culture. Gradual telomere
shortening in cultured MSCs was first documented by Banfi
et al. [23] and further demonstrated by Baxter et al. [24] and
other independent investigators [17, 36, 37]. It is noteworthy,
however, that telomere lengths in human populations are
heritable, showing a very high degree of donor-to-donor
variability [38]. Similar to “second-tier” surface markers
described previously, the utility of telomere length analysis
as a measure of MSC “ageing” status may be limited to a
single MSC batch at different stages of manufacture, rather
than for comparison between batches from different donors.
Such analysis may be very useful for bulk manufacture of
MSCs for allogeneic use, whereby the rate of telomere erosion
between passages can be seen as an indicator of their overall
proliferative potency.

What about markers indicative of MSC propensity to
differentiate? CD106 was proposed to be such marker by
Fukiage et al. who showed that CD106+ BM MSCs were less
osteogenic and more adipogenic than CD106-MSCs [39].
In this respect it is noteworthy that MSC proliferative and
overall differentiation capacities are known to be intricately
linked. It is now broadly accepted that aged, presenescent
MSCs have a significantly reduced differentiation capacity
towards adipogenic and chondrogenic lineages compared
to early-passage MSCs (reviewed in Sethe et al. [40]). This
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Table 1: Surface antigen expression on cultured MSCs from different species.

Surface
antigen

Human Mouse∗∗ Rat Rabbit Primate Dog Pig Goat Sheep Cow Horse

CD13
++ [72] − [73]∗ NC [72] NC [72] NC [72] NC [72] NC [72] NC [74]

++ [75] + [76]∗

++ [77]

CD29

++ [72] ++ [78]∗ ++ [79]∗ ++ [80] NC [72] NC [72] NC [72] NC [72] NC [72] ++ [59]

++ [81] ++ [73]∗ ++ [82]∗ + [83] ++ [81] ++ [84]∗ ++ [62]∗

++ [6] ++ [58]∗ ++ [46] ++ [85]∗

++ [75] ++ [47]

++ [77]

CD31
− [72] − [78]∗ NC [72] NC [72] NC [72] NC [72] NC [72]

− [81] − [86]∗ − [81] − [84]∗

− [75] − [46] − [85]∗

CD34

− [72] − [78]∗ +− [80] NC [72] NC [72] NC [72] NC [72] − [61] −(CND) [59]

− [81] +− [73]∗ − [87] − [83]∗ − [81] NC [72]

− [6] − [76]∗

− [9] + [86]∗

CD44

++ [72] ++ [78]∗ + [82]∗ NC [72] NC [72] NC [72] NC [72] ++ [61] ++ [74] − [59]

++ [81] ++ [73]∗ + [83]∗ ++ [81] NC [72] + [62]∗

++ [6] ++ [46] ++ [84]

++ [77] ++ [85]

CD49e
++ [81] ++ [73]∗ ++ [79]∗ − (CND) [81]

++ [77]

CD45

− [72] − [78]∗ − [79]∗ − [87] NC [72] NC [72] NC [72] − [61]∗ +− [74]∗ − (CND) [59]

− [81] +− [73]∗ +− [82]∗ − [83]∗ − [81]∗ NC [72]

− [6] − [76]∗ +− [58]∗ − [47] − [84]

− [9] − [86]∗

CD73

++ [72] +− [73]∗ ++[79]∗ ++ [72] − [72] − [72] − [72] − [72] NC [74] − [59]

++ [9] ++[88]∗

++ [75]

++ [77]

CD90

++ [72] ++ [73]∗ ++[79]∗ ++ [72] − [72] ++ [72] − [72] − [72] ++ [59]

++ [81] + [76]∗ ++[82]∗ + [83] ++ [81]

++ [6] − [86]∗ ++ [58]∗ ++ [46]

++ [9] ++ [88]∗ ++ [47]

++ [77]

CD105

++ [72] + [78]∗ ++ [79]∗ ++ [72] − [72] − [72] − [72] +− [61] NC [74] − [59]

++ [81] ++ [73]∗ + [87] − [83] NC [81] − [72]

++ [6] ++ [47]

++ [9]

++ [77]

CD146
++ [72] ++ [72] + [72] ++ [72] − [72] ++ [72]

++ [81] + [81]

++ [77]

CD166
++ [81] +− [73]∗ − [81] ++ [85] ++ [74]

++ [75]

++ [77]
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Table 1: Continued.

Surface
antigen

Human Mouse∗∗ Rat Rabbit Primate Dog Pig Goat Sheep Cow Horse

CD271
+− [72] + [72] +− [72] +− [72] +− [72] +− [72]

+− [81] +− [81]

c-Kit
(CD117)

− [81] ++ [78]∗ − [81]

+− [73]∗

− [76]∗

− [86]∗

Sca-1

− [72] ++ [78]∗ − [72] − [72] − [72] − [72] − [72]

− [81] ++ [73]∗ − [81]

++ [76]∗

++ [86]∗

SSEA4

++ [72] ++ [89]∗ ++ [72] − [72] − [72] + [72] − [72]

++ [81] NC [81]

++ [89]

++ [77]

Stro-1
++ [81] ++[79]∗ +− [81] − [85]

++ [26]

W8-B2/
MSCA-1

+ [72] + [72] + [72] + [72] ++ [72] +− [72]

+ [81] + [81]
∗

Species-specific antibody (all others are antihuman antibodies). NC: no cross-reactivity; CND: cross-reactivity not determined. Symbols indicate marker
expression levels: −: no expression; +−: <5% expression; +: 5−50% expression, ++: 50−100% expression. ∗∗Markers specific for MSCs and MPCs are
included due to confusion in terminology.

implies that measuring the MSC senescence status can in fact
be indicative, to some degree, of their multipotentiality. At
the clonal level, it has been recently shown that the most
proliferative, tripotential clones are rapidly growing, whereas
bi- and unipotential clones expand slower [41]. As early
as 2000, Muragia et al. demonstrated that the majority of
BM CFU-Fs are in fact unipotential towards osteogenesis
[42]. Standard MSC cultures are composed of a mixture of
uni-, bi-, and tripotential CFU-Fs and their precise ratio
and relative rates of growth, in our opinion, determine the
levels of multipotentiality of standard MSC cultures. General
decline in MSC multipotentiality during extended passaging
seems to correlate well with a known decline in CD106+
cells [17, 29, 30] supporting the idea that CD106 may indeed
mark the most immature, multipotent (rather than uni- or
bipotent) progenitors.

3. BM MSC Markers in Animal Models

Animal models have become crucial for preclinical testing
of MSC preparations. MSCs from larger animals (dog,
sheep, goat, and horse) are normally used for a preclinical
evaluation of bone and joint tissue regeneration from MSCs
[43, 44]. Such large animal models carry significant logistical
and financial considerations but can in fact be useful in
some cases whereby veterinary patients can be recruited
(such as race horses) [45]. Pig is emerging as the species of
choice for preclinical evaluation of the immunomodulatory
effects of MSC in terms of both cardiac repair [46] and
prevention of immune rejection after solid organ transplant

[47]. Smaller animals like rats are frequently used for
testing neurological and brain injury repair [48]. Mice have
been used to study the immunomodulatory properties of
MSCs in both autoimmune [49, 50] and neurological [51]
disease models. Although mouse models provide proof-of-
principle and allow testing of MSC function in a variety of
diseases including arthritis [52, 53], they often fail, in our
opinion, to adequately mirror the human diseases. Naturally
occurring diseases in larger domestic animals can be more
suitable as disease models for some human genetic and
acquired diseases and could help to define the potential and
therapeutic efficiency and safety of stem cells therapies [54].

Defining the phenotype of MSCs from different animal
species is complicated by a lack of species-specific antibodies
(Table 1). Whilst there is a larger selection of species-specific
antibodies for the more commonly used small animals
such as mouse and rat, species-specific antibodies for larger
animals are less common. In the absence of species-specific
antibodies for common MSC-selective markers in large
animals, the majority of work to date has been performed
using anti-human antibodies which do not always cross-react
with these species. It should also be noted that there is an
increasing amount of data available on MSC phenotype in
various species as determined by immunohistochemistry and
cytochemical techniques [55–58], but given the semiquanti-
tative nature of this data this paper will focus on the MSC
phenotype as determined by flow cytometry.

Many of the antigens which are known not to be
expressed on MSCs in humans, such as CD31, CD34, and
CD45, are also absent on MSCs from other species (Table 1).
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Whilst likely to be a true finding, even negative results
need to be interpreted with caution as the cross-reactivity
of the anti-human antibody clones used have not always
been fully evaluated on the species being investigated. Of
the publications considered in this paper (Table 1) only
a minority give information on whether the anti-human
antibodies being used have been validated for cross-reactivity
with the target species. Whilst some investigators state that
they have not fully validated the antibody cross-reactivity
[59], others have screened antibodies of interest for positive
expression by flow cytometry on other cell types from
the same species [60, 61]. Some investigators have gone
further in their evaluation, by performing western blot
and immunoprecipitation experiments on both MSCs and
control cell types from the same species [62].

Some of the most consistently expressed markers across
species are CD29 and CD44, but since these molecules are
expressed by multiple cells types in many tissues [63], their
lack of specificity may limit their usefulness as a marker for
MSCs. CD44 has been recently proposed to be involved in
stem cell pluripotency and mark several types of cancer stem
cells [64]; its numerous other functions, including roles in
cell-matrix interaction, homing, adhesion, matrix assembly,
and apoptosis resistance [64], preclude, in our opinion, its
widespread use as a robust marker of MSCs.

As mentioned earlier, the current criteria for human
MSCs put emphasis on the positive expression of CD73,
CD90, and CD105 [9]; however none of these markers
are expressed by all species (Table 1). CD90 shows strong
expression in the majority of species tested but is absent
on MSCs in goats and sheep. Interestingly, the actual tissue
distribution of CD90 expression varies with species [65–68]
and in humans CD90 expression is more restricted compared
to mice [16, 69, 70]. Furthermore, different strains of mice
express two alternative CD90 antigens (CD90.1/Thy1.1 or
CD90.2/Thy1.2), which only differ by one amino acid [71].
This puts into question the validity of using anti-human
CD90 antibodies for other species since this antigen does
not appear to be well conserved. In our opinion, the variable
levels or complete lack of expression of CD73, CD105 and
CD90 in MSCs from some animal species using anti-human
antibodies is likely to indicate a lack of antibody cross-
reactivity. Species-specific antibodies would be required to
confirm the true expression pattern of these molecules.

Whilst expression of the same antigens on MSCs across
different species is not essential for defining useful MSC
markers, the advantages it would bring to preclinical evalua-
tion in animal models do make this a desirable consideration.
A number of known human MSC markers have yet to be
tested in all species (Table 1). CD146, for example, shows
consistent strong expression in humans, pigs, and sheep
but remains to be tested in the largest animal models such
as cows and horses. Some markers such as CD271 and
W8-B2/MSCA-1 have been used to prospectively isolate
MSCs in humans [90], a subject that will be expanded
on later. The lack of expression of CD271 on cultured
MSCs from any species is perhaps predictable given that
CD271 is downregulated on culture of human MSCs [55,
91, 92]. This raises the possibility that the best markers for

identification may be different between freshly isolated and
culture-expanded cells. Given that expression is observed in
most of the species tested, W8-B2/MSCA-1 is an interesting
candidate for further investigation. The consistent but low
expression (Table 1) could be due to its low-level, homoge-
nous expression on all cultured MSCs or due to a small, but
distinct proportion of W8-B2 positive cells within animal
MSC cultures; this is something to be considered in future
studies addressing W8-B2 expression in MSCs from other
animal species such as mouse, rat, and horse.

4. Markers for Prospective Isolation of
BM MSCs in Humans and Animals

The establishment of robust markers for prospective isola-
tion of MSCs is of utmost importance. Firstly, it is needed
to put MSCs on the same footing as HSCs, in which
the in vivo phenotype is well established [93] allowing
the direct study of the function of uncultured HSCs in
animal models [94]. Secondly, if the phenotype of plastic-
adherent culture-initiating MSCs was known, the contribu-
tion of other adherent cells from the marrow (hematopoietic
progenitors, monocytic-, and endothelial-lineage cells) to
MSC “plasticity” and other characteristics would have been
much clearer. Additionally, freshly isolated MSCs that have
not been artificially “aged” in culture are likely to have
higher multipotential and proliferative capacities compared
to their culture-expanded progeny. Finally, MSC cultures
established from the selected native MSCs free of contami-
nating (and potentially inhibitory) plastic adherent cells may
have stronger immunosuppressive and lymphohematopoi-
etic engraftment-promoting properties, as shown recently
[95]. Stronger immunosuppressive effects may at least in part
be mediated by an enhanced support of highly suppressive
naive T-regulatory cells [96].

The up-to-date list of candidate markers used to isolate
human BM MSCs has been extensively reviewed elsewhere
[92, 97, 98]. Here we will discuss several issues that have
not been previously highlighted: firstly, the cross-reaction
of these candidate markers with other BM cells. As seen
in Table 2, almost every previously proposed human BM
MSC marker is also expressed on other cell types found in
the marrow, be it of hematopoietic or endothelial lineage.
This does not pose a significant problem in current MSC
manufacture protocols, in which MSCs undergo several
rounds of passaging, leading to a gradual loss of these con-
taminating cells. However if one considers manufacture of
MSC-seeded scaffolds in rotating bioreactors [99], adherent
contaminating cells may by highly unfavorable, taking up
the space and oxygen from growing MSCs. The same con-
siderations apply when freshly purified, uncultured MSCs
are used. In one clinical study BM MSCs were concentrated
using a commercial concentrator device and it was found
that a graft containing >1000 CFU-F/cm3 was effective in
healing nonunion fractures following percutaneous injection
[100]. However it was noted that transplanted MSCs had to
compete with other transplanted cells for oxygen and “one
way to optimize cell survival is to limit the transplanted
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Table 2: Expression of common MSC markers on other cell types found in human bone marrow.

CD13 CD29 CD44 CD73 CD90 CD105 CD106 CD146 CD200 CD271 STRO-1 SSEA-4

Mesenchymal
Stromal Cells

+ [91] + [101] + [102] + [6] + [9] + [6] + [90] + [103] + [77] + [91] + [26] +[89]

Haematopoietic
Stem Cell

+ [104] + [16]

Lymphoid
lineage

+ [105] + [106] + [107] + [108]

Myeloid lineage + [109] + [105] + [110] + [111]

Megakaryocytic
lineage

+ [112] + [113]

Erythroid
lineage

+ [110] + [57] + [26] + [114]

Endothelial
lineage cells

+ [115] + [116] + [110] + [21] + [117] + [118] + [103] + [108] + [119] + [120]

cells to those that contribute to the formation of bone (i.e.,
exclude all others)” [100].

The depletion of undesirable cells and hence an enrich-
ment of human BM MSCs can be achieved by positive selec-
tion with markers having the least cross-reactivity with other
cell types (Table 2). Notably, CD271 and W8-B2/MSCA-
1 have an additional advantage of being highly conserved
between species (Table 1) making them usable for fresh MSC
isolation in large animals. Specifically, CD271 was found use-
ful for the isolation of BM MSCs in bovine [74] and porcine
[81] models. The function of CD271 on MSCs remains
incompletely understood. In human jaw periosteum-derived
cells, CD271+ and CD271− populations were shown to
differ in their mineralizing capacities suggesting that CD271
could “be considered an early surface marker of osteogenic
capacity” [121]. In dental pulp stem cell cultures, CD271
was proposed to have a role in inhibiting their differentiation
[122]. In another view, CD271 is a general neural crest stem
cell marker [123], thus putatively explaining its expression on
melanoma cancer stem cells [123] and, potentially, on native
follicular epithelial cells [124].

W8-B2/MSCA-1 antigen is identical to tissue nonspecific
alkaline phosphatase (TNAP), an enzyme known to be
expressed at high levels in human liver, bone, and kidney
and in embryonic stem cells [125, 126]. In a knockout mouse
model, TNAP was shown to promote bone mineralization by
providing free inorganic phosphate and by degrading inor-
ganic pyrophosphate, which inhibits mineralization [127].
The STRO-3 antibody has also been shown to bind to
TNAP and be a good marker of uncultured BM MSCs
[128]. Notably, we demonstrated the expression of bone/liver
alkaline phosphatase on the surface of BM CD271+ cells in
2006 [92].

It is generally accepted that the sole positive selection
for CD271 may not be sufficient to achieve 100% purity for
human MSCs. The removal or “gating out” of hematopoietic
lineage cells is commonly required, as CD271 is expressed
at low levels on hematopoietic progenitor cells of the
erythroid lineage [57, 129]. When gated only on the non-
hematopoietic (CD45−/low fraction), the human BM MSC

population (CD73+CD105+) can be easily found [56]. In
our hands however, CD105 appears to be less discriminative
than CD271, CD73, or CD90 (Figure 1) indicating that
CD271 and/or CD73 gating is possibly the best way for
identifying and sorting human BM MSCs to the highest
levels of purity [129, 130]. Several other studies have been
performed recently aimed at achieving high-purity BM
MSCs using a combination of CD271 and markers other
than CD73, CD105, or CD90. For example, CD146 has
attracted a lot of interest recently, based on seminal papers by
Sacchetti et al. [131] and Crisan et al. [132] linking CD146
expression on MSCs with their pericyte topography and
function. More recently however, it was shown that CD146
expression on CD271+ MSCs correlates more with their in
situ localization [57] and/or the age of donor [133]. Perhaps
more promising for the refinement of the MSC purification
strategy to 100% purity would be further selection for W8-
B2/MSCA-1 expression [90, 98]; these findings are awaiting
further confirmation by other independent investigators.

5. Molecular Markers of Purified
Uncultured MSCs

It would be advantageous if a molecular marker of MSCs,
in the manner of oct-4 for embryonic stem cells [134],
could be found, helping to identify MSCs in other tissues
and organs. To date, this has proven elusive. Instead,
the simultaneous expression of transcription factors (TFs)
triggering several mesenchymal lineages (including, but not
limited to, adipogenic, chondrogenic, and osteogenic) has
been reported in native BM MSCs [28, 57] or their expanded
progeny [135]. We have recently found strong expression
of pericytic and hematopoiesis-supportive genes in CD271+
BM MSCs [136], confirming and extending earlier findings
obtained using Stro-1 based MSC selection [137]. We
additionally observed prominent Wnt pathway signaling
activity in uncultured BM MSCs, which was significantly
stronger compared to cultured MSCs or skin fibroblasts
[136]. Further advance in qPCR methodology allowing the
simultaneous assessment of thousands of candidate genes
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Figure 1: Coexpression of (a) CD271/CD73, (b) CD271/CD90, and (c) CD271/CD105 on CD45-/low cells in human bone marrow aspirates
determined by flow cytometry. Mononuclear cells were isolated from bone marrow aspirates and stained with antibodies as previously
described [32].

in rare, sorted MSCs is likely to reveal novel gene(s) with
robust, strong expression and high selectivity. These new
gene transcripts could be used as molecular markers of
marrow MSCs leading to clear demonstration of their in vivo
function using knock-out animal models.

6. Concluding Remarks

At present, we cannot definitely conclude that MSCs resident
in different tissues are the same or even very similar. For
example, adipose-derived MSCs express CD34 [138] whereas
BM MSCs do not (Table 1). CD271 is expressed in the
synovium [139], but the phenotype of synovial MSCs may
be much broader [140]. W8-B2/MSCA-1 is expressed by BM
MSCs but not placenta-derived MSCs [141]. This suggests
that the search for novel markers, intricately linked to the
fundamental MSC function, including both surface and
molecular markers, should continue. The knowledge of the
phenotype and gene expression profile of BM MSCs in
their original niche should undoubtedly help to develop
new methodologies for expanding these MSCs “in their
native state”, via the design of novel biomimetic scaffolds,
surfaces, attachment molecules or cytokine cocktails. This
is likely to yield MSC-based therapeutic products with
significantly improved quality and predictable biological
behaviors. Testing of novel purified and expanded MSC-
based products in large animal models will allow through
pre-clinical evaluation of novel products prior to clinical
trials in humans. Additionally, a broader knowledge of native
BM MSCs in diseases related to bone physiology and blood
cell development, including osteoporosis and leukemias, will
lead to a much better understanding of the role of MSCs
in the development of these diseases, potentially identifying
new targets for therapy.
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