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Deep learning‑based detection 
algorithm for brain metastases 
on black blood imaging
Jang‑Hoon Oh1, Kyung Mi Lee2*, Hyug‑Gi Kim2, Jeong Taek Yoon3 & Eui Jong Kim2

Brain metastases (BM) are the most common intracranial tumors, and their prevalence is increasing. 
High‑resolution black‑blood (BB) imaging was used to complement the conventional contrast‑
enhanced 3D gradient‑echo imaging to detect BM. In this study, we propose an efficient deep learning 
algorithm (DLA) for BM detection in BB imaging with contrast enhancement scans, and assess 
the efficacy of an automatic detection algorithm for BM. A total of 113 BM participants with 585 
metastases were included in the training cohort for five‑fold cross‑validation. The You Only Look Once 
(YOLO) V2 network was trained with 3D BB sampling perfection with application‑optimized contrasts 
using different flip angle evolution (SPACE) images to investigate the BM detection. For the observer 
performance, two board‑certified radiologists and two second‑year radiology residents detected the 
BM and recorded the reading time. For the training cohort, the overall performance of the five‑fold 
cross‑validation was 87.95%, 24.82%, 19.35%, 14.48, and 18.40 for sensitivity, precision, F1‑Score, 
the false positive average for the BM dataset, and the false positive average for the normal individual 
dataset, respectively. For the comparison of reading time with and without DLA, the average reading 
time was reduced by 20.86% in the range of 15.22–25.77%. The proposed method has the potential to 
detect BM with a high sensitivity and has a limited number of false positives using BB imaging.

Brain metastases (BM) are the most common intracranial tumors and commonly originate from lung cancer, 
breast cancer, and malignant  melanoma1. Its prevalence has been increasing because of the prolonged survival 
of cancer patients following improvements in systemic treatment  options2,3 and improved lung cancer screening 
programs in many  countries4–6. The contrast-enhanced T1-weighted imaging (CE T1WI) magnetic resonance 
(MR) sequences are key in the diagnosis of BM and are also used for longitudinal follow-up to assess the treat-
ment response. Most patients present with three or fewer metastases in the brain; however, 40% of the patients 
have more number of  metastases7. Detection of the presence of metastases in the initial work-up of tumor 
patients, delineation of the initial tumor volume, and volume changes in relation to therapy are key tasks for 
radiologists, although the identification of BM is a time-consuming and tedious manual process for  radiologists8. 
The presence of BM can alter the overall oncologic management; hence, early and accurate diagnosis of BM is 
crucial for appropriate treatment planning.

Recently, deep learning-based approaches have been proposed to assist radiologists by automatically detecting 
or segmenting BM on CE  T1WI9–11. However, it is also a challenging task because of the similar morphological 
properties of BM and other structures, such as the intracranial vessels, as well as large variations in the size and 
distribution of BM. Recently, Grovik et al. presented an automatic detection and segmentation algorithm using 
multi-sequence MRI to overcome the limitations of using only one sequence of CE  T1WI12. From this point of 
view, the accurate detection of BM and their differentiation from different suspicious regions (BM mimics) are 
important for appropriate diagnosis and treatment.

Black-blood (BB) imaging is used to complement the contrast-enhanced 3D gradient-echo (CE 3D GRE) 
imaging to detect BM, wherein variable refocusing flip angles combined with flow-sensitizing gradients are used, 
selectively suppressing moving blood while stationary tumor contrast remains  visible13. These sequences can be 
useful in acquiring 3D brain data from BM patients and overcoming the disadvantages of the 3D magnetization-
prepared rapid gradient echo (MPRAGE), which was originally commonly used for detecting  BM13,14 because 
of its high spatial resolution and low partial volume effects. Single-slab 3D turbo spin echo BB images with slab 
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selective, variable excitation pulses, such as sampling perfection with application-optimized contrasts using dif-
ferent flip-angle evolution (SPACE), enable the acquisition of high-resolution 3D datasets with contrasts similar 
to those obtained from 2D T2-weighted, T1-weighted, proton density, and dark fluid protocols. Furthermore, to 
improve the signal-to-noise ratio (SNR), SPACE MRI was acquired using compress-sensing. It does not require 
further post-processing to minimize the noise because high SNR MR imaging has less  noise15,16.

The aim of our study was to provide a feasible deep learning algorithm (DLA) for the BM detection framework 
using the 3D BB imaging with contrast enhancement datasets that focus on variable sizes and locations in the 
routine clinical field. To verify the feasibility of BB imaging for BM detection, the same DLA was developed using 
the 3D MPRAGE. Moreover, a comparison of reading times with and without DLA was performed to estimate 
the expectation of reducing the workload of radiologists or clinicians when a BM detection framework can be 
used as a screening application.

Results
An example of a patient with five metastatic lesions of non-small cell lung carcinoma is shown in Fig. 1. Table 1 
shows the performance of the five-fold cross-validation of DLA. The overall performance was 87.95%, 24.82%, 
19.35%, 14.48, and 18.40 for the sensitivity, precision, F1-Score, and false positive average  (FPavg) for the training 
cohort and normal individual dataset, respectively. For five-fold cross validation, the maximum and minimum 
sensitivities were 97.44% (DataSet5) and 81.82% (DataSet3), respectively, and the maximum and minimum 
 FPavg were 21.57 (Model 2) and 7.27 (Model 3), respectively. Figure 2 shows examples of false positives from the 
DLA. The regions where false positives were mainly found were insufficiently suppressed in the vessel region. 
In addition, false positives were often observed in the choroid plexus, medulla oblongata, and basilar artery.

The performance of DLA using the MPRAGE is described in Supplementary Material 2. The overall perfor-
mance was 62.42%, 20.83%, 31.23%, 12.96, and 10.47 for the sensitivity, precision, F1-Score, and  FPavg for the 
training cohort and normal individual dataset, respectively. The region where false positives were mainly found 
was the enhanced blood vessels including sinus that appeared as a bright region in the image, and the examples 
of the results of DLA using the MPRAGE images and the false positive examples are demonstrated in Supple-
mentary Materials 3 and 4, respectively.

Figure 1.  Example of a case of a 67-year-old male patient with five brain metastases. (Origin of metastases is 
non-small cell lung carcinoma) The numbers 1–5 are displayed at each lesion. Blue boxes show the label that 
the lesion placed more than two adjacent slices and green boxes show the prediction result by deep learning 
algorithm. This figure was generated by MATLAB (MathWorks, R2020b, Natick, MA, USA).
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To compare the time cost for the diagnosis of metastases, the reading time measurements with and without 
DLA as computer-aided detection were performed during the diagnosis by four radiologists for 20 individu-
als. Figure 3 presents the average reading times with and without DLA for the four radiologists. A decrease in 
reading time with DLA was observed by all raters, and the percentages of reduction in reading time with DLA 
were 15.22%, 25.77%, 22.88%, and 19.57% for the four radiologists. In addition, we also compared the reading 
time with and without DLA using a paired samples t-test (Supplementary Materials 5), and the reading time 
with DLA for all the radiologists showed a significant decrease (P < 0.0001). For the DLA, the average processing 
time was measured at 4.8 s.

Table 1.  Cross validation performances of DLA for BM detection using SPACE image. DLA deep learning 
algorithm, BM brain metastases, SPACE sampling perfection with application-optimized contrasts using 
different flip-angle evolution, TPs true positives, FNs false negatives, FPavg false positive average, FPavg_Normal 
false positive average for normal individual dataset.

TPs FNs Sensitivity (%) Precision (%) F1-Score (%) FPavg FPavg_Normal

Overall performance 540 74 87.95 24.82 19.35 14.48 18.40

Cross validations

DataSet1 142 20 87.65 23.39 18.47 21.14 31.22

DataSet2 147 23 86.47 22.86 18.08 21.57 23.97

DataSet3 81 18 81.82 33.61 23.82 7.27 8.07

DataSet4 94 11 89.52 29.84 22.38 9.61 13.00

DataSet5 76 2 97.44 20.54 16.96 12.78 15.72

Figure 2.  Examples of a typical false positive from the DLA. Sample of sampling perfection with application-
optimized contrasts using different flip-angle evolution (SPACE) images demonstrated false positive regions 
around insufficiently suppressed vessel (A, B), basilar artery (C), choroid plexus (D), and medulla oblongata (E). 
False positives were overlaid with green boundary boxes. This figure was generated by MATLAB (MathWorks, 
R2020b, Natick, MA, USA).
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Discussions
In this study, a deep learning detection algorithm for BM using the contrast-enhanced BB imaging data was devel-
oped. Lesion candidates were automatically selected by presenting more than two slices. This type of computer-
aided diagnostic system could be clinically beneficial because reducing the number of patients with possible 
tumors could help reduce the total time required for radiologist interpretation.

Compared with the CE 3D-GRE, which is commonly used for BM detection, BB imaging, which selectively 
suppresses moving blood, can be useful in suppressing contrast-enhanced vessels that can be recognized as false 
positives. Compared to the DLA using MPRAGE, high sensitivity was observed in the DLA using BB imaging; 
however, higher false positives were also observed. In terms of sensitivity, similar to these results, a previous 
study compared the performance of deep learning segmentation for BM on BB images and GRE. Park et al.17 
reported that a deep learning model using the 3D BB images showed a higher sensitivity than a model using the 
3D GRE images. In their study, the model using the 3D BB + 3D GRE showed the highest sensitivity; however, 
compared to the deep learning model using 3D BB + 3D GRE, a slightly lower sensitivity (0.5%) was observed 
in the deep learning model using 3D BB only. In terms of false positive, although both DLAs detected blood 
vessels as false positives, however, the DLA using the MPRAGE image showed a tendency to detect relatively 
fewer false positives in the region that the DLA using the BB image detected as false positives. Among them, the 
false positives of the insufficient suppressed transverse sinus decreased noticeably (Supplementary materials 5). 
The reason that the higher FP was measured in the DLA using BB images compared to the DLA using MPRAGE 
images is presumed to be the result of differences in the characteristics of the two datasets, while the deep learn-
ing model trains the data. In the case of BB imaging, the signals of most small blood vessels are suppressed, and 
there is a possibility that the DLA is biased toward detecting bright regions in the process of learning BM labels. 
On the other hand, both BM and vessels showed a bright signal in the MPRAGE image; however, only BM were 
labeled, and the vessels were not. Therefore, in the process of training the DLA using the MPRAGE images, it is 
possible that the distinction between vessels and BM showing bright signals was reinforced, and for this reason, 
low false positives may have been observed in DLA using the MPRAGE images. In this study, considering the 
clinical environment in which GRE images are not acquired as a routine, we developed a deep learning model 
using the BB images that expected better performance in sensitivity than GRE.

In recent years, advances in DLA have suggested the possibility of detecting and segmenting primary brain 
 tumors18,19. Methods utilizing traditional image processing and machine learning techniques, such as template 
 matching20,21 and level  sets22, have been reported to produce promising results. In recent years, convolutional 
neural network (CNN)-based approaches have been used extensively in a variety of medical imaging analyses, 
which hold a great value for BM interpretation. However, only a few studies have applied such deep learning 
approaches in patients with BM, which may require different approaches, given their size and  multiplicity9,12,23. 
Two previous studies used a deep learning model based on a CNN to detect BM. Zhou et al.24 investigated a 
single-shot detector to detect BM. They trained a network using only CE T1WI, reporting a sensitivity of 81% 
and a precision of 36%. Compared to the previous study, the proposed method presented a contradictory overall 
performance, with higher sensitivity and lower precision. Zhang et al.25 investigated deep learning networks with 
detection methods using various MRI sequences, such as spoiled gradient-recalled (SPGR), MPRAGE, SPACE, 
and volumetric interpolated breath-hold examination (VIBE). They focused on false-positive reduction using 
the random undersampling boosting (RUSBoost) method, and reported a sensitivity of 87.10 and an  FPavg of 19 

Figure 3.  Comparison of the reading time for 20 individuals by four different raters with or without deep 
learning algorithm as computer-aided detection system. The bar graph represents the average of reading time [s] 
without and with deep learning algorithm.
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per scan. Compared with previous studies using the four-channel data as input, the proposed method showed 
similar sensitivity and lower  FPavg using a single sequence without any additional processing.

Previous studies used a deep learning model-based segmentation method to detect BM, and Charron et al.23 
investigated using the DeepMedic neural network for detecting and segmenting BM in a multi-sequence MR 
database, including CE T1WI, T2-weighted imaging (T2WI), fluid attenuated inversion recovery (FLAIR), and 
T1WI. They focused on parameter optimization, and the results of their study showed 93% accuracy and 7.8 
FP per patient. More recently, Grovik et al.12 used GoogLeNet-based CNN for BM detection with multiple MRI 
sequences for each patient: T1WI 3D fast spin-echo (CUBE), CE T1WI 3D axial inversion recovery prepped 
fast spoiled gradient echo (IR-prepped FSPGE), and 3D CUBE FLAIR. They reported 83% sensitivity and an 
FP rate of 8.3. The segmentation method used in previous studies has the advantage of taking a margin of the 
BM for treatment planning; however, labeling for the ground truth requires an enormous amount of manpower 
and time. The detection method, which was the same as our approach, could reduce the manpower and time 
consumption and achieve a performance similar to that of the segmentation method.

To apply this clinically, the verification of normal data is essential. The normal dataset that does not have a 
BM can evaluate  FPavg only, and the performance of  FPavg was 18.40, which is higher than the  FPavg for the train-
ing cohort. This result is assumed to be the reason for the pre-processing normalization step. The deep learning 
network is trained with labels pointing to the enhanced BM region. The cortical region of the normal dataset 
that was not enhanced could have a higher intensity than that of the BM dataset following the normalization 
processing. Thus, a deep learning model that is not trained with normal brain images misunderstands the nor-
mal cortical regions as false positives. The other cause of the high FP in our study was the normal sinus system, 
which had a high signal intensity on BB imaging. The proposed DLA detects false positives for all healthy data 
sets, and further studies to reduce false positives to at least one or less should be performed for a deep learning 
network to be used as screening software.

For the comparison of reading time with and without DLA, four radiologists showed a decrease in reading 
time with DLA, and the average reading time decreased by 20.86% in the range of 15.22–25.77%. Considering 
that the DLA in this study presented a false positive of 14.48 for BM patient and 18.40 for normal individuals 
on average, further reduction of reading time can be expected if a DLA with higher sensitivity and lower false 
positives is developed. There was no significant difference between the board-certified radiologists and radiology 
residents in the reading time reduction of BM detection with and without the DLA (P = 0.449).

Our study has several limitations. First, most diagnoses of BM are based on radiologic findings without 
pathologic confirmation, because multiple small metastatic lesions are usually not resected in clinical practice. 
Thus, we could not completely eliminate the possibility of false positives; however, we thoroughly reviewed both 
the initial and follow-up MRI scans. Second, to apply the deep learning model in real clinics, generalizability 
must be validated before distributing the deep learning model as an assistant software. Another limitation of this 
study was that the images were obtained at the single institution using an MR scanner from the same vendor with 
the same acquisition protocols for efficient training, which may not ensure the generalizability of deep learning. 
To suggest practical applicability, we are preparing further studies that include false-positive reduction, valida-
tion of generalizability via external validation, and evaluation of the time consumption of radiologists with or 
without deep learning algorithms. Third, although BM lesions with a diameter < 5 mm were excluded from the 
response assessment criteria for brain metastases, diagnosing and detecting small BM lesions remain a chal-
lenging issue. Therefore, we are preparing a further study to detect small BM by applying a deep learning model 
that specializes in small object detection. In this study, we provide a BM detection DLA for 3D BB imaging with 
contrast enhancement datasets. Although the performance of the proposed DLA is not sufficient for direct use 
as a screening application, further studies focused on reducing false positives, training on recognizing small 
BM, and verifying the generalizability via external validation. Our DLA method was developed to facilitate the 
daily routine work of radiologists by screening patients in advance, and helping improve diagnostic sensitivity 
because even experienced radiologists often miss  BM26.

Materials and methods
Patient population. This retrospective, single-center study was approved by the institutional review board 
of Kyung Hee University, and the requirement for informed consent was waived. The study population comprised 
a training cohort for five-fold cross-validation and a normal individual dataset (Fig. 4). The picture archiving 
communication system (PACS) and electronic medical records were retrospectively searched, and 434 patients 
who underwent our BM protocol, including contrast-enhanced brain MRI before treatment, were identified 
between May 2019 and February 2021. For the training cohort, 164 patients who were recently diagnosed with 
BM were selected, and a total of 51 patients were excluded for the following reasons: (1) four patients had benign 
lesions such as meningioma, schwannoma, pituitary adenoma, or cerebritis; (2) five patients had other malig-
nancies such as lymphoma, glioma, or other malignant masses; (3) eight patients had brain lesions smaller than 
5 mm; (4) the image quality in six patients was inadequate for analysis; (5) the brain lesion in two patients did not 
meet the available reference standard because of internal hemorrhage or venous thrombosis; (6) three patients 
had a previous history of surgery; and (7) 23 patients had leptomeningeal and bone metastases. Subsequently, 
113 patients (6196 slices MR images in the BB axial image) with 585 metastases (1055 images) were included. 
Most cases inevitably require pathologic confirmation; thus, typical MRI findings and imaging follow-up for a 
minimum of 6 months were used to characterize BM. The mean patient age was 64.7 years (range 21–85 years). 
Primary malignancies included lung (n = 83), breast (n = 4), melanoma (n = 6), ovary (n = 1), gastrointestinal 
(n = 7), and miscellaneous (n = 12) cancers.

The training cohort was divided for five-fold cross-validation; the details of these datasets are listed in Table 2. 
For the healthy individual dataset, 270 patients without BM were identified. Among them, 100 patients were 
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selected in the study using random sampling after data cleaning, such as excluding missing data. The mean age 
of the healthy individual dataset was 68.3 years for 66 men and 34 women.

Image acquisition. Brain MRI (3 T MAGNETOM VIDA; Siemens, Erlangen, Germany) was performed 
in patients with underlying primary malignancies. The MRI protocol for BM included post-contrast 3D BB 
images (SPACE). The imaging parameters were as follows: repetition time, 700 ms; echo time, ms; slice thick-
ness, 0.8 mm; flip angle, 120°; matrix size, 288 × 288; field of view, 230 × 230  mm2; voxel size, 0.8 × 0.8  mm2. After 
acquiring the 3D BB images in the sagittal plane, the image reconstruction in the axial plane was performed 
using the following parameters: slice thickness, 3 mm; matrix size, 512 × 512; pixel size, 0.45 × 0.45  mm2. For 
gadolinium (Gd)-enhanced imaging, a dose of 0.1 mmol/kg body weight of gadobenate dimeglumine (Multi-
Hance, Bracco Diagnostics, Princeton, NJ) was intravenously administered.

Data labeling. To propose an automatic lesion detection DLA, a post-contrast BB image with 3D axial 
reconstruction was used for the training. Two neuroradiologists with 10 and 30 years of experience, respectively, 

Figure 4.  The flowchart of the study population.

Table 2.  Characteristics of the datasets. MRI magnetic resonance imaging.

Training cohort

Normal datasetTotal Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

No. of MRI scans 113 22 23 22 23 23 100

No. of slices 6196 1205 1260 1206 1265 1260 5452

No. of lesion 585 163 171 68 105 78

No. of slices with lesion 1055 279 175 165 234 202

Age [years] (mean ± std) 65 ± 11.3 65.8 ± 12.1 68.6 ± 7.4 61.9 ± 16.4 64.6 ± 7.5 64.2 ± 9.7 68.3 ± 10.9

Sex

Male 70 14 16 15 13 12 66

Female 43 8 7 7 10 11 34

Origin (per scan)

Lung 83 15 22 16 18 12

Breast 4 2 0 0 0 2

Melanoma 6 3 0 1 0 2

Ovary 1 0 0 0 1 0

Gastrointestinal 7 1 1 2 1 2

Miscellaneous 12 1 0 3 3 5
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detected all the metastases on the post-contrast BB axial images of the patients included in the training cohort on 
the PACS, and a rectangular region of interest bounding each lesion was drawn using the Image Labeler applica-
tion included in the MATLAB program (MathWorks, R2020b, Natick, MA, USA).

Existing object detection models provide predictions for each slice. However, clinically, the provision of 
predictions for each lesion is more practical. Thus, the DLA was designed to automatically derive the predic-
tions for each lesion. For all labels on adjacent slices, the labels with an intersection > 0.3 intersection over union 
(IoU) were recognized as lesions, and each lesion was assigned an independent number (Fig. 5). As the DLA was 
designed for the detection of BM with a diameter > 5 mm that should be observed over two or more slices with 
a slice thickness of 3 mm, labels in a single slice were excluded for training and evaluation.

Training the proposed DLA. In this study, five-fold cross-validation was performed to overcome the lack 
of a BM dataset. A diagram of five-fold cross-validation for the training cohort and the normal individual dataset 
is illustrated in Fig. 6. Skull stripping was performed using a brain extraction tool (BET, v1.3)27 for all training 
cohort data and healthy individual datasets before use. After skull stripping, image intensity normalization in the 
range of 0–1 was performed for each slice.

You Only Look Once (YOLO)  V228, a state-of-the-art CNN object detection algorithm that can simultaneously 
detect the locations of objects in input images and classify them into different categories, was used for the DLA 
architecture. A YOLO V2 network for each five-fold cross-validation was initialized using the transfer learning 
method based on pre-trained ResNet-5029, similar to that in a previous  study30, with the following parameters: 
seven anchor boxes, Adam optimizer, mini-batch size of 64, initial learning rate of 1 ×  10−3, factor for L2 regu-
larization of 1 ×  10−4, and 1,000 epochs at maximum. To compensate for the lack of training data, random image 
rotations (0°, 90°, 180°, and 270°) and left–right flip processing were implemented. Every single image with 
BM was used as input data for the YOLO V2 network, and the mean and total training time for five-fold cross-
validation were 11 h and 30 min, and 57 h and 31 min, respectively. To investigate whether the BB imaging is 

Figure 5.  The flowchart for recognition of adjacent labels as identical lesions. Each label was identified per 
lesion and granted the lesion number for each lesion. Yellow boxes show the original labels and blue boxes 
show the label that the lesion placed more than two adjacent slices. This figure was generated by MATLAB 
(MathWorks, R2020b, Natick, MA, USA) and PowerPoint 2016 (www. micro soft. com).

http://www.microsoft.com
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more efficient than the MPRAGE in DLA for BM detection, the same DLA was trained using the MPRAGE; the 
detailed process is described in Supplementary Material 1.

All processes were performed on a single-server computer running a Windows operating system (Windows 
Server 2016) with a double NVIDIA V100 GPU and 32 GB of memory (Nvidia Corporation). The image labeling, 
processing, and training networks were based on MATLAB (MathWorks, R2020b, Natick, MA, USA).

Performance evaluation of DLA. To evaluate the BM detection performance, test sets of five-fold cross-
validation were evaluated by each trained model, with sensitivity, precision, F1-Score, and  FPavg as follows:

where TP is the true positive, FP is the false positive, FN is the false negative, TPR is the true positive rate, PPV 
is the positive predictive value, and N is the number of individuals. For all evaluations, the TP was determined 
when the IoU between the predicted box and the ground truth was > 0.5.

The purpose of the DLA is to screen for any pathology before a radiologist makes a diagnosis, and not to 
compare the DLA and humans. Thus, we assumed that the detection of a part of the lesion can assist radiologists, 
and predicted results using DLA that only one slice of the whole lesion estimates as true positive.

To evaluate how the trained network predicts an individual without BM, a healthy individual dataset was 
evaluated using all five networks from a five-fold cross-validation, and the results were averaged. The normal 
individual dataset had no ground-truth label data, and only  FPavg was calculated.

Observer performance. Observer performance tests for measuring reading time with and without DLA 
were conducted to estimate the expectation of reducing the workload of radiologists for the BM detection frame-
work. For the test datasets, 13 MRI scans with BM were randomly selected from the training cohort, and seven 
MRI scans without BM were randomly selected from the healthy individual datasets for this test.

The readers comprised two groups: two board-certified radiologists with 10 and 3 years of experience in 
neuroradiology (raters 1 and 2), and two second-year radiology residents (raters 3 and 4). The readers were 
informed that the BB imaging was performed for BM work-up but were not provided with information regard-
ing the presence of BM or other clinicopathological histories. The readers performed BM detection with and 

Sensitivity(TPR) =
TP

TP + FN

Precision(PPV) =
TP

TP + FP

F1− scores = 2×
TPR × PPV

TPR + PPV
=

2× TP

(2× TP)+ FN + FP

FPavg =
FP

N

Figure 6.  Five-fold cross-validation diagram using training cohort dataset and normal individual dataset.
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without DLA with a time interval of more than 1 year (14 months), and recorded the reading time only on BB 
axial imaging with contrast enhancement.

Institutional review board statement. This study was conducted according to the guidelines of the 
Declaration of Helsinki and was approved by the Ethics Committee of the medical faculty of the Kyung Hee 
University (KHU-2021-06-070).

Data availability
The datasets used in this study are available upon request from the corresponding author. The datasets are not 
publicly available because to the various patient information.

Received: 19 April 2022; Accepted: 3 November 2022
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