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Abstract: Schisandrol A possesses pharmacological properties and is used to treat various diseases;
however, its effects on osteoarthritis (OA) progression remain unclear. Here, we investigated Schisan-
drol A as a potential therapeutic agent for OA. In vitro, Schisandrol A effects were confirmed based
on the levels of expression of catabolic factors (MMPs, ADAMTS5, and Cox2) induced by IL-1β
or Schisandrol A treatment in chondrocytes. In vivo, experimental OA in mice was induced us-
ing a destabilized medial meniscus (DMM) surgical model or oral gavage of Schisandrol A in a
dose-dependent manner, and demonstrated using histological analysis. In vitro and in vivo analyses
demonstrated that Schisandrol A inhibition attenuated osteoarthritic cartilage destruction via the
regulation of Mmp3, Mmp13, Adamts5, and Cox2 expression. In the NF-κB signaling pathway,
Schisandrol A suppressed the degradation of IκB and the phosphorylation of p65 induced by IL-1β.
Overall, and Schisandrol A reduced the expression of catabolic factors by blocking NF-κB signaling
and prevented cartilage destruction. Therefore, Schisandrol A attenuated OA progression, and can
be used to develop novel OA drug therapies.

Keywords: Schisandrol A; cartilage destruction; osteoarthritis; NF-κB

1. Introduction

Joint inflammation and cartilage destruction are the leading causes of osteoarthritis
(OA) and are responsible for making a patient’s daily life uncomfortable [1]. OA disease
includes features such as cartilage destruction, subchondral bone sclerosis, synovial inflam-
mation, meniscal degeneration, and fibrosis of the infrapatellar fat pad [2,3]. In addition,
OA has several risk factors such as aging, gender, obesity, and reactive oxygen species
(ROS) production, which influence a variety of processes and lead to joint destruction.
Such factors increase susceptibility to cell death leading to defect repair of the damaged
matrix and inflammatory and catabolic conditions, in turn, promoting the development
of OA by imbalance in joints [4–6]. OA is a degenerative disorder of cartilage that is
primarily caused by the collapse of cartilage homeostasis [7]. In articular cartilage cells,
the molecular mechanisms of inflammation and cartilage destruction are driven by the
induction of catabolic factors such as matrix metalloproteinases (MMPs), aggrecanase, and
cyclooxygenase 2 (COX-2) [8]. Pro-inflammatory cytokines (e.g., interleukin-1β (IL-1β))
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and mechanical stress can induce MMPs, ADAMTS, and COX-2 expression and thereby,
promote cartilage destruction and OA development [9,10].

There are many MMP isotypes, among which MMP3 and MMP13 are crucial molecules
that degrade the cartilage matrix. MMP3 and MMP13 both have aggrecanase and collage-
nase activities [11,12] and are responsible for the degradation of aggrecan, type II collagen,
and other extracellular matrix (ECM) components. [11] Aggrecanases are members of
the A disintegrin and metalloproteinase with thrombos-pondin motifs (ADAMTS) family.
ADAMTS are responsible for aggrecan degradation in OA and ADAMTS5 is a particu-
larly important aggrecanase [13]. COX-2 is primarily associated with joint inflammation,
which activates MMP3 and MMP13 and eventually accelerates ECM destruction during
OA development [14,15]. Therefore, as the levels of COX-2, MMP3, and MMP13 increase
during OA progression, the ECM decreases, leading to the onset of severe OA and its
resultant symptoms.

IL-1β regulates the catabolism of chondrocytes by activating nuclear factor (NF)-κB
signaling, which later leads to OA [16,17]. As a transcription factor, NF-κB is primarily
responsible for regulating biological processes such as inflammation, cell differentiation,
and proliferation [18,19]. The results of many prior studies revealed that activation of the
NF-κB signaling pathway increases the expression of MMP3, MMP13, and COX-2 which
are known to be involved in the development of OA through the downstream induction of
catabolic factors in chondrocytes [19,20].

Schisandra chinensis Baill. is a traditional Chinese medicine that has been recorded as
a drug and is used to treat various diseases [21,22]. The lignan Schisandrol A, an active
ingredient derived from the fruit of S. chinensis Baill. [23–26] has been widely reported
to possess a variety of pharmacological attributes, including antioxidant, anti-apoptotic,
and anti-allergic properties [27–29]. In addition, results of a previous study revealed
that Schisandrol A exhibited anti-inflammatory effects that involved pro-inflammatory
mediators (e.g., COX-2) via inhibition of NF-κB activation [30]. There is evidence that
Schisandrol A can ameliorate symptoms of breast cancer, Alzheimer’s disease, and liver
disease [27]. In other studies, Schisandrol A was shown to exert protective effects against
hypoxia/reoxygenation-induced vascular endothelial damage and glutamate-induced
excitotoxicity [31,32]. Although Schisandrol A is used to treat a variety of disorders, it has
not been reported to be effective in the treatment of OA, and its role as an OA therapeutic
agent is currently unknown.

Currently available treatments for OA include steroidal anti-inflammatory drugs
(NSAIDs), which exhibit side effects and toxicity [6]. Consequently, novel OA treatments
with little or no side effects are required. The purpose of the present study was to assess
the capacity of Schisandrol A to attenuate MMP3, MMP13, and COX-2 expression via
NF-κB signaling and, in turn, inhibit OA development, which was accomplished through
in vitro and in vivo experiments. No previous studies have explored the potential effects
of Schisandrol A on OA. Therefore, we investigated the potential use of Schisandrol A in
the development of novel drugs for degenerative OA.

2. Results
2.1. Schisandrol A Is Not Toxic to Chondrocytes

First, we examined whether Schisandrol A is toxic to chondrocytes. There was little
difference in cell viability between the groups treated with Schisandrol A 200, 400, 800,
1000, and 1200 µM) and the control group, with the exception of a small but noticeable
reduction at 1200 µM (Figure 1). Based on these data, all subsequent experiments were
conducted using concentrations of 400, 800, and 1000 µg/mL.
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Figure 1. Toxicity of Schisandrol A toward chondrocytes. (A) Chemical structure of Schisandrol A. 

(B) Toxic effects of Schisandrol A on chondrocytes. Cell viability was measured at different con-

centrations for 24 h and analyzed using a lactate dehydrogenase (LDH) assay. Data were analyzed 

using one-way ANOVA with Bonferroni’s test, and plotted values were expressed as means ± 

SEM; n.s. p > 0.05, compared to the control group. 

2.2. Schisandrol A Inhibits IL-1β-Induced MMPs and COX-2 in Chondrocytes 
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Figure 1. Toxicity of Schisandrol A toward chondrocytes. (A) Chemical structure of Schisandrol A. (B) Toxic effects of
Schisandrol A on chondrocytes. Cell viability was measured at different concentrations for 24 h and analyzed using a lactate
dehydrogenase (LDH) assay. Data were analyzed using one-way ANOVA with Bonferroni’s test, and plotted values were
expressed as means ± SEM; n.s. p > 0.05, compared to the control group.

2.2. Schisandrol A Inhibits IL-1β-Induced MMPs and COX-2 in Chondrocytes

The levels of MMP3, MMP13, COX-2, and ADAMTS5 increased sharply in chondro-
cytes after IL-1β treatment [19,20]. However, when the chondrocytes were co-treated with
Schisandrol A for 24 h, the mRNA levels of MMP3, MMP13, COX-2, and ADAMTS5 gradu-
ally decreased in a concentration-dependent manner, as determined by RT-PCR (Figure 2A)
and qRT-PCR (Figure 2B). PCR primers are summarized in Table S1. In addition, the protein
expression levels of COX-2 decreased significantly at 800 and 1000 µM of Schisandrol A,
as determined by Western blot (Figure 2C). Chondrocytes were treated with IL-1β in the
absence or presence of different concentrations of Schisandrol A, followed by prostaglandin
E2 (PGE2) and collagenase assays. The assay results showed that synthesis of PGE2 and
collagenase was dramatically decreased by Schisandrol A in a concentration-dependent
manner (Figure 2D). Considering the results above, treatment with Schisandrol A reduced
the expression of various catabolic factors compared to IL-1β treatment and suggest that
Schisandrol A has the potential to alleviate OA treatment.

2.3. Oral Gavage of Schisandrol A Inhibits Cartilage Degradation in the Destabilization of the
Medial Meniscus (DMM)-Induced Arthritis Model

To determine whether oral administration of Schisandrol A prevents arthritic cartilage
destruction in vivo, we investigated the effect of the compound in the DMM-induced arthri-
tis mouse model. The different treatments are shown in Figure 3A. Osteoarthritis Research
Association International (OARSI) grade, osteophyte maturity, and subchondral bone plate
thickness were significantly lower in the Schisandrol A-treated groups than in the control
group, except for the group treated with 5 mg/kg Schisandrol A. Moreover, compared with
the PBS control, oral gavage of Schisandrol A noticeably prevented cartilage destruction
(Figure 3C) and decreased ADAMTS5 expression based on immunohistochemical staining
results (Figure 3D).
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Figure 2. Schisandrol A suppresses expression of matrix metalloproteinases (MMPs) and cyclooxygenase 2 (COX-2) and
decreases IL-1β-induced production of PGE2 and collagenase in mouse articular chondrocytes. Chondrocytes stimulated
with IL-1β (1 ng/mL) were treated with or without various concentrations of Schisandrol A (400, 800, or 1000 µM). The
mRNA expression levels of MMP3, MMP13, COX-2 and ADAMTS5 were determined by RT-PCR (A) and qRT-PCR (B). The
protein expression of COX-2 was measured by Western blot and densitometry (C). Celecoxib (50 µM) was used as a positive
control. PGE2 (D, left panel) and collagenase (D, right panel) assays were performed on chondrocytes stimulated with IL-1β
(1 ng/mL) and treated with or without Schisandrol A at various concentrations (400, 800, or 1000 µM). Celecoxib (50 µM)
was used as a positive control. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and extracellular signal-regulated
kinase (ERK) were used as loading controls. Data were analyzed using one-way ANOVA with Bonferroni’s test, and plotted
values were expressed as means ± SEM; n.s. p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 compared to the
control group.
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Figure 3. Oral administration of Schisandrol A protects against cartilage degradation in osteoarthritis (OA). (A) Overall 
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ANOVA with Bonferroni’s test, and plotted values were expressed as means ± SEM; n.s. p > 0.05, * p < 0.05 and ** p < 0.01 

compared to the control (PBS) group. (C) Analysis of cartilage degradation was performed by safranin O staining. (D) 
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(Figure 4B) revealed that Schisandrol A suppressed the degradation of IκB, a factor that 

regulates NF-κB nuclear translocation, and blocked the phosphorylation of p65, one of the 

subunits the NF-κB complex. In addition, MAPK signaling is important and is involved 

in apoptosis of chondrocytes and the degradation of extracellular matrix in OA progres-

sion [33]. To evaluate MAPK signaling pathways influenced by Schisandrol A, the expres-

sion of p-ERK1/2, p-JNK, and p-p38 proteins were analyzed by Western blotting. How-

ever, Schisandrol A did not influence the phosphorylation of ERK1/2, JNK, or p38. We 

also investigated whether IL-1β-induced activation of NF-κB was attenuated by Schisan-

Figure 3. Oral administration of Schisandrol A protects against cartilage degradation in osteoarthritis (OA). (A) Overall
experimental plan for the analysis of the DMM-induced OA model (n = 3 for each group). Mice were administered PBS
or Schisandrol A (5, 10, or 50 mg/kg) every other day from 4 weeks after DMM surgery until they were analyzed at
10 weeks. (B) Cartilage degradation was determined by Osteoarthritis Research Association International (OARSI) score,
osteophyte maturity, and subchondral bone plate thickness (SBP) at 10 weeks after DMM surgery. Data were analyzed
using one-way ANOVA with Bonferroni’s test, and plotted values were expressed as means ± SEM; n.s. p > 0.05, * p < 0.05
and ** p < 0.01 compared to the control (PBS) group. (C) Analysis of cartilage degradation was performed by safranin O
staining. (D) Expression of ADAMTS5 in cartilage of DMM-induced OA model is determined with immunostaining. Scale
bar = 100 µm.

2.4. Schisandrol A Prevents Activation of IL-1β-Induced NF-κB Signaling in Mouse
Articular Chondrocytes

We examined whether Schisandrol A regulates the intermediates of the NF-κB signal-
ing pathway. Western blot analysis (Figure 4A) and densitometry measurements (Figure 4B)
revealed that Schisandrol A suppressed the degradation of IκB, a factor that regulates NF-
κB nuclear translocation, and blocked the phosphorylation of p65, one of the subunits the
NF-κB complex. In addition, MAPK signaling is important and is involved in apoptosis of
chondrocytes and the degradation of extracellular matrix in OA progression [33]. To evalu-
ate MAPK signaling pathways influenced by Schisandrol A, the expression of p-ERK1/2,
p-JNK, and p-p38 proteins were analyzed by Western blotting. However, Schisandrol A did
not influence the phosphorylation of ERK1/2, JNK, or p38. We also investigated whether
IL-1β-induced activation of NF-κB was attenuated by Schisandrol A. The IL-1β-dependent
increase in NF-κB reporter activity was reduced by Schisandrol A co-treatment (Figure 4C).
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To determine how Schisandrol A regulates catabolic factor by inhibiting NF-κB signaling,
we examined the interaction of Schisandrol A with proteins known to regulate NF-κB sig-
naling. The presence of the interaction between Schisandrol A and β-TrCP was confirmed
by modeling in silico protein structural homology (Figure 4D and the expected binding
site of Shcisandrol A in the β-TrCP amino acid sequence is shown in blue (Supplementary
Figure S1). Thus, NF-κB-dependent transcriptional activity was suppressed by Schisan-
drol A, which would lead to downregulation of MMP3, MMP13, and COX-2 expression
in chondrocytes.
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Figure 4. Schisandrol A regulates IL-1β-induced NF-κB activation. Mouse articular chondrocytes were pretreated with
Schisandrol A at different concentrations for 24 h (n = 3) before being treated with IL-1β (1 ng/mL) for 15 min. (A) Protein
levels of IκB and phosphorylated p65 (pp65), phosphorylated JNK (pJNK), phosphorylated ERK (pERK) and phosphorylated
p38 (pp38) were evaluated by Western blotting. (B) Protein levels of IκB and phosphorylated p65 (pp65) were evaluated using
densitometry. Extracellular signal-regulated kinase (ERK) and p65 were used as loading controls. NF-κB transcriptional
activity (C) was assessed using a luciferase reporter gene assay. (D) Interaction simulation of Schisandrol A and β-TrCP
generated by Autodock Vina program. (E) General summary of our findings. Celecoxib (50 µM) was used as a positive
control. Data were analyzed using one-way ANOVA with Bonferroni’s test, and the plotted values were expressed as means
± SEM; n.s. p > 0.05, * p < 0.05, ** p < 0.01 and **** p < 0.0001 compared to the control group.
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3. Discussion

OA is one of several diseases caused by exposure to multiple factors and is associated
with multiple risks, such as age, joint trauma, and mechanical stress [34,35]. Nonsteroidal
anti-inflammatory drugs were first prescribed for the treatment of OA. However, these
drugs can cause side effects, such as peptic ulcers, intestinal bleeding, and myocardial
infarction [36]. Therefore, it is important to develop safer drugs to treat OA.

Currently, there is no complete cure for OA, and most of the treatments being applied
are aimed at controlling pain or maintaining joint function. Numerous studies have re-
ported the protective pharmacological effects of certain agents during joint inflammation,
such as carnosine and hyaluronic acid (HA), and anti-oxidative and anti-inflammatory
properties, such as Anacardium occidentale L., research is ongoing to investigate their poten-
tial efficacy [37,38]. Research is also underway to improve OA symptoms by focusing on
agents with anti-inflammatory and pain relief properties such as ALIAmide or a combina-
tion of hyaluronic acid and adelmidrol [39,40]. Since available pharmaceuticals are limited
in terms of efficacy and long-term safety, natural products, which are generally considered
safe, have increasingly attracted the interest of stakeholders and researchers.

S. chinensis Baill. is a medicinal herb that has been frequently used for the treatment of
various diseases [21,22]. The lignan Schisandrol A is one of the active ingredients extracted
from this herb [19–22]. Schisandrol A has been widely reported to possess a variety
of pharmacological properties [27–29]. It has been previously shown to protect against
acute myocardial ischemia through the phosphoinositide 3-kinase (PI3K)/Akt-NADPH
oxidase 2 (NOX2) signaling pathway [28]. In addition, Schisandrol A has been used to
treat neurological disorders in many studies [41–43]. It has been reported to improve
learning and memory impairment and attenuate β-amyloid deposition in a mouse model
of Alzheimer’s disease by ameliorating neurotransmitter dysfunction [44]. Schisandrol A
utilizes an interesting mechanism to protect against ischemia/reperfusion-induced nerve
damage by inactivating autophagy that occurs through the 5′-adenosine monophosphate-
activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) pathway, and
thus can be used as a neuroprotective agent against ischemic stroke [45]. Schisandrol A
also attenuates lung injury disease by modulating the Toll-like receptor 4 (TLR-4) and
Akt/Forkhead box protein O1 (FoxO1) signaling pathways [46]. Schisandrol A is known
to relieve inflammation induced by avian pathogenic Escherichia coli in chicken type II
pneumonia [47]. In addition, it suppresses the levels of COX-2 and ROS through inhibition
of the NF-κB signaling pathway in liver inflammation [48].

There are molecules with structures similar to that of Schisandrol A, mainly schisan-
drin A and schisandrin B, with Schisandrol A possessing a different hydroxyl group from
the other two molecules. In addition, schisandrin A has three methoxy groups on one
benzene ring, while schisandrin B has a structure with two methoxy groups connected to
form a ring [21]. Similar to Schisandrol A, schisandrin A, and schisandrin B have been
evaluated for the treatment of many diseases [49–51]. Schisandrin A inhibits the develop-
ment of OA through inhibition of mitogen-activated protein kinase (MAPK) and NF-κB
signaling pathways [52] and is known to exhibit potent anticancer activity in colon cancer
cells [53]. Schisandrin B also alleviates OA through inhibition of NF-κB and MAPK signal-
ing pathways [54] and suppresses traumatic spinal cord injury by inhibiting p53 signaling
to attenuate the inflammatory response, oxidative stress, and apoptosis caused by such
injury [55]. Thus, several molecules with structures similar to that of Schisandrol A have
been reported to alleviate OA symptoms [52,53], but the association between Schisandrol
A and OA has not been investigated. Therefore, we performed several experiments and
found a positive effect of Schisandrol A on OA.

In clinical and experimental OA, cartilage degradation and inflammation are caused
by increased expression of catabolic factors, such as MMPs and COX-2 [14–16]. The
regulators of MMP and COX-2 expression are known as pro-inflammatory cytokines (e.g.,
IL-1β) [20]. IL-1β has been reported to regulate the expression of catabolic factors in mouse
chondrocytes [11,56]. It regulates downstream molecules by activating the NF-κB signaling
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pathway in chondrocytes and plays an important role in OA progression [57,58]. Therefore,
mouse chondrocytes were treated with IL-1β to simulate experimental OA conditions
in vitro. Prior to the experiment, we investigated cytotoxicity at various Schisandrol A
concentrations. Cytotoxicity was not observed up to 1000 µM (1 mM) in in vitro analysis.
Treatment of mouse chondrocytes with IL-1β is known to upregulate the expression of
catabolic factors, including MMP3, MMP13, and COX-2 [59]. MMP3 and MMP13 act as
collagenases and aggrecanases, promoting the breakdown of type II collagen and degrading
cartilage [11]. Prostaglandin synthesis mediated by COX-2 expression is a major risk factor
associated with OA, and elevated prostaglandins increase MMP synthesis [59]. According
to our current study. Schisandrol A suppressed IL-1β-induced OA progression by reducing
the expression and activity of MMP3, MMP13, and COX-2 in chondrocytes. Therefore,
Schisandrol A is a feasible therapeutic agent for OA. Our results suggest that Schisandrol
A blocks cartilage destruction via inhibition of the NF-κB signaling pathway by inhibiting
IκB degradation and p65 phosphorylation, resulting in reduced NF-κB activity.

NF-κB is a transcription factor found in all animal cell types, including chondro-
cytes [16,60]. NF-κB plays an incredibly important role in the cell’s response to several
stimuli including stress, chemokines, and pro-inflammatory cytokines [56,61]. NF-κB-
mediated responses are initiated by the degradation of the IκB protein inhibitor bound
to NF-κB. After IκB is degraded, the NF-κB complex is phosphorylated and translocated
to the nucleus. Then, various mRNAs including MMP3, MMP13, and COX-2 are upreg-
ulated [60,62,63]. Activation of the NF-κB signaling pathway leads to the degradation
of articular cartilage and increases the expression of catabolic factors that can lead to
arthritis [64]. Therefore, blocking the NF-κB signaling pathway is considered one way to
treat OA. Previous studies have also shown that suppressing the NF-κB signaling pathway
reduces the expression of Mmps and Cox-2 [59,65]. According to our experimental results,
Schisandrol A inhibited the degradation of IκB and phosphorylation of p65. In order to
regulate NF-κB signaling, two major signaling steps are required: Activation of IKK and
degradation of phosphorylated inhibitors. IKK activation and IkB degradation involve
different ubiquitination modes. β-TrCP induces ubiquitination of IκB, thereby degrading
IκB, and NF-κB, which is separated from the IκB-NF-κB complex, enters the nucleus, and
NF-κB signaling is activated [66,67]. Our in vitro experiments suggested that Schisandrol
A inhibit the NF-κB signaling pathway via inhibiting degradation of IκB by binding to
β-TrCP (Figure 4D). Therefore, we found that Schisandrol A could prevent the progression
of ar-thritis by inhibiting the NF-κB signaling pathway.

In conclusion, according to our experimental results, Schisandrol A inhibited the
expression of MMP3, MMP13, and COX-2 factors known to cause cartilage destruction,
by inhibiting the NF-κB signaling pathway (Figure 4D), and it suppressed cartilage de-
struction in a mouse model of degenerative arthritis (DMM model). Both in vitro and
in vivo experiments provided evidence that the degradation of cartilage could be inhibited.
Therefore, we propose that Schisandrol A is a potential candidate for the development of
new drugs to treat OA.

4. Materials and Methods
4.1. Mice

In vivo animal experiments were approved by the Animal Care and Use Committee
of the University of Ajou and complied with the Guide for the Care and Use of Laboratory
Animals Eighth Edition published by the National Institutes of Health. All mice were
purchased from DBL Co., Ltd. (Chungbuk, South Korea). C57BL/6J male mice weighing
18–20 g (10 weeks old) were housed at 23 ◦C and exposed to a 12/12 h light/dark cycle.
Food and water were provided regularly. Five-day old Institute of Cancer Research mice
were used for articular chondrocyte culture.
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4.2. Culture of Articular Chondrocytes and Viability Analysis

Mouse articular chondrocytes were isolated from the femoral condyles and tibial
plateaus of 5-day-old postnatal mice. Cartilage tissue was digested with 0.2% collagenase
type II. The chondrocytes were seeded in 96-well dishes (9 × 103 cells/well) and incubated
for 48 h prior to treatment. Schisandrol A was added at various concentrations (200, 400,
800, and 1000 µM), and the cultures were incubated in Dulbecco’s Modified Eagle Medi-
um (DMEM) with 10% fetal calf serum (Capricon, Ebsdorfergrund, Germany), and 1%
penicillin-streptomycin (Capricon, Ebsdorfergrund, Germany). After 24 h, we analyzed
cell viability by assaying the culture medium for lactate dehydrogenase (LDH) activity
using an LDH Colorimetric Assay Kit (BioVision, Inc., Milpitas, CA, USA). We used
untreated samples (via-bility of 100%) and Triton X-100-treated samples (viability of 0%)
for normalization. Viability was calculated using the following formula: 100-(sample LDH-
negative control)/(maximum LDH-negative control) × 100. Each signal was measured
with a SYNERGY H1 Microplate Reader (Biotek, Winooski, VT, USA) at 495 nm.

4.3. Reagents and Treatment

IL-1β was purchased from GenScript (Piscataway, NJ, USA). Schisandrol A and
celecoxib were purchased from Sigma-Aldrich (St. Louis, MO, USA). Schisandrol A was
dissolved in PBS at 50 mg/mL for oral administration to mice. Schisandrol A and celecoxib
were dissolved in dimethyl sulfoxide (DMSO) for in vitro analyses, and IL-1β recombinant
protein was dissolved in sterilized water. Mouse articular chondrocytes were treated with
IL-1β (1 ng/mL) to create an in vitro OA environment and co-treated with Schisandrol
A (400, 800, or 1000 µM) or celecoxib (50 µM, positive control) for 24 h before the cells
were harvested.

4.4. Quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from articular chondrocytes using TRIzol (Molecular Re-search
Center Inc., Cincinnati, OH, USA). The different primers used (e.g., for MMPs, GAPDH, and
COX-2) are listed in Supplementary Table S1. The level of amplification of the target gene
was evaluated by qRT-PCR using SYBR® Green fluorescence and Premix Ex Taq (TaKaRa
Bio, Kusatsu, Shiga, Japan). The transcription level of each target gene was normalized to
that of GAPDH and expressed as fold-change relative to the indicated control.

4.5. Protein Isolation and Western Blotting

Whole protein was extracted from the primary cultured chondrocytes using RIPA
lysis buffer containing 150 mM NaCl, 1% NP-40, 50 mM Tris/HCl (pH 8.0), 0.2% SDS, and
5 mM NaF with addition of protease and phosphatase inhibitor mixture (Roche, Madison,
WI, USA). Total proteins were separated by SDS-PAGE, and Western blotting analysis was
performed. The following antibodies were used: Goat anti-COX-2 (sc-1745; Santa Cruz,
Dallas, TX, USA); mouse anti-ERK1/2 (610408; Becton Dickinson, NJ, USA); mouse anti-IκB
(9242; Cell Signaling Technology, Danvers, MA, USA); mouse anti-p65 (8242; CST; mouse
anti-phospho-p65 (3033; CST mouse anti-p38 (#9212; CST), mouse anti-pp38 (#9215S; CST);
mouse anti-c-Jun N-terminal kinase (JNK) (#9252S; CST); mouse anti-pJNK (#9251S; CST);
mouse anti-pErk (#9101S; CST). Each signal was visualized using the SuperSignal West
Dura Kit (Thermo Scientific, Waltham, MA, USA). Density analysis (AlphaEase FC 4.0;
Alpha Innotech, San Leandro, CA, USA) was used to quantify the relevant band intensities.
Extracellular signal-regulated kinase (ERK) was used as the loading control.

4.6. PGE2, Collagenase, and Reporter Gene Assays

PGE2 production was evaluated using the PGE2 Immunoassay Kit (R&D System,
Minneapolis, MN, USA). Primary mouse articular chondrocytes were seeded in 96-well
plates (2 × 104 cells/well). The levels of intracellular and secreted PGE2 were measured
in total cell lysates. Total collagenase activity in the conditioned medium of the artic-
ular chondrocyte culture was determined using the EnzCheck Gelatinase/Collagenase
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Assay Kit (Molecular Probes, Carlsbad, CA, USA) and measured with a VICTOR X3 Mi-
croplate Reader (PerkinElmer, Waltham, MA, USA) at excitation/emission wavelengths of
490/530 nm, according to the manufacturer’s protocol. The NF-κB reporter gene plasmids
were transfected into mouse articular chondrocytes via Lipofectamine Plus (Invitrogen,
Carls-bad, CA, USA). After incubating the transfected cells for 24 h in complete medium,
lucif-erase activity was assessed using an assay kit (Promega, Madison, WI, USA) and then
normalized to β-galactosidase activity.

4.7. Experimental OA Mouse Model and Oral Administration

DMM surgery was performed on 10-week-old male C57BL/6J mice following a pro-
tocol used to create an OA model induced by medial meniscus disruption [62]. For
histological analysis, the mouse knee joint was processed 10 weeks after surgery. In the
DMM-induced OA model, Schisandrol A (5, 10, or 50 mg/kg) was administered daily by
gavage for 6 weeks, and the mice were euthanized after completion of the 6-week regimen.
There were four treatment groups (DMM + PBS, DMM + 5 mg/kg, DMM + 10 mg/kg, and
DMM + 50 mg/kg). Three animals were used in each condition, and the total number of
animals was 12.

4.8. Evaluation of Cartilage Destruction

Cartilage destruction was determined by Safranin O staining and scored using the
OARSI grading system. Mouse knee joints were fixed with 4% paraformaldehyde, dehy-
drated with 0.5 M EDTA (pH 8.0) for 2 weeks, and embedded in paraffin. The paraffin
blocks were successively cut at 50-µm intervals. The 50-µm pieces were then cut into 5-µm
sections, which were fixed on glass slides. The sections were hydrated with a graded
ethanol series, free of paraffin and xylene.

4.9. Immunohistochemistry

Paraffin sections were deparaffinized in xylene for immunohistochemical staining
in cartilage tissue. Next, the sections were washed and, and hydrated with ethanol. In
order to expose the Antigen of the sample, 0.1% trypsin was treated for 30 min. Sections
were stained via the LSAB2 Horseradish Peroxidase Kit (Dako, Santa Clara, CA, USA)
according to the manufacturer’s instructions. sections of the slide were incubated with an
antibody against Adamts5 (ab41037, Abcam, Cambridge, UK) for 12 h at room temperature,
followed by visualization of immunoreactive proteins using DACO AEC + high sensitivity
matrix chromosome solution (Dako, Santa Clara, CA, USA).

4.10. Protein Structural Homology Modeling

Homology-based structural modeling of mouse β-TrCP (accession ID: NP_001032847)
was performed using the SWISS-MODEL web server (http://swissmodel.expasy.org, ac-
cessed on 24 February 2021) [68]. The templates, human β-TrCP (PDB ID: 6TTU) was
selected and the sequence similarities was 98.68% (QMEAN4 Z-scores given by SWISS-
MODEL were −1.67). Chemical structure of Schisandrol A used in this study was re-
trieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov, accessed on, as
of 24 February 2021) [69]. Molecular docking analyses were performed using AutoDock
Vina (ver. 1.1.2) [70]. The receptor coordinates and the docking parameters have been
prepared using AutoDock MGLTools (ver. 1.5.6) [71]. The graphical representation of
docking structures was constructed using PyMOL (ver. 1.3; DeLanoScientific, San Carlos,
CA, USA).

4.11. Statistical Analysis

The data were presented as means± SEM. The entire histological sample was prepared
independently by two researchers. Each experiment was performed at least three times.
One-way ANOVA using the Bonferroni post-test was used for data analysis. For performing
statistical analysis, we used PRISM 7 software and recognized significance as p ≤ 0.05.

http://swissmodel.expasy.org
https://pubchem.ncbi.nlm.nih.gov
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Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/3/241/s1, Supplementary Figure S1: β-TrCP (F-box/WD repeat-containing protein 1A) amino
acid sequence. Blue: Shcisandrol A binding sites. Supplementary Table S1: PCR primers.
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