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Abstract: Chain-end functionalized polymers play an important role in the field of building complex
macromolecular structures. In this study, we have synthesized and characterized four dibenzhydryl
iminopyridine Ni(II) complexes bearing remote flexible substituents (Et and n-Bu) to provide hyper-
branched ethylene oligomers in ethylene oligomerization with moderate to good activities. Most
notably, toluene-end-functionalized hyperbranched ethylene oligomers were obtained under elevated
temperature conditions and validated by NMR. The tandem catalysis of ethylene oligomerization and
the subsequent Friedel–Crafts addition of the resulting unsaturated products to toluene molecules
was proposed as the cause of the observed phenomenon.

Keywords: iminopyridine Ni(II) complexes; ethylene oligomerization; hyperbranched; toluene-end-
functionalized

1. Introduction

Chain-end functionalized polymers exhibit significant importance in the field of build-
ing complex macromolecular structures [1–3]. There are three main types of methods which
have been reported to synthesize chain-end functionalized polymers. The first reported
approach is that of living coordination polymerization of monomers, followed by in situ
chain end reaction modification [4–7]. It is clear that such a method has inherent draw-
backs, where the catalyst can only initiate one polymer chain per catalyst, thus limiting its
efficiency and yield significantly. The second approach is the in situ one-pot method of
chain-end functionalization by chain transfer [8–16]. Each catalyst is capable of generating
a number of polymer chains. Due to the efficiency of this type of approach, it can play an
important role in certain situations. For example, some early transition-metal catalysts are
widely used in chain transfer chain-end functionalization reactions, which are capable of
H-X σ-bond metathesis, such as an amine (H−NR2), borane (H−BR2). The final reported
approach is chain-end functionalization of polymers by modification of unsaturated end
groups of synthesized polymers, which is also a common approach. Though great success
has been achieved with this strategy, there are several limitations which need to be over-
come, such as difficulty in quantitatively converting terminal unsaturated bonds, due to
the low concentration of terminal double bonds in polymers and the harshness of polymer
solubility [17].

In recent years, an impressive effort has been devoted to exploring late-transition
metal-catalyzed ethylene (co)oligomerization, which enables the synthesis of branched and
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even hyperbranched ethylene oligomers and co-oligomers [18–25]. Recently, many novel
iminopyridine Ni(II) and Pd(II) complexes were designed for ethylene (co)oligomerization
due to the unilateral axial steric structure of the iminopyridine ligands, which facilitates
the chain transfer reaction during (co)oligomerization [26–35]. In this contribution, a series
of rigid–flexible double-layer steric iminopyridine Ni(II) complexes, containing bulky
diarylmethyl substituents with remote alkyl moieties, were synthesized and employed for
ethylene oligomerization. Surprisingly, chain end toluene functionalized hyperbranched
ethylene oligomers were prepared in situ in one pot.

2. Results and Discussions
2.1. Synthesis and Characterization of Iminopyridine Ni(II) Complexes

Dibenzhydryl anilines A1 and A2 with remote flexible substituents (Et and n-Bu)
were synthesized according to our previous work [30]. The iminopyridine ligands L1–L4
were obtained from A1 and A2 with different 6-substituted 2-acetylpyridine by using the
template-type method (Scheme 1) [30]. The ligands were obtained in good yields (60–72%)
without chromatography and characterized by NMR (Figures S1–S8) and high-resolution
mass spectra (Figures S9–S12). Then, the ligands reacted with 1.0 equiv. of NiBr2(DME)
in dichloromethane at room temperature producing the corresponding Ni(II) complexes
Ni1–Ni4 in 75–85% yields (Scheme 1). The identity and purity of Ni1–Ni4 were confirmed
by MALDI-TOF MS (Figures S13–S16) and elemental analysis. A single crystal of Ni1
was available from layering its CH2Cl2 solution with hexanes at ambient temperature
(Figure 1). The complex Ni1 was crystallized as a centrosymmetric dimer and each Ni(II)
atom coordinated with two bridging bromine atoms and one iminopyridine ligand. One
terminal bromine atom completed the square-pyramidal coordination sphere of the Ni1
molecular structure. The dibenzhydryl groups deviated from the catalytic center, which
might indicate that the complexes with dibenzhydryl substituents could not maintain an
effective shielding on the catalytic center, leading to an easy chain transfer during the
oligomerization process.
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2.2. Ethylene Oligomerization

With 200 equiv. of Et2AlCl activated, the complexes Ni1 and Ni2 with H at the
6-position of the pyridine ring exhibited high activities (ca. 106 g·mol−1·h−1), whereas
the complexes Ni3 and Ni4 with Br at the same position performed moderate activities
(ca. 105 g·mol−1·h−1) of ethylene oligomerization (Table 1). All of the Ni(II) catalysts
yielded low molecular weight (ca. 0.2–3.7 kg/mol) ethylene oligomers with high branching
densities (76–94/1000 C) (Table 1). Interestingly, both the catalytic activity and molecular
weight decreased as the reaction temperature increased. This was mainly attributed to the
elevated temperatures enhancing chain transfer more than chain growth with the nickel
catalysts and reducing the solubility of ethylene in toluene. Generally, complexes Ni1–Ni2
with H at the 6-position of the pyridine ring exhibited higher activities than complexes
Ni3–Ni4 with Br, as well as yielding higher molecular weight ethylene oligomers, which
was mainly due to the presence of the Br atom at the 6-position of the pyridine ring
hindering the coordination and insertion of ethylene in the oligomerization process [32].
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The slowing down of chain growth with little effect on chain transfer directly leads to a
decrease of molecular weight. Compared to Ni1 with an ethyl group, Ni2 with a long
chain butyl group showed lower activities and produced higher molecular weight ethylene
oligomers at 30–70 ◦C (entries 1–3 vs. 4–6, Table 1). These results indicated that the long
chain butyl groups were helpful to improve the molecular weight of the resulting oligomers
at the expense of activity. The latter was mainly attributed to the fact that the long chain
alkyl substituents with large steric hindrance facilitated the impediment of chain transfer
reactions while, in the meantime, discouraging the coordination and insertion of ethylene.
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Table 1. Effect of Catalysts and Temperatures on Ethylene Oligomerization.

Ent. Precat. T/◦C Yield/g Act. b Mn
c Mw/Mn

c B d F–C e

1 Ni1 30 3.54 1.77 3.6 1.42 78 0%
2 Ni1 50 3.10 1.55 3.1 1.38 84 0%
3 Ni1 70 2.98 1.49 2.8 1.28 93 100%
4 Ni2 30 3.02 1.51 3.6 1.45 78 0%
5 Ni2 50 2.81 1.41 3.7 1.37 79 0%
6 Ni2 70 2.31 1.16 3.0 1.31 94 100%
7 Ni3 30 1.00 0.50 1.3 1.04 81 Part
8 Ni3 50 0.65 0.33 0.8 1.04 76 100%
9 Ni3 70 0.47 0.24 0.2 f - f - f 100%

10 Ni4 30 0.45 0.23 1.6 1.05 76 Part
11 Ni4 50 0.43 0.22 1.2 1.03 78 100%
12 Ni4 70 0.30 0.15 0.2 f - f - f 100%

a General conditions: complexes (2 µmol), Et2AlCl (200 equiv.), 1 mL CH2Cl2, 20 mL toluene, time = 1.0 h,
ethylene = 6 atm. b Activity (Act.) = 106 g/(mol Ni·h). c Molecular weights (kg mol−1) determined by GPC in
THF at 40 ◦C vs. polystyrene standards. d brs = Number of branches per 1000 C, as determined by 1H NMR
spectroscopy. e Conversion of the Friedel–Crafts reaction, as determined by 1H NMR spectroscopy. f Molecular
weight below the detection limit of GPC, GC-MS detection of molecular weight around 0.2 kg/mol.

NMR spectra were utilized to analyze the microstructure of the produced ethylene
oligomers. Interestingly, in the 1H NMR spectra of the ethylene oligomers formed at 30 and
50 ◦C in toluene with complexes Ni1 and Ni2 (Table 1, entries 1, 2, 4, and 5), internal olefinic
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(major, CH=CH, 5.48–5.30 ppm) or vinylic (minor, CH2=CH, 5.03 ppm and 4.95 ppm) pro-
ton signals were observed as the unsaturated chain end group (Figure 2A). However, the
ethylene oligomers obtained at 30 ◦C in toluene with complexes Ni3–Ni4 showed not only
internal olefinic (major, CH=CH, 5.48–5.30 ppm) or vinylic (minor, CH2=CH, 5.03 ppm
and 4.95 ppm) proton signals but also the aromatic proton resonances (6.80–7.22 ppm)
(Figure 2B). Further raising the reaction temperature to 50–70 ◦C with Ni1–Ni2 (70 ◦C)
and Ni3–Ni4 (50 and 70 ◦C) led to complete disappearance of olefinic proton signals and
aromatic proton resonances (6.80–7.22 ppm) were detected exclusively as the chain ends
(Figure 2C), which suggested the formation of toluene-end-functionalized branched ethy-
lene oligomers. It implied that the process might undergo a tandem catalysis of ethylene
oligomerization and the subsequent Friedel–Crafts addition of the resulting unsaturated
ethylene oligomers to solvent molecules (Scheme 2). More importantly, the ratio of toluene-
end-functionalized ethylene oligomers could be facilely controlled by catalyst structure and
reaction temperature. The microstructure of a typical ethylene oligomer (Table 1, entry 2)
was verified by the 13C NMR analysis (Figure 3) [36–38]. The 13C NMR spectrum confirmed
the presence of branches of various chain lengths (B1, B2, B3 and Bn branches), olefinic
carbons, and sec-butyl structures (Figure 3). Among them, terminal methyl group and
methyl branches dominated all the branches, and hyperbranched structures were observed
as well, as evidenced by the existence of sec-butyl groups [18]. The chain-end toluene
functionalized hyperbranched ethylene oligomers could be used in lubricant and surfactant
applications [18].
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3. Conclusions

In summary, we have synthesized and characterized four dibenzhydryl iminopyridine
Ni(II) complexes bearing remote flexible substituents (Et and n-Bu). Complexes Ni1–Ni2
with H at the 6-position of the pyridine ring performed high activities (ca. 106 g·mol−1·h−1)
while complexes Ni3–Ni4 with Br at the 6-position of the pyridine showed moderate activi-
ties (ca. 105 g·mol−1·h−1) of ethylene oligomerization. Highly branched (76–94/1000 C)
ethylene oligomers with various molecular weight sizes were produced in the above cat-
alytic system. Most notably, toluene-end-functionalized hyperbranched ethylene oligomers,
validated by NMR, were obtained under elevated temperature conditions. A plausi-
ble mechanism was also demonstrated, which underwent tandem catalysis of ethylene
oligomerization and the subsequent Friedel–Crafts addition of the resulting unsaturated
ethylene oligomers to toluene.
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4. Experimental Sections
4.1. General Considerations

All chemicals were commercially sourced, except those having synthesis as described.
All experiments were carried out under a dry nitrogen atmosphere using standard Schlenk
techniques or in a glove-box. Deuterated solvents used for NMR were dried and distilled
prior to use. The 1H and 13C NMR spectra were recorded by a JNM-ECZ600R or JNM-
ECZ400R spectrometer at ambient temperature unless otherwise stated. The chemical shifts
of the 1H and 13C NMR spectra were referenced to the residual solvent, with coupling
constants in Hz. Mass spectra were obtained by the Analytical Center of Anhui University.
Elemental analysis was performed by the Analytical Center of Anhui University. X-ray
Diffraction data were collected at 293(2) K on a Bruker Smart CCD area detector with
graphite-mono-chromated Mo Kα radiation (λ = 0.71073 Å). The molecular weight and
the molecular weight distribution of the polymers were determined by gel permeation
chromatography (GPC) equipped with two linear Styragel columns (HR2 and HR4) at 40 ◦C,
using THF as a solvent and calibrated with polystyrene standards. THF was employed as
the eluent at a flow rate of 1.0 mL/min.

4.2. Procedure for the Synthesis of Ligands L1–L4

Anilines A1–A2 were synthesized according to our previous work [30]. The ligands
L1–L4 were prepared as follows: ZnCl2 (0.34 g, 2.5 mmol) and 2-acetylpyridine (3.0 mmol),
were suspended in glacial acetic acid (5 mL). Anilines (2 mmol) were then added, and the
reaction mixture was refluxed under stirring for 4 h. The solution was allowed to cool
to room temperature, and a bright yellow solid precipitated. The solid was separated by
filtration and washed with acetic acid (3 × 5 mL) and diethyl ether (5 × 5 mL) to remove
the remaining acetic acid. Drying under vacuum gave a bright yellow and poorly soluble
solid. Then, the zinc was removed from the zinc diimine complex. The product of the
previous step was suspended in methylene chloride (30 mL), and a solution of potassium
oxalate (0.41 g, 2.2 mmol) in water (5 mL) was added. The reaction mixture was stirred
vigorously for 1 h. The two phases were separated, and the organic layer was washed with
water (3 × 20 mL) and dried with MgSO4. After filtration, the solvent was removed under
vacuum to obtain the product as a yellow powder and dried under high vacuum. The
ligands L1–L2 were also known [30].
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1.13 (s, 3H, Ar-C(CH3)=N). 13C NMR (151 MHz, CDCl3) δ 169.43 (C=N), 156.33, 148.50,
146.10, 141.94, 141.67, 141.46, 140.19, 136.10, 132.53, 131.46, 129.79, 129.43, 128.52, 127.75,
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17.03 (Ar-C(CH3)=N), 15.67 (CH2CH3), 15.63 (CH2CH3). MALDI-TOF-MS (m/z): calcd for
C48H50N2: 654.4000, Found, 654.4003, [M + H]+.
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C(CH3)=N), 15.67 (CH2CH3), 15.63 (CH2CH3). MALDI-TOF-MS (m/z): calcd for C48H50N2: 
654.4000, Found, 654.4003, [M + H]+. 
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CH2CH2CH2CH3), 1.45–1.20 (m, 8H, CH2CH2CH2CH3), 1.08 (s, 3H, Ar-C(CH3)=N), 0.92 (q, 

L2 (1.01 g, 66%). 1H NMR (600 MHz, CDCl3) δ 8.59 (d, J = 4.1 Hz, 1H, Ar-H), 8.05
(d, J = 7.8 Hz, 1H, Ar-H), 7.70 (t, J = 7.2 Hz, 1H, Ar-H), 7.39–7.29 (m, 1H, Ar-H), 7.03 (d,
J = 7.9 Hz, 4H, Ar-H), 6.94 (dt, J = 11.9, 8.0 Hz, 12H, Ar-H), 6.71 (s, 2H, Ar-H), 5.21 (s,
2H, CHAr2), 2.65–2.46 (m, 8H, CH2CH2CH2CH3), 2.19 (s, 3H, Ar-CH3), 1.68–1.48 (m, 8H,
CH2CH2CH2CH3), 1.45–1.20 (m, 8H, CH2CH2CH2CH3), 1.08 (s, 3H, Ar-C(CH3)=N), 0.92 (q,
J = 7.1 Hz, 12H, CH2CH2CH2CH3). 13C NMR (151 MHz, CDCl3) δ 169.39 (C=N), 156.32,
148.49, 146.12, 141.41, 140.56, 140.32, 140.14, 136.03, 132.56, 131.40, 129.72, 129.35, 128.50, 128.30,
128.04, 124.53, 121.47, 51.35 (CHAr2), 35.34 (CH2CH2CH2CH3), 35.27 (CH2CH2CH2CH3),
33.72 (CH2CH2CH2CH3), 33.70 (CH2CH2CH2CH3), 22.52 (CH2CH2CH2CH3), 22.41 (CH2CH2
CH2CH3), 21.45 (Ar-CH3), 16.99 (Ar-C(CH3)=N), 14.09 (CH2CH2CH2CH3), 14.05 (CH2CH2CH2
CH3). MALDI-TOF-MS (m/z): calcd for C55H66N2: 766.5200, Found, 766.5245, [M + H]+.
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(CH2CH2CH2CH3). APCI-MS (m/z): calcd for C56H65BrN2: 847.4344, Found, 847.4363, [M + 
H]+. 

L3 (1.06 g, 72%). 1H NMR (600 MHz, CDCl3) δ 7.97 (d, J = 7.6 Hz, 1H, Ar-H), 7.55
(t, J = 7.7 Hz, 1H, Ar-H), 7.53–7.49 (m, 1H, Ar-H), 7.06 (d, J = 8.0 Hz, 4H, Ar-H), 7.02 (d,
J = 8.0 Hz, 4H, Ar-H), 6.95 (d, J = 8.0 Hz, 4H, Ar-H), 6.91 (d, J = 8.1 Hz, 4H, Ar-H), 6.72 (s,
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(m, 12H, CH2CH3), 1.12 (s, 3H, Ar-C(CH3)=N). 13C NMR (151 MHz, CDCl3) δ 168.54 (C=N),
157.40, 145.77, 142.06, 141.73, 141.17, 140.75, 140.04, 138.42, 132.44, 131.73, 129.74, 129.39,
128.95, 128.49, 127.82, 127.53, 120.12, 51.45 (CHAr2), 28.52 (CH2CH3), 28.50 (CH2CH3), 21.44
(Ar-CH3), 17.01 (Ar-C(CH3)=N), 15.72 (CH2CH3), 15.62 (CH2CH3). APCI-MS (m/z): calcd
for C48H49BrN2: 735.3092, Found, 735.3110, [M + H]+.
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L4 (1.02 g, 60%). 1H NMR (600 MHz, CDCl3) δ 8.05 (dd, J = 7.5, 0.9 Hz, 1H, Ar-H),
7.60–7.50 (m, 2H, Ar-H), 7.10 (d, J = 8.1 Hz, 4H, Ar-H), 7.06 (d, J = 8.0 Hz, 4H, Ar-H),
7.01 (d, J = 8.0 Hz, 4H, Ar-H), 6.97 (d, J = 7.9 Hz, 4H, Ar-H), 6.78 (s, 2H, Ar-H), 5.23
(s, 2H, CHAr2), 2.63 (dd, J = 16.3, 8.8 Hz, 8H, CH2CH2CH2CH3), 2.24 (s, 3H, Ar-CH3),
1.70–1.58 (m, 8H, CH2CH2CH2CH3), 1.45–1.35 (m, 8H, CH2CH2CH2CH3), 1.14 (s, 3H,
Ar-C(CH3)=N), 0.99 (t, J = 7.3 Hz, 12H, CH2CH2CH2CH3). 13C NMR (151 MHz, CDCl3)
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δ 168.64 (C=N), 157.42, 145.89, 141.19, 140.82, 140.74, 140.45, 140.06, 138.43, 132.57, 131.74,
129.76, 129.40, 129.00, 128.55, 128.49, 128.14, 120.12, 51.58 (CHAr2), 35.39 (CH2CH2CH2CH3),
35.34 (CH2CH2CH2CH3), 33.79 (CH2CH2CH2CH3), 22.58 (CH2CH2CH2CH3), 22.43 (CH2
CH2CH2CH3), 21.49 (Ar-CH3), 16.99 (Ar-C(CH3)=N), 14.16 (CH2CH2CH2CH3), 14.14
(CH2CH2CH2CH3). APCI-MS (m/z): calcd for C56H65BrN2: 847.4344, Found, 847.4363,
[M + H]+.
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was added in 5 mL of methylene chloride in a Schlenk tube under a nitrogen atmosphere. 
NiBr2(DME) (0.2 mmol, 62 mg) was added to the above solution. The resulting mixture 
was stirred at room temperature overnight. The solvent was evaporated under reduced 
pressure to afford a solid. The product was washed with 4 × 5 mL hexane and dried under 
vacuum. A single crystal could be obtained by diffusion from layering hexanes on to the 
CH2Cl2 solution at room temperature. 

 
Ni1 (0.14 g, 80%), Elem. Anal. Calcd for C48H50Br2N2Ni: C, 66.01; H, 5.77; N, 3.21. 

Found: C, 66.21; H, 5.59; N, 3.11. MALDI-TOF-MS (m/z): calcd for C48H50BrN2Ni: 791.2511, 
Found, 791.2515, [M − Br]+. 

 
Ni2 (0.17 g, 85%). Elem. Anal. Calcd for C56H66Br2N2Ni: C, 68.24; H, 6.75; N, 2.84. 

Found: C, 68.35; H, 6.95; N, 3.05. MALDI-TOF-MS (m/z): calcd for C56H66BrN2Ni: 903.3763, 
Found, 903.3737, [M − Br]+. 

4.3. Procedure for the Synthesis of Nickel Complexes Ni1–Ni4

Complexes Ni1–Ni4 were synthesized by the reaction of 1 equiv. of NiBr2(DME) with
the corresponding ligands in methylene chloride. The corresponding ligand (0.2 mmol)
was added in 5 mL of methylene chloride in a Schlenk tube under a nitrogen atmosphere.
NiBr2(DME) (0.2 mmol, 62 mg) was added to the above solution. The resulting mixture
was stirred at room temperature overnight. The solvent was evaporated under reduced
pressure to afford a solid. The product was washed with 4 × 5 mL hexane and dried under
vacuum. A single crystal could be obtained by diffusion from layering hexanes on to the
CH2Cl2 solution at room temperature.
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Found: C, 66.21; H, 5.59; N, 3.11. MALDI-TOF-MS (m/z): calcd for C48H50BrN2Ni: 791.2511,
Found, 791.2515, [M − Br]+.
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Ni2 (0.17 g, 85%). Elem. Anal. Calcd for C56H66Br2N2Ni: C, 68.24; H, 6.75; N, 2.84.
Found: C, 68.35; H, 6.95; N, 3.05. MALDI-TOF-MS (m/z): calcd for C56H66BrN2Ni: 903.3763,
Found, 903.3737, [M − Br]+.
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Ni3 (0.15 g, 80%). Elem. Anal. Calcd for C48H49Br3N2Ni: C, 60.54; H, 5.19; N, 2.94. 

Found: C, 60.35; H, 5.27; N, 3.01. MALDI-TOF-MS (m/z): calcd for C48H49Br2N2Ni: 869.1616, 
Found, 869.1609, [M − Br]+. 

 

Ni4 (0.16 g, 75%). Elem. Anal. Calcd for C56H65Br3N2Ni: C, 63.18; H, 6.15; N, 2.63. 
Found: C, 63.35; H, 6.28; N, 2.72. MALDI-TOF-MS (m/z): calcd for C56H65Br2N2Ni: 981.2868, 
Found, 981.2879, [M − Br]+. 

 

4.4. A General Procedure for the Ethylene Oligomerization Using Ni Complexes. 
In a typical experiment, a pressure glass reactor with a 350 mL thick wall, connected 

with a high-pressure gas line, was first dried at 90 °C under vacuum for at least 1 h. The 
reactor was then adjusted to the desired oligomerization temperature. Then, 20 mL of 
toluene and the desired amount Et2AlCl was added to the reactor under N2 atmosphere, 
and the desired amount of catalyst in 1 mL of CH2Cl2 was injected into the oligomerization 
system via syringe. With rapid stirring, the reactor was pressurized and maintained at 6 
atm of ethylene. After 60 min, the pressure reactor was vented and the ethylene oligomers 
were obtained under vacuum. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. NMR, 
GPC and GC-MS curves of oligomers samples, single crystal data of Ni1. 
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