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Abstract. MicroRNA (miR)‑19b is expressed in various types 
of tumors and may serve as a potential therapeutic target. The 
miR‑17‑92 cluster is upregulated in nasopharyngeal carcinoma 
(NPC) tissues and cells. miR‑19b is a member of the miR‑17‑92 
cluster; however, its expression and function in NPC are largely 
unknown. The present study aimed to investigate the expression 
and function of miR‑19b in NPC cells. The miRCURY LNATM 
miRNA Inhibitor (miR‑19b inhibitor and negative control) were 
transfected into C666‑1 cells. The proliferation, apoptosis and 
migration of the cells were subsequently detected by the Cell 
Counting Kit‑8 assay, flow cytometry and Transwell assay, 
respectively. Additionally, the expression of STAT3 signaling 
pathway‑associated proteins [STAT3, pSTAT3 and suppressor of 
cytokine signaling 1 (SOCS1)] and the transcriptional targets of 
pSTAT3 [Bcl‑2, myeloid leukemia protein 1 (Mcl‑1) and cyclin 
D1] were detected by western blotting. The miR‑19b inhibitor 
inhibited proliferation and migration and induced apoptosis of 
C666‑1 cells. Furthermore, the miR‑19b inhibitor upregulated 
the expression of SOCS1, a predicted target gene of miR‑19b, 
and decreased the phosphorylation of STAT3 at Tyr705 and 
Ser727. These data indicated that upregulation of SOCS1, an 
endogenous inhibitor of STAT3 phosphorylation, attenuated 

the STAT3 signaling pathway in C666‑1 cells. Moreover, the 
expression level of the proproliferative protein cyclin D1 and 
antiapoptotic proteins Mcl‑1 and Bcl‑2 was significantly 
decreased following transfection with the miR‑19b inhibitor. 
The aforementioned three proteins are downstream transcrip-
tional targets of the activated STAT3 signaling pathway. The 
results of the present study revealed that inhibition of miR‑19b 
negatively modulated the malignant behavior of NPC cells via 
the STAT3 signaling pathway. Therefore, miR‑19b inhibition 
may serve as a novel therapeutic target for the treatment of NPC.

Introduction

Nasopharyngeal carcinoma (NPC) is a type of head and neck 
cancer endemic in Southeast Asia, and is closely related to 
Epstein‑Barr virus (EBV) infection (1). Despite the improve-
ment in local tumor control achieved by more precise imaging 
modalities and radiotherapy, the 5‑year survival rate of 
patients with NPC remain unsatisfactory, primarily due to 
distant metastasis (2). Therefore, there is a requirement for 
the elucidation of the molecular mechanisms underlying the 
pathogenesis of NPC as well as the development of novel 
therapeutic strategies.

MicroRNAs (miRNA/miR) are a class of small, 
non‑protein‑coding RNAs that function in RNA silencing 
and post‑transcriptional regulation of gene expression  (3). 
miRNAs are also known to play key roles in cancer, where 
they serve as oncomirs or tumor suppressors (4). miRNAs 
have been found to regulate genes involved in multiple cellular 
processes, including development, differentiation, prolifera-
tion and apoptosis (5). The modulation of miRNAs, based on 
two major approaches (miRNA mimics and miRNA antago-
nists/inhibitors), is currently being investigated for the clinical 
development of therapeutic miRNAs (6,7).

miR‑19b, also termed miR‑19b‑1 or miR‑19b‑1‑5p, is 
upregulated in several types of cancer and has been reported 
to serve as an oncomir (8). miR‑19b serves as a prognostic 
biomarker for breast cancer and promotes tumor progression 
through the PI3K/AKT signaling pathway  (9). A previous 
study reported that miR‑19b decreases apoptosis, promotes 
proliferation and induces tumorigenicity in multiple myeloma 
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cells by targeting phosphatase and tensin homolog (10). The 
miR‑17‑92 cluster, which includes miR‑17‑5p, miR‑17‑3p, 
miR‑18a, miR‑19a, miR‑20a, miR‑19b‑1 and miR‑92‑1, was 
reported to be upregulated in NPC (11). However, the role of 
miR‑19b in NPC has not been fully elucidated. Therefore, the 
present study investigated the function of miR‑19b, as well as 
the therapeutic effect of miR‑19b inhibitors, in NPC cells. 

Materials and methods

Cell lines and culture. EBV‑positive cells C666‑1 and HK1‑EBV 
were kindly provided by Professor Sai Wah Tsao (The University 
of Hong Kong, Hong Kong, China)  (12). 5‑8F, SUNE1 and 
SXSW‑1489 were kindly provided by Professor Xiao Dong 
(Southern Medical University, Guangzhou, China)  (13) and 
Professor Weiyi Fang (Southern Medical University) (14). NPC 
cell lines (C666‑1, HK1‑EBV, 5‑8F, SUNE1) and the immor-
talized nasopharyngeal epithelial cell line (SXSW‑1489) were 
cultured in Roswell Park Memorial Institute (RPMI)‑1640 
medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented 
with 10% heat‑inactivated fetal bovine serum (FBS; Gibco; 
Thermo Fisher Scientific, Inc.). C666‑1 cells were cultured with 
the addition of 10 µg/ml streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.). The cells lines were maintained in a humidified 
atmosphere at 37̊C and 5% CO2.

Reverse transcription‑quantitative PCR analysis for miR‑19b 
expression. Total RNA from cultured (C666‑1, HK1‑EBV, 5‑8F, 
SUNE1, SXSW‑1489) cells and lenses was extracted using 
TRIzol® reagent (cat. no. 15596026, Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. Genomic DNA 
was subsequently removed using DNase I. cDNA was synthesized 
using the Mir‑X miRNA First‑Strand Synthesis kit (Clontech 
Laboratories, Inc.) and the following primers: U6, AAC​GCT​TCA​
CGA​ATT​TGC​GT; and miR‑19b, GTC​GTA​TCC​AGT​GCA​GGG​
TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACT​CAG​T. The expres-
sion levels of miR‑19b and the internal control U6 were quantified 
by qPCR using a SYBR Premix Ex Taq II kit (Takara Bio, Inc.) 
and an ABI Prism 7,000 sequence detection system (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). The following 
primer pairs were used: U6 forward, CTC​GCT​TCG​GCA​GCA​
CA and reverse, AAC​GCT​TCA​CGA​ATT​TGC​GT; and mir‑19b 
forward, TGT​GCA​AAT​CCA​TGC​AAA and reverse, GTG​CAG​
GGT​CCG​AGG​TAT​TC. miRNA levels were quantified using the 
2‑ΔΔCq method and normalized to the internal control U6.

Transient transfection of miRNA‑19b inhibitors. The 
miRCURY LNA™ miRNA Inhibitor [consisting of an 
miR‑19b inhibitor and a negative control (NC)] was obtained 
from Qiagen, Inc. The sequences of the miRNA are propri-
etary information. The miRNAs were transiently transfected 
into C666‑1 cells at a working concentration of 15  µM 
using X‑tremeGENE siRNA Transfection Reagent (Roche 
Diagnostics) following the manufacturer's protocol. 

Cell Counting Kit‑8 (CCK‑8) proliferation assay. A total of 
2x103 C666‑1 cells per well were seeded in a 96‑well plate 
in a final volume of 100 µl and transfected with miRNAs. 
The effect of the miR‑19b inhibitor on cell proliferation 
was subsequently determined using the CCK‑8 assay at 

6, 12, 24 and 48 h post‑transfection. A total of 10 µl CCK‑8 
solution (Dojindo Molecular Technologies, Inc.) was added to 
each well and incubated for 4 h at 37˚C. The optical densities of 
the resultant purple solutions were measured at a wavelength 
of 450 nm (15). 

Transwell migration assay. Transwell chambers (24‑well 
insert; Corning, Inc.) were used to analyze cell migration. 
At 48 h post‑transfection, a total of 2x104 C666‑1 cells in 
serum‑free RPMI‑1640 medium were seeded into the upper 
chamber of the insert. RPMI‑1640 medium containing 
10% FBS was added to the lower chamber to serve as a 
chemo‑attractant. Cells were allowed to migrate for 24 h. The 
cells on the upper membrane surface were removed using a 
cotton bud and the cells on the lower membrane surface were 
fixed with 4% formaldehyde. The cells were subsequently 
stained with 0.1% crystal violet (Amresco, LLC) and the 
migrated cells were counted in three random‑selected fields. 
The result of migrated cells was observed and photographed 
under light microscope (Olympus, Japan).

Flow cytometry assay. C666‑1 cells were harvested 48  h 
post‑transfection by trypsin digestion without EDTA and 
stained using the APC‑Annexin V/7‑AAD Dual Staining 
Cell Apoptosis Detection kit (BD Biosciences) according to 
the manufacturer's instructions. The cells were subsequently 
analyzed with a flow cytometer. The cells in Q2 (late‑stage 
apoptosis) and Q4 (early‑stage apoptosis) were considered to 
be apoptotic cells.

Western blot analysis. At 48 h post‑transfection, cell lysates 
were harvested. The lysis buffer used RIPA buffer and 
PMSF (cat. no. R0020, 1:100, Beijing Solarbio Science & 
Technology, Inc.). Proteins were separated by 10% SDS‑PAGE 
separating gel and 5% SDS‑PAGE stacking gel, and then elec-
trophoretically transferred onto a polyvinylidene difluoride 
membrane. The membrane was subsequently incubated with 
primary antibodies against β‑actin (cat. no. TA‑09; 1:5,000; 
OriGene Technologies, Inc.), STAT3 (cat. no. sc‑8019; 1:2,000; 
Santa Cruz Biotechnology, Inc.), suppressor of cytokine 
signaling (SOCS) 1 (cat. no. PA5‑27239; 1:2,000; Thermo 
Fisher Scientific, Inc.), p‑STAT3 (Tyr705; cat. no. G.374.10; 
1:2,000; Thermo Fisher Scientific, Inc.), p‑STAT3 (Ser727; 
cat. no. PS727.2; 1:2,000; Thermo Fisher Scientific, Inc.), 
cyclin D1 (cat. no. OTI1F7; 1:1,000; OriGene Technologies, 
Inc.), Bcl‑2 (cat. no. OTI2E5; 1:1,000; ZSGB‑BIO), myeloid 
leukemia protein 1 (Mcl‑1; cat. no. OTI3A12; 1:1,000; OriGene 
Technologies, Inc.) overnight at 4̊C in Primary Antibodies 
Dilution Buffer (cat. no.  P0023A; Beyotime Institute of 
Biotechnology). Following primary antibody incubation, the 
membrane was incubated with peroxidase‑conjugated goat 
anti‑mouse IgG (H+L; cat. no. ZB‑2305; 1:5,000; ZSGB‑BIO) 
and peroxidase‑conjugated goat anti‑rabbit IgG (H+L; cat. 
no. ZB‑2301; 1:5,000; OriGene Technologies, Inc.) secondary 
antibodies for 1 h at room temperature. The protein bands 
were visualized using the ECL Western Blot Kit detection 
system (Thermo Fisher Scientific, Inc.). Protein expression 
was quantified with β‑actin as the loading control at least 
three times and analyzed by Image‑J (version1.50i, National 
Institutes of Health). 
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Statistical analysis. Data are presented as the mean ± SEM 
of three independent experiments. One‑way ANOVA test 
was used to analyze the groups. Multiple comparisons were 
made using the Tukey's post hoc test. Statistical analysis was 
performed using SPSS software (version 20; IBM Corp). 
P<0.05 were considered to indicate a statistically significant 
difference.

Results

miR‑19b is upregulated in the majority of NPC cell lines. 
RT‑qPCR revealed that miR‑19b was upregulated NPC cells 
(C666‑1, 5‑8F and SUNE1) compared with the nasopharyngeal 
epithelial cell line SXSW‑1489. However, no statistical differ-
ence in miR‑19b expression was observed between HK1‑EBV 
and SXSW‑1489 cells (Fig. 1). As C666‑1 is the only NPC cell 
line consistently harboring EBV during in vitro propagation (16), 
this cell line was selected for subsequent miR‑19b interference.

miR‑19b inhibitor inhibits the proliferation of C666‑1 cells. 
The miR‑19b inhibitor or NC were transiently transfected into 
C666‑1 cells and the effect on proliferation was subsequently 
investigated. As shown in Fig. 2, the miR‑19b inhibitor inhibited 
the proliferation of C666‑1 cells compared with the NC. 

miR‑19b inhibitor promotes the apoptosis of C666‑1 cells. 
The miR‑19b inhibitor or NC were transiently transfected into 
C666‑1 cells and the effect on apoptosis was subsequently 
investigated. As shown in Fig. 3, flow cytometry revealed that 
the miR‑19b inhibitor promoted the apoptosis of C666‑1 cells 
compared with the NC. 

miR‑19b inhibitor inhibits the migration of C666‑1 cells. The 
effect on the migration of C666‑1 cells was investigated 48 h 
post‑transfection using a Transwell assay. As shown in Fig. 4, the 
migration of C666‑1 cells was significantly inhibited following 
transfection with the miR‑19b inhibitor, compared with the NC 
group.

miR‑19b inhibitor attenuates STAT3 signaling in C666‑1 
cells. Western blotting revealed that the expression levels of 
pSTAT3‑Tyr705 and pSTAT3‑Ser727 in C666‑1 cells decreased 
following transfection with the miR‑19b inhibitor compared 
with the NC. Furthermore, the expression level of SOCS1, an 
endogenous inhibitor of STAT3 phosphorylation (17), increased 
following transfection with the miR‑19b inhibitor compared 
with the NC (Fig. 5). Collectively, these results suggested that 
the miR‑19b inhibitor specifically targeted the STAT3 signaling 
pathway. 

miR‑19b inhibitor downregulates the expression of the STAT3 
signaling pathway downstream effectors. To explore the effect 
of the miR‑19b inhibitor on the expression of the downstream 
effector genes of the STAT3 signaling pathway, the expres-
sion levels of the proliferation‑associated gene cyclin D1 and 
the apoptosis‑associated genes Mcl‑1 and Bcl‑2 were detected 
by western blotting. These three proteins were downregulated 
following transfection with the miR‑19b inhibitor compared 
with the NC (Fig. 6), further suggesting that the STAT3 signaling 
pathway was impaired. Furthermore, the change in malignant 

biological behaviors such as proliferation, apoptosis and migra-
tion may have been mediated by the downstream effectors of the 
STAT3 signaling pathway.

Discussion

miR‑19b, as a member of the miR‑17‑92 cluster, has been 
revealed to serve as an oncomir in several types of tumors (18,19). 
miR‑19b promotes cell proliferation, migration and angiogen-
esis and inhibits cell apoptosis in several malignancies (20,21). 
The miR‑17‑92 cluster has been reported to be upregulated in 
NPC tissues and cell lines (22). Furthermore, the miR‑17‑92 

Figure 1. miR‑19b expression in NPC and immortalized nasopharyngeal 
epithelial cells was detected by reverse transcription‑quantitative PCR. 
miR‑19b was upregulated in three NPC cell lines (C666‑1, 5‑8F, and 
SUNE1) compared with the immortalized nasopharyngeal epithelial cell line 
SXSW‑1489. *P<0.05; ***P<0.001 vs. SXSW‑1489. miR, microRNA; NPC, 
nasopharyngeal carcinoma.

Figure 2. miR‑19b inhibitor inhibited the proliferation of C666‑1 cells. 
C666‑1 cells were transfected with the miR‑19b inhibitor for 6, 12, 24 and 
48 h. The Cell Counting Kit‑8 assay revealed that C666‑1 cells transfected 
with the miR‑19b inhibitor exhibited decreased proliferation compared 
with cells transfected with the NC. **P<0.01 vs. NC. miR, microRNA; 
NC, negative control.
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Figure 3. miR‑19b inhibitor increased the apoptosis of C666‑1 cells. (A) At 48 h post‑transfection, C666‑1 cells transfected with the miR‑19b inhibitor exhibited 
increased apoptosis compared with the NC, as demonstrated by flow cytometry. (B) Bar graphs show percentages of apoptotic cells. **P<0.01 vs. NC. miR, 
microRNA; NC, negative control.

Figure 4. miR‑19b inhibitor inhibited the migration of C666‑1 cells. (A) At 48 h post‑transfection, C666‑1 cells transfected with the miR‑19b inhibitor exhibited 
decreased migration compared with the NC, as demonstrated by the Transwell assay. (B) Number of migrated cells. **P<0.01 vs. NC. miR, microRNA; NC, 
negative control.

Figure 5. miR‑19b inhibitors upregulated the expression of SOCS1 and decreased the expression of pSTAT3. (A) C666‑1 cells were transfected with the 
miR‑19b inhibitor or NC and the protein levels were determined by western blotting 48 h post‑transfection. (B) Protein expression was semi-quantified. *P<0.05. 
miR, microRNA; NC, negative control. SOCS, suppressor of cytokine signaling 1; p, phosphorylated. 
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cluster facilitates malignant biological processes and modulates 
cancer‑related pathways in NPC (11,21,22). 

The results of the present study indicated that miR‑19b 
was upregulated in the majority of the NPC cell lines inves-
tigated compared with the nasopharyngeal epithelial cell line 
SXSW‑1489. However, the role of miR‑19b in NPC remains 
largely unknown. Therefore, in order to elucidate the functions 
of miR‑19b in NPC cells, an miR‑19b inhibitor was introduced 
into the NPC cell line C666‑1. This decreased the proliferation, 
increased apoptosis and inhibited migration of C666‑1 cells 
compared with the NC. These data are consistent with studies in 
several other malignancies (8,9,22).

STAT3 is a member of the STAT protein family. STAT3 
is phosphorylated by receptor‑associated Janus kinases (JAK) 
when stimulated by cytokines and growth factors and forms 
homodimers or heterodimers, which are translocated into the 
cell nucleus where they act as transcriptional activators (23). 
STAT3 mediates the expression of a variety of genes in response 
to extracellular or intracellular stimuli (24), and thus plays a key 
role in cell growth, apoptosis, invasion and metastasis, immune 
escape and angiogenesis (25). The STAT3 signaling pathway 
was revealed to be constitutively activated in NPC (26). The 
involvement of STAT3 in cancer cell growth and invasion has 
been previously documented in NPC (27). Furthermore, STAT3 
has been identified as a therapeutic target in NPC (27).

SOCS1 is a member of the STAT‑induced STAT inhibitor 
(SSI) family, also known as the SOCS family (28). SSI family 
members are cytokine‑inducible negative regulators of cytokine 
signaling (29). SOCS1 takes part in a negative feedback loop 
that involves the JAK/STAT3 signaling pathway to attenuate 
cytokine signaling (30). Additionally, SOCS1 is reported to be a 
target of miR‑19b (31). The aforementioned studies suggest that 
miR‑19b positively modulates the STAT3 signaling pathway by 
inhibiting SOCS1 expression. The results obtained in the present 
study showed that SOCS1 expression was upregulated following 
miR‑19b inhibition in C666‑1 cells. In addition, upregulation of 
SOCS1 was accompanied by the downregulation of pSTAT3, 
including both pSTAT3‑Tyr705 and pSTAT3‑Ser727, in C666‑1 
cells. The data implied that miR‑19b plays a key role in STAT3 
activation in NPC. STAT3 is activated through phosphorylation 
of Tyr705 in response to a number of factors, including inter-
leukin‑6 (32), platelet derived growth factor (10) and epidermal 
growth factor (33). STAT3 Ser727 is phosphorylated by various 

kinases (34). Phosphorylation at Tyr‑705 leads to an increase in 
the transcriptional activity of STAT3. Serine phosphorylation 
is important for the formation of stable DNA‑binding STAT3 
homodimers and maximal transcriptional activity (35).

Phosphorylated STAT3 increases the expression of multiple 
downstream genes, which include cyclin D1, Bcl‑2 and Mcl‑1 (36). 
Cyclin D1 is proto‑oncogene since it serves as a cell cycle regu-
lator and is involved in the G1/S transition (37). Bcl‑2 encodes 
an integral outer mitochondrial membrane protein that prevents 
apoptosis (38). Mcl‑1 is a member of the Bcl‑2 family, and is 
involved in the regulation of apoptosis and cell survival (39). In 
the present study, the expression of cyclin D1, Bcl‑2 and Mcl‑1 
was downregulated in C666‑1 cells following transfection with 
the miR‑19b inhibitor. However, the downstream target genes 
of the STAT3 signaling pathway requires further investigation.

 In conclusion, the present study revealed that inhibition of 
miR‑19b attenuates the STAT3 signaling pathway and decreases 
the malignant biological behavior of the NPC cell line C666‑1. 
Therefore, miR‑19b may serve as potential therapeutic target for 
patients with NPC.
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