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Abstract: Trials using antisense oligonucleotide technology to lower Huntingtin levels in Huntington’s
disease (HD) are currently ongoing. This progress, taking place only 27 years after the identification
of the Huntingtin gene (HTT) in 1993 reflects the enormous development in genetic engineering in
the last decades. It is also the result of passionate basic scientific work and large worldwide registry
studies that have advanced the understanding of HD. Increased knowledge of the pathophysiology
of this autosomal dominantly inherited CAG-repeat expansion mediated neurodegenerative disease
has led to the development of several putative treatment strategies, currently under investigation.
These strategies span the whole spectrum of potential targets from genome editing via RNA
interference to promoting protein degradation. Yet, recent studies revealed the importance of
huntingtin RNA in the pathogenesis of the disease. Therefore, huntingtin-lowering by means of RNA
interference appears to be a particular promising strategy. As a matter of fact, these approaches have
entered, or are on the verge of entering, the clinical trial period. Here, we provide an overview of
huntingtin-lowering approaches via DNA or RNA interference in present clinical trials as well as
strategies subject to upcoming therapeutic options. We furthermore discuss putative implications for
future treatment of HD patients.

Keywords: Huntington’s Disease; huntingtin-lowering; antisense oligonucleotides; RNA interference;
disease modification; Chorea; HD

1. Introduction

1.1. Huntington’s Disease

Huntington’s disease (HD) is clinically characterized by a triad of movement disorders, psychiatric
symptoms and cognitive deficits. While the term Huntington’s chorea focuses solely on the hyperkinetic
movements, chorea is not the only movement disorder in HD. Dystonia and bradykinesia are common
as well [1]. They may even be the sole movement abnormality, especially in juvenile HD. The disease
manifests as a movement disorder in about 60% of cases, cognitive deficits dominate the initial
clinical picture in 14% and psychiatric abnormalities are the initial presentation in about 20% of
cases. Initial cognitive deficits consist of executive dysfunction, concentration and attention deficits,
and a disturbed ability to plan. Psychiatric symptoms include irritability, aggressive behavior and
disturbed impulse control or apathy [2]. However, the diagnosis of clinically manifest HD is currently
exclusively based on the presence of motor symptoms [3]. Current pharmacotherapy in HD is limited
to symptomatic treatment of movement disorders and psychiatric symptoms. The only approved drug
for the therapy of hyperkinesia and dystonia in HD is tetrabenazine [4]. Despite numerous clinical
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studies on disease-modifying strategies (see e.g., homepage of the Huntington Study Group), thus far,
no therapy exists that is able to slow down, stop or even reverse the course of the disease.

1.2. Genetics and Pathophyiology of Huntington’s Disease

HD is a rare autosomal dominantly inherited neurodegenerative disease with worldwide
prevalence of 1–10/100,000 [5]. In Europe, a prevalence of 3/100,000 is assumed, the highest prevalence
occurs in Sicily with 9.8/100,000 affected islanders [6]. However, current studies show that the genotype
frequency with intermediate (36–39) and pathological (>39) expansion in the huntigtin gene (HTT) may
be as high as 139/100,000 [7]. Genetically, HD belongs to the group of trinucleotide repeat expansion
disorders. While individuals with a CAG repeat length of less than 35 located on exon 1 of HTT remain
asymptomatic, alleles with 40 or more repeats show full penetrance. Intermediate alleles (36–39 CAG
repetitions) bear an increased risk to develop HD. There is an inverse correlation between the age of
onset, and the length of the CAG repeat expansion, whereby alleles with more than 70 repetitions
always cause a manifestation in adolescence. The mean age of onset of this progressive and life limiting
disease is 40 years, the average disease duration is 20 years (overview in [8]). Even in early stages,
the quality of life and the social environment of those affected is severely impaired. Transcription of
pathologically prolonged HTT into prolonged huntingtin (htt) pre-mRNA, its processing to mRNA,
and translation into a prolonged protein lead to endoplasmatic reticulum stress (reviewed in [9]),
misfolding and aggregation (Figure 1), particularly in neurons. Additionally, several toxic short protein
species have been described. Some of these species are the result of proteolytic cleavage [10]. The repeat
length of the second allele does not influence disease onset or progression [11]. The CAG repeat
expansion alone accounts for 50%–70% of the variance in disease onset. Interestingly, the number
of uninterrupted CAG repeats, distinct from the length of the polyglutamine segment of the htt
protein, accounts for the age of onset of the disease [12]. Several genetic modifiers, most of which
represent DNA repair genes, influence the onset of the disease as well [13]. An additional contributor
to pathogenesis may be epigenetic modification; in particular, histone deacetylation (HDAC) has
repeatedly been shown to negatively influence disease onset. Thus, HDAC inhibition is a promising
disease modifying strategy [14].

Splice variants and Repeat Associated Non-AUG (RAN) translation can also lead to neurotoxic
isoforms of htt [15]. In addition, there is increasing evidence that a pathologically prolonged htt
mRNA leads to defective binding of RNA binding proteins, further contributing to pathogenesis
(overview in [15]) (Figure 1B). Prolonged htt protein acts primarily through a toxic gain-of-function,
interfering with autophagy, vesicle transport, neurotransmitter release and mitochondrial function
(Figure 1C). In summary, this results in the degeneration of neurons, predominantly striatal and cortical
GABAergic neurons (reviewed in [8]). Furthermore, inflammatory processes also occur, which trigger
the progression of the disease (overview in [16]). Thus, from a pathophysiological standpoint,
disease-modifying therapies targeting the pathological processing of htt mRNA, or upstream, appear
to be the most promising.

1.3. The Scientific Basis for Gene Expression Modification in HD; From the Discovery of the HD Gene
to Clinical Trials

In 1983, the Venezuela Project, a field study at Lake Maracaibo in Venezuela, carried out by the
World Hereditary Disease Foundation, succeeded in mapping HTT on the short arm of chromosome
4 [17]. Following the first discovery of a trinucleotide expansion disorder (fragile X syndrome) in
1991 [18], a CAG repeat expansion in HTT was subsequently identified in 1993 as the disease-causing
alteration [19], and genetic testing became possible. Already the first murine model of HD in 1996 [20]
was able to recapitulate essential aspects of the disease. In 2000, a tetracycline-regulated conditional
mouse model in which the expression of mutated HTT was suppressed by doxycycline treatment,
showed reversibility of brain pathology and behavioral deficits by transgene suppression [21]. Positive
effects on RNA interference were later observed in a murine model [22]. Kordasiewicz et al. [23]
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succeeded in lowering htt in three murine models of HD by using an antisense oligonucleotide
(ASO) in 2012, also achieving an improvement of motor symptoms. Additionally, the authors
showed that ASO infusion could reduce htt deposits in brains of a primate model. Thus, this study
provided decisive preclinical evidence for the concept of “huntingtin holidays” as the basic principle
of a disease-modifying strategy for HD patients [24]. Sensitive and standardized immunoassays,
which allow the quantification of mutated htt protein in cerebrospinal fluid [25,26], have become
available as biomarkers [27].

2. Genetic Engineering Approaches for Disease Modification in HD

Disease modification by lowering htt levels via interfering with transcription has been investigated
at different levels. Antisense oligonucleotides (ASOs) [23], single-stranded RNA molecules (ssRNAs),
small interfering RNAs (siRNAs) [28] and short hairpin RNA (shRNAs) [22] or artificial micro RNA
(miRNAs) [29] were used for this purpose. All of these approaches interfere on RNA level and are
able to suppress htt levels in vitro and in animal models. With respect to clinical testing however,
the utilization of ASOs is the most advanced strategy (Figure 2). By using ASOs, gene expression is
only downregulated transiently, and repetitive application is necessary to maintain constant lowering
of htt levels. Therefore, these approaches are not called ”gene therapy,” but referred to as “gene
expression modification” or “huntingtin-lowering strategies.” In contrast, a “real” gene therapy may be
the permanent introduction of an RNA interfering construct into a brain region, e.g., by a viral vector.
The currently most advanced gene-therapeutic approaches in neurology rely on adeno-associated
viruses (AAVs, [30]). Through their neurotropism as well as their nonpathogenic nature, they ensure
safe long-term expression within transfected cells. Several serotypes are being studied for their
suitability as a vector (for a review see: [31]). Using AAVs to deliver a micro-RNA expression
machinery which produces the therapeutically necessary micro RNA, suppressing htt RNA is the most
advanced gene therapy strategy in HD. Since this constitutes a permanent alteration in a transfected
cells gene expression system, the term virus-mediated gene therapy is appropriate. In principle,
all these approaches may be allele-specific or allele-unspecific.

2.1. Gene Expression Modification Using Antisense Oligonucleotides

ASOs are short, single-stranded nucleic acids, which are complementary to a functional mRNA
(or pre-mRNA). They bind to the complementary mRNA strand via Watson-Crick base pairing.
Depending on the target sequence of the mRNA, they may prevent protein biosynthesis, block splicing
or inhibit binding of RNA binding proteins. The clinical efficacy of ASOs has been demonstrated in two
other rare neurological diseases, spinal muscular atrophy [32] and familial amyloid polyneuropathy [33].
Thus, the way seems to be paved for a similar approach in HD.

Roche’s ASO RO7234292 (RG6042), currently tested in a phase III clinical trial, was initially
developed by IONIS Pharmaceuticals Inc. (ISIS443139; IONIS-HTTRx). It has been tested in a Phase
I/IIa study [34]. This compound is a second-generation, chemically modified synthetic oligomer
complementary to a 20-nucleotide portion of htt mRNA. The chemical modification not only prevents
rapid degradation, its lipophilic nature also allows the ASO to cross the cellular, as well as the
nuclear membrane. In the nucleus, hybridization of RG6042 with htt pre-mRNA and mRNA leads to
endogenous RNase H1-mediated degradation, which prevents translation to htt protein [34]. Since it is
an allele-unspecific ASO, the generation of both mutant and wild type htt is downregulated. Tabrizi et
al. [34] were able to show that with four intrathecal injections of 120 mg HTTRx (later 267 RG6042) via
lumbar puncture every 4 weeks, a reduction of mutant htt protein in the cerebrospinal (CSF) fluid of
about 40% was achieved. This effect was persistent during the subsequent 2-month follow-up period.
Apart from headaches due to lumbar puncture, no serious adverse events were reported. The drug
thus met the safety requirements for consecutive multi-center Phase III testing. An open label extension
of the Phase I/IIa trial is currently ongoing. Results from this study regarding functional improvement
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are not available yet. However, it could be shown that a longer injection interval of eight weeks is
sufficient to ensure the desired reduction of the mutant htt in cerebrospinal fluid.

The currently ongoing Phase III trial (called Generation HD 1, NCT03761849, Sponsor:
Hoffmann-La Roche) investigates, for the first time in HD, an ASO for its potential to slow down the
progression of the disease (Figure 1B) in a worldwide study at 101 sites. This randomized, double-blind,
placebo-controlled trial will enroll 804 participants. The primary endpoint in the USA is everyday
function, measured by the Unified Huntington’s Disease Rating Scale (UHDRS) total function capacity
(TFC). Outside the United States, the primary endpoint is the composite UHDRS, a combination score
that features domains of everyday function, cognition and motor functions, and is calculated from the
UHDRS total motor score (TMS), the UHDRS TFC, the symbol digit modality test and the Stroop word
reading [35]. In the three-arm study, participants receive either 120 mg RG 6042 or alternately 120 mg
RG 6042 and placebo at eight weekly intervals, or constantly placebo over two years.

In parallel to Generation HD1, Precision-HD1 (NCT03225833, Sponsor: WAVE Lifesciences)
and -HD2 (NCT03225846) follow the approach of reducing htt through an ASO. However, the ASOs
WVE-120101 and WVE-120102 are allele-specific, targeting mutant htt mRNA, though not affecting
the translation of the healthy allele. This is accomplished by the recognition of two single nucleotide
polymorphisms (SNPs), present only on the extended HTT gene [36]. The first SNP (RS362037) is
present in half of all HD patients worldwide. The second SNP (RS362331) is present in about 40%
of those affected. A total of two-thirds of the European and US HD population is likely to carry at
least one of these two polymorphisms [36]. This implies that not all gene carriers will benefit from
this allele-specific therapy, in case this therapy will be available in the future. In contrast to the afore
mentioned non-allele specific ASO, there are no preliminary studies in mice or animals available
because the targeted SNPs are not present in the murine genome. Thus, no data are available on safety
in animal models. However, the ASOs were tested in vitro and showed successful reduction of mutant
htt while leaving wild type htt mRNA transcript and protein intact. The clinical phase I/II is currently
ongoing and investigates the safety of WVE-12010, and WVE-120102, as well as the target engagement,
i.e., the reduction of the mutant htt protein in the cerebrospinal fluid. In this study, the drug is also
administered intrathecally by lumbar puncture.

The first phase of Precision-HD1 and Precision-HD2 started in 2017 and WAVE Lifesciences
published preliminary data for the Precision-HD2 study at the end of 2019 in a press release [37].
The company stated that WVE-120102 was able to downregulate mutated htt in cerebrospinal fluid by
12%, which is a rather moderate reduction compared to RG6042. Patients received either placebo or
study medication at four different doses (2, 4, 8 or 16 mg). The participants were treated for 5 months.
All active treatment arms achieved a reduction of approximately 12% compared to placebo. WAVE also
announced that the ASO would show a dose-dependent response, yet WAVE has not published enough
information to allow a final evaluation. The safety profile of the ASO seems to be good; side effects
were not more frequent in the active compared to placebo arms. A new dosage will be introduced in
the Precision-HD2 study (32 mg), and a 32 mg arm will be added to Precision-HD1 so that the final
results for both studies are expected by the end of 2020.
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Figure 1. Huntingtin-lowering strategies currently under clinical investigation in Huntington’s Disease.
Allele-specific (A) and allele-unspecific (B) Antisense Oligonucleotide (ASO) strategies as well as virally
mediated strategies (C) are currently being evaluated in clinical trials. ASOs (A, B) are applied via
lumbar puncture (1). They are supposed to reach the cerebral cortex and deeper brain regions via
diffusion along the neuraxis through cerebrospinal fluid CSF turnover. They enter brain cells and
nuclei due to their lipophilic backbone modification (2). By Watson-Crick base pairing, they bind to
both mutant htt and wild type htt (5, allele-unspecific) or mutant htt (3, allele-specific). This leads to
nuclear RNaseH mediated degradation of pre-mRNA and mRNA and a subsequent lowering in htt
protein levels of wt and mt htt (6) or mt htt, only (4). Gene-Therapeutic strategies (C) rely on a single
stereotactic injection into the striatum (7) of adeno-associated viruses carrying a mi-RNA expression
cassette, which is able to enter neuronal nuclei, and express a miRNA construct (8). After cleavage,
this construct suppresses expression of mutant htt by RNA interference (9) and subsequent degradation
by the cytosolic RISC complex (10).

2.2. Divalent siRNA Mediated Huntingtin-Lowering; the Future at Hand?

In contrast to ASOs, siRNAs exert their effect by binding to mRNA in the cell soma. Degradation
of the siRNA/mRNA double strand is then mediated via the RNA-induced silencing (RISC) complex.
In the past, siRNA mediated suppression of gene expression was locally restricted due to rapid
degradation and low diffusion of the constructs. Recently, sophisticated modification of siRNA using
a phosphothioate backbone and a divalent siRNA conjugate enabled whole brain penetrance and
a 6-month, dose-dependent suppression of htt in mice and monkeys after a single intraventricular
injection [38]. These findings may pave the way for a more sophisticated htt-lowering approach due
to a simplified dosing regimen. Yet, these results are currently at the preclinical level and Phase I/II
testing is necessary to evaluate the safety and target engagement in humans.

2.3. Virally Mediated RNA Interference

In addition to huntingtin-lowering by means of ASOs, virus-mediated gene therapies are upcoming
treatment options for HD. Adenovirus-associated suppression of htt mRNA is the most advanced
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approach, while modalities of mutated htt suppression differ. The viral administration is achieved by
a single stereotactic injection into the striatum.

Currently, a Phase I trial is being conducted by UniQure in the United States (NCT0412049).
An AAV serotype 5 is used to deliver a genetic construct that allows RNA interference (AMT-130). Two
groups receiving either a high dose or a low dose of AMT-130 will be compared with an imitation
surgery arm. Outcomes will be the number and type of adverse events but also the duration of
persistence of AMT-130 in the brain, measured by levels of DNA and miRNA expression in the CSF
of participants. The genetic construct AMT-130 produces an intrinsic miRNA which is supposed to
interact with htt mRNA in a non-allele-specific fashion. The viral approach is supposed to allow a single
intervention. The published data show that the htt mRNA degrading effect of AMT-130 is based on
a 21–23 nucleotide homology to htt RNA. Previously, both allele-specific and allele non-specific RNA
interference with several constructs [39] have been tested. The allele non-specific H–12 construct fused
with the pri-miR-451 seemed to be the most promising, leading to an approximately 60% reduction of
htt RNA and almost 80% reduction of htt protein in vivo after stereotactic injection into the middle
striatum [39] of mice. A recent in vitro follow-up study showed a reduction of 57% htt RNA and
68% htt protein in induce pluripotent stem cell derived neurons of HD patients [40]. The authors
also excluded off-target effects, arguing that this is primarily achieved by using the pri-miR-451
backbone, which does not produce a passenger strand [40]. Moreover, no dysregulation of the cellular
miRNA apparatus through AAV mediated overexpression of miHTT was observed. Additionally,
the dysregulation of other genes was negligible and seemed to be due to viral transduction, rather
than miRNA expression [40].

A further attempt to deliver miRNA-based hairpins using an AAV serotype 2 vector was successful
for reduction of mutant htt protein in YAC128 mice [41]; this approach is currently further developed
by Voyager Therapeutics.

2.4. Virally Mediated Suppression of Mutant Huntingtin Transcription Using Zink-Finger
Transcription Factors

Recently, a different virus-based gene therapeutic approach was published [42]. An AAV was
used to deliver Zinc finger protein transcription factors linked to the krüppel associated box KRAB
transcriptional repression domain of the human KOx1 gene. This served as a suppressive DNA binding
factor for mutant htt mRNA. The authors could convincingly show allele-specific knock down of
mutant htt protein in a dose-dependent fashion by some of these synthesized vectors. At higher doses,
a complete suppression of mutated htt protein was achieved in vitro. In vivo, a 50% reduction of mutant
htt protein was shown in three murine models with almost unchanged expression of the wild-type
allele. Especially in a murine model with only 50 CAG-repeat expansions, an expansion in the clinically
relevant range, significant htt reduction was achieved. In the well-described progressive R6/2 animal
model, the application of an AAV and suppression of mutated htt resulted in a functional improvement,
dependent on the timepoint of injection. Even complete normalization of some phenotypes was
observed after 12 weeks. The virally applied transgene was active for at least 100 days in culture and at
least 9 months in the mouse model. Additionally, the authors showed a 99% knockdown in fibroblasts
and induced pluripotent stem cell derived primary neuron cultures of HD patients with a wide dose
range. The wild-type allele was unaffected by this knockdown. Other CAG repeat expansions were
only slightly altered by this approach. Thus, a new therapeutic concept for htt expression regulation,
interfering with the transcription of mutant HTT, was established in this study. To what extent clinical
studies will follow is not known at this time.
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Figure 2. Huntingtin- lowering approaches: Along the process from htt DNA transcription via RNA
processing and translation to protein folding and function, several well-defined points of interference
are possible that ultimately result in lower levels of total or mutated htt protein. Strategies that aim
at the protein level (C), i.e., by means of induction of autophagy rely on the hypothesis that HD is
mainly a proteinopathy that results from disturbed function and neurotoxic accumulation of mutant
htt protein. In contrast, gene expression modification strategies (B) inhibit the generation of the
protein, but also may be suitable to cover pathologic aspects on the RNA level that may significantly
contribute to HD pathogenesis. (A) Genome editing via, i.e., CRISPR/Cas9 may permanently correct
mutant HTT. Correction of the CAG Repeat expansion may have additional beneficial effects since the
length of the uninterrupted CAG repeat length on DNA level is inversely correlated to disease onset
(for references see text). Altering metagenomic structure by HDAC inhibition, or using Zink Finger
transcription factors can inhibit transcription of mutant DNA to mRNA. PCT: PTC Therapeutics; LC3:
autophagosome protein microtubule-associated protein 1A/1B light chain 3.

3. Discussion

3.1. The Age of Gene Expression Modification Has Begun. Does It Begin for HD?

Generation HD1, and Precision-HD1 and -HD2, represent some of the most exciting clinical
studies in neurology at present, and further promising approaches for disease modification in HD are
to be expected (for an in depth review, see also [43]). ASO-based therapies have already been approved
for several diseases including both aforementioned neuromuscular diseases. Moreover, a variety of
further ASOs are currently being investigated in clinical trials for other neurological disorders [44].
The specific interest in the Generation HD1 trial is based on the question whether it will be possible to
achieve a modification of a progressive neurodegenerative disease by lumbar intrathecal application of
an ASO. Assuming a positive outcome, the important question arises which functional consequence
a permanent reduction of htt will have.

3.2. Is Huntingtin Expression Modification Safe?

Huntingtin is an indispensable protein in embryonic brain development. Additionally, it appears
to interact with a huge amount of proteins [45], suggesting multiple roles as a scaffold protein.
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Yet, its precise physiological role in the adult brain remains less well understood. Lowering wild
type htt levels might interfere with the many cellular functions described, such as axonal transport,
transcriptional regulation and neuronal survival. Several murine studies addressing the effect of HTT
knockdown have been performed, delivering conflicting results, depending on the time of knockdown
and tissue-specificity [46,47]. However, adult knockdown in the central nervous system CNS appears
to be well-tolerated [47]. In summary, the question of negative effects of permanently lowered htt
levels in the adult cannot be answered, yet [48]. Thus, many important theoretical risks exist, also in
the adult brain. Nevertheless, the findings in carriers of homozygous CAG repeat expansions who
develop normally and show similar age of onset as heterozygous CAG repeat expansion carriers
suggests that in HD, the loss of wild type htt function may not be relevant [11]. Studies in non-human
primates have shown that a reduction of up to 45% htt has no phenotypic effects, and this reduced
wild type htt expression is tolerated in the non-human primate striatum [29,49]. Yet, it remains
completely unclear if an effective non-allele specific ASO-based therapy might show detrimental
effects after 10 or more years. It is important to mention that currently, no test to determine the
amount of wild type htt in CSF is available yet, due to the fact that available assays to detect mutant
huntingtin rely on immunoassays that first precipitate total huntingtin followed by a detection steps
recognizing the polyglutamine stretch of the protein [25,26]. Moreover, what remains unresolved is the
question whether ASO treatment needs to be applied life long to achieve long-term stability of clinical
effects, or if injection intervals can be extended or probably even longer treatment pauses are possible.
This aspect touches not only safety issues regarding repetitive CSF injections, but is also important
with respect to issues concerning long-term costs (see below). While an allele-unspecific approach may
cause ethical problems as a treatment option in premanifest HD, an allele-specific approach may also
enable addressing the pre-manifest or asymptomatic HD population in the future. Here, in case of
premanifest gene carriers, an important question is the amount of mutant htt lowering, necessary to
slow development/progression of disease. The 12% reduction that WAVE has reported, compared to
the 40%–60% reduction of RG6042, makes a difference of about 40%. How this affects disease activity is
completely unknown. In summary, we currently do not know whether a specific reduction of mutant
htt is inferior or superior to a general suppression of htt. This is nonetheless information that will
only be available after both approaches have been studied. Furthermore, it should be mentioned that
absolute doses of RG6042 with 120 mg are fundamentally different from the doses in Precision-HD 2
(16 mg). Possibly, higher doses in Precision-HD 2 could also achieve a higher rate of htt reduction.

3.3. Putative Problems of the Allele-Specific Approach

The currently tested allele-specific approaches rely on SNPs that are prevalent particularly in
Northern American and European populations [36]. A detailed characterization of HTT haplotypes in
other populations has only recently been performed [50]. It suggests that the current allele-specific
approaches fail to target Southern European, Southern Asian and Middle Eastern populations. Different
haplotypes appear to be needed to enable high treatment rates for people with HD worldwide [50].
Thus, population-specific ASOs are most likely necessary to enable a worldwide availability of
an allele-specific ASO approach. Formulated in a pointed way, a single allele-specific approach
intrinsically leads to the benefit of a selected population, discriminating against others, if no strategy
is pursued that ensures the development of allele-specific approaches with the intent of covering
a maximal population worldwide. Here, socio-economic aspects may of course play a major role.
In this regard, it is noteworthy that recently, an individualized ASO therapy has been realized within
a year [51]. Thus, from a biotechnological standpoint, the generation of populations-specific ASOs is
feasible. Yet, assuming that a few ASO molecules are needed to equally treat HD worldwide, current
regulations in most countries would make sequential clinical testing necessary for each molecule.
In addition, genotyping to determine the appropriate treatment will become necessary [52].
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3.4. Can We Deal with the Expenses for a New Therapy?

Of high practical importance is the application frequency of the ASO or other huntingtin-lowering
therapies. Intrathecal applications, performed on a bimonthly basis, mean a significant clinical and
medical-economic expenditure. With regard to public health costs, it is worth taking a look at the two
approved ASO therapies in neurology. For Spinraza, the treatment of spinal muscular atrophy (SMA),
the costs amount to approximately 620,000 € in the first year of treatment and 310,000 € in the second,
in Germany [53]. Patisiran’s therapy for familial amyloidic polyneuropathy (FAP) costs between
344,000 €, and 515,495 € per year [54]. It should be anticipated whether it is ethically justifiable to
withhold such a therapy from mutation carriers, even if it has shown effects only in clinically-manifested
patients. This coincides with the question at which time point it makes sense pathophysiologically
to start a gene expression modification-based therapy. Since neurodegeneration precedes motor
impairment [8], is it tolerable to withhold a therapy from a mutation carrier before obvious motor
signs (on which the diagnosis of manifest HD is currently based) appear? How can we reliably
record this prodromal phase of the disease with partly intermittent and elusive motor, psychiatric and
cognitive symptoms? Methods exist which, based on CAG repetition length and age, offer possibilities
to predict the period of conversion from premanifest to manifest HD [55,56]. Yet, these concepts
have been established to capture risk populations for studies. Thus, CAG repeat expansion-based
risk stratification does not allow a precise individual prognosis due to the considerable variance in
disease onset [13]. Recently, another prognostic index for HD has been published, based on data from
REGISTRY, Track-HD and the Cooperative Huntington Observational Trial. This score gives reasonable
probabilities for conversion from premanifest to manifest HD, but requires the symbol-digit-modality
test and a full UHDRS motor score [57]. Here, digital biomarkers may represent another modality for
early detection of prodromal HD. If any huntingtin-lowering strategy will be approved, long-term
monitoring of the effects of reduced htt levels is of tremendous interest and should be realized by
follow up registers of patients receiving the therapy. Here, collaborative efforts of pharmaceutical
companies providing these therapies and the HD research community would be an important basis.

3.5. If Studies Fail

Assuming negative study results, the data obtained will nevertheless be of high relevance for the
scientific community. The knowledge of side effects, as well as the analysis of the temporal course
of htt levels in the CSF and their correlation to imaging findings represents immensely valuable
information, in particular for future therapeutic strategies. The implementation of digital biomarkers
as explorative secondary endpoints in Generation HD1 will also provide important data, since little is
known about the long-term acceptance of such concepts, nor about the actual significance in terms of
“sensitivity-to-change” of such methods.
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Abbreviations

AAV adeno-associated virus
ASO antisense oligonucleotide
CSF cerebrospinal fluid
HD Huntington’s Disease
HTT Huntingtin gene
htt huntingtin
miRNA micro ribonucleotide acid
RISC ribonucleotide acid-induced silencing
shRNA Short hairpin ribonucleotide acid
siRNA Small inhibitory ribonucleotide acid
SNP Single nucleotide polymorphism
ssRNA single-stranded ribonucleotide acid
UHDRS Unified Huntington’s Disease Rating Scale
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