CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of borated $N, N, N^{\prime}, N^{\prime}-$ tetramethyldiaminomethane

Kathrin Louven, Georgina Quentin and Carsten Strohmann*
Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Received 25 August 2015; accepted 8 September 2015

Edited by O. Blacque, University of Zürich, Switzerland

In the title compound, \{[(dimethylamino)methyl]dimethylamine\}trihydridoboron, $\mathrm{C}_{5} \mathrm{H}_{17} \mathrm{BN}_{2}$, the tetrahedral geometry of the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ unit is slightly disorted. As a result of the bulky amine substituents, a wider $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle of 113.6 (1) ${ }^{\circ}$ is observed. The bond lengths between the N atom and methyl groups are slighly elongated to 1.481 (2) and 1.482 (2) \AA at the borated N atom, whereas the distances between the other N atom and its methyl groups are only 1.461 (2) and 1.462 (2) Å. The studied crystal was twinned. The twin data refinement was subsequently carried out with a scale factor of 0.263 (1). The two lattices of the twin domains were rotated by 179.84°.

Keywords: crystal structure; borane; amine; twin.

CCDC reference: 1422998

1. Related literature

For background to boranes, see: Falbe \& Regitz (1999). Burg \& Schlesinger (1937) reported the first borane amine complex. A feature of boranes is their metal character and pronounced Lewis acidity (Huheey et al., 1995). This Lewis acidity is used to enable the α-deprotonation of tertiary amines (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α-position (Strohmann \& Gessner, 2007; Gessner \& Strohmann, 2012). For crystal structures containing the borated $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane motif, see: Fang et al. (1994); Hanic \& Šubrtová (1969); Flores-Parra et al. (1999); Rojas-Lima et al. (2000). For comparison with other structures with dimethylaminoborane moiety, see: Gollas et al. (2013); Bera et al. (2011); Ramachandran et al. (2004); Netz et al. (2005). For diborated tetramethylethylenediamine, see: Chitsaz et al. (2001).

2. Experimental

2.1. Crystal data

$\mathrm{C}_{5} \mathrm{H}_{17} \mathrm{BN}_{2}$

$$
\gamma=74.912(10)^{\circ}
$$

$M_{r}=116.01$
Triclinic, $P \overline{1}$
$a=6.0464$ (8) \AA
$V=398.95$ (9) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$b=7.6987$ (9) \AA
$\mu=0.06 \mathrm{~mm}^{-1}$
$c=9.5896$ (11) \AA
$T=173 \mathrm{~K}$
$\alpha=69.602(10)^{\circ}$
$0.2 \times 0.15 \times 0.15 \mathrm{~mm}$

3232 measured reflections
3232 independent reflections
1828 reflections with $I>2 \sigma(I)$
(CrysAlis PRO; Agilent, 2014)
$T_{\text {min }}=0.983, T_{\text {max }}=1.000$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
H atoms treated by a mixture of independent and constrained refinement
$S=0.87$
3232 reflections
90 parameters
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2234).

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Bera, B., Patil, Y. P., Nethaji, M. \& Jagirdar, B. R. (2011). Dalton Trans. 40, 10592-10597.
Burg, A. B. \& Schlesinger, H. I. (1937). J. Am. Chem. Soc. 59, 780-787.
Chitsaz, S., Breyhan, T., Pauls, J. \& Neumüller, B. (2002). Z. Anorg. Allg. Chem. 628, 956-964.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ebden, M. R., Simpkins, N. S. \& Fox, D. N. A. (1995). Tetrahedron Lett. 36, 8697-8700.

data reports

Falbe, J. \& Regitz, M. (1999). RÖMPP Lexikon Chemie Band 6 T-Z, p. 4991, Stuttgart New York: Georg Thieme Verlag.
Fang, C.-L., Horne, S., Taylor, N. \& Rodrigo, R. (1994). J. Am. Chem. Soc. 116, 9480-9486.
Flores-Parra, A., Sánchez-Ruiz, S. A., Guadarrama, C., Nöth, H. \& Contreras, R. (1999). Eur. J. Inorg. Chem. pp. 2069-2073.

Gessner, V. H. \& Strohmann, C. (2012). Dalton Trans. 41, 3452-3460.
Gollas, P., Christmann, M. \& Strochmann, C. (2013). Angew. Chem. Int. Ed. 52, 9836-9840.
Hanic, F. \& Šubrtová, V. (1969). Acta Cryst. B25, 405-409.
Huheey, J. E., Keiter, E. A. \& Keiter, R. L. (1995). Anorganische Chemie Prinzipien von Struktur und Reaktivität, pp. 923-935, Berlin: Walter de Gruyter \& Co.

Kessar, S. V., Singh, P., Vohra, R., Kaur, N. P. \& Singh, K. N. (1991). J. Chem. Soc. Chem. Commun. pp. 568-570.
Netz, A., Polborn, K., Noth, H. \& Muller, T. J. J. (2005). Eur. J. Org. Chem. pp. 1823-1833.
Ramachandran, B. M., Carroll, P. J. \& Sneddon, L. G. (2004). Inorg. Chem. 43, 3467-3474.
Rojas-Lima, S., Farfán, N., Santillan, R., Castillo, D., Sosa-Torres, M. E. \& Höpfl, H. (2000). Tetrahedron, 56, 6427-6433.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Strohmann, C. \& Gessner, V. (2007). Angew. Chem. Int. Ed. 46, 4566-4569.

supporting information

Acta Cryst. (2015). E71, o743-o744 [doi:10.1107/S2056989015016813]

Crystal structure of borated $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane

Kathrin Louven, Georgina Quentin and Carsten Strohmann

S1. Comment

Boranes are a useful substance in today's chemistry. In 1979, Herbert C. Brown received the Nobel Prize in chemistry for his studies on these interesting compounds (Falbe \& Regitz, 1999). Special about boranes is their metal character and pronounced Lewis acidity (Huheey et al., 1995). This Lewis acidity is used to enable the α-deprotonation of tertiary amines (Kessar et al., 1991; Ebden et al., 1995). Our group frequently uses methods to deprotonate compounds in α position (Gessner \& Strohmann, 2007; Gessner \& Strohmann, 2012). Here, BH_{3} was added to $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane (TMMDA) in order to deplete the nitrogen's + M-effect, smoothing the way for α-lithiation. We isolated and structurally characterized the borated TMMDA for the first time. Lithiation of the product however was not successful.

The title compound crystallizes in the triclinic crystal system with space group $\mathrm{P}-1$. The $\mathrm{N}-\mathrm{C}-\mathrm{N}$-bonds are not equidistant. Longer N-C-bonds are observed for the borated nitrogen [N1-C1 1.4806 (17) Å, N1-C2 1.4818 (17) Å, N1C3 1.5039 (16) Å] than for the other [N2-C3 1.4393 (17) Å, N2-C4 1.4612 (18) Å, N2-C5 1.4622 (18) Å]. Furthermore, bond angles at the nitrogen atoms differ. Due to steric hindrance of the methyl groups, angles on N 2 are found to be broader [C3-N2-C4 $112.82(11)^{\circ}, \mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5112.85(12)^{\circ}, \mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5110.31(11)^{\circ}$] than the ideal sp ${ }^{3}$-angle of 109.5°. A torsion angle of $179.82(13)^{\circ}$ can be observed for B1-N1-C3-N2, placing B1 as far away from C3 and its hydrogen atoms as possible.

S1.1. Experimental

BH_{3}-solution ($11.7 \mathrm{~mL}, 1 \mathrm{M}$ in thf, 11.7 mmol) was added to $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane ($9.79 \mathrm{mmol}, 1.00 \mathrm{~g}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at room temperature after which saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$-solution (7 mL) was added. The reaction was allowed to continue for 72 h at room temperature. After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation under reduced pressure, colorless crystals precipitated (694 $\mathrm{mg}, 5.98 \mathrm{mmol}, 61 \%$ yield).

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms linked to carbon were placed and refined by using the riding model $\left(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for terminal groups). Hydrogen atoms linked to boron were taken from difference Fourier maps.
Twin domains were found in the crystal and refined to a ratio of $0.26 / 0.74$. The two lattices were rotated by 179.84°. HKLF5 refletion file was used for refinement.

Figure 1
Molecular structure of the title compound with displacement ellipsoids drawn at 50\% probability level.

Figure 2
Molecular packing viewed along the a axis.

\{[(Dimethylamino)methyl]dimethylamine\}trihydridoboron

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{17} \mathrm{BN}_{2}$
$M_{r}=116.01$
Triclinic, $P \overline{1}$
$a=6.0464$ (8) Å
$b=7.6987$ (9) \AA
$c=9.5896(11) \AA$
$\alpha=69.602(10)^{\circ}$
$\beta=76.519(11)^{\circ}$
$\gamma=74.912(10)^{\circ}$
$V=398.95(9) \AA^{3}$

Data collection

AgilentXcalibur, Sapphire3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator

$$
Z=2
$$

$$
F(000)=132
$$

$D_{\mathrm{x}}=0.966 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1858 reflections
$\theta=3.0-28.3^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, clear light colourless
$0.2 \times 0.15 \times 0.15 \mathrm{~mm}$

Detector resolution: 16.0560 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\text {min }}=0.983, T_{\text {max }}=1.000$
3232 measured reflections
3232 independent reflections
1828 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.099$
$S=0.87$
3232 reflections
90 parameters
0 restraints

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-9 \rightarrow 9 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0498 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.7367 (11) 0.2633 (11) 2. Fixed $U_{\text {iso }}$ At 1.2 times of: All $\mathrm{C}(\mathrm{H}, \mathrm{H})$ groups At 1.5 times of: All $\mathrm{C}(\mathrm{H}, \mathrm{H}, \mathrm{H})$ groups 3.a Secondary CH 2 refined with riding coordinates: $\mathrm{C} 3(\mathrm{H} 3 \mathrm{~A}, \mathrm{H} 3 \mathrm{~B}) 3 . \mathrm{b}$ Idealized Me refined as rotating group: $\mathrm{C} 2(\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 2 \mathrm{C}), \mathrm{C} 1(\mathrm{H} 1 \mathrm{~A}, \mathrm{H} 1 \mathrm{~B}, \mathrm{H} 1 \mathrm{C})$, C5(H5A,H5B,H5C), C4(H4A,H4B,H4C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
N1	$0.17275(18)$	$0.17659(15)$	$0.69988(12)$	$0.0182(3)$
C3	$0.2336(2)$	$-0.00477(18)$	$0.82279(15)$	$0.0214(3)$
H3A	0.2756	0.0246	0.9048	0.026^{*}
H3B	0.0951	-0.0634	0.8648	0.026^{*}
N2	$0.42225(19)$	$-0.13895(16)$	$0.77307(13)$	$0.0226(3)$
C2	$0.1062(3)$	$0.1356(2)$	$0.57701(16)$	$0.0274(4)$
H2A	0.2389	0.0568	0.5326	0.041^{*}
H2B	0.0591	0.2545	0.4995	0.041^{*}
H2C	-0.0233	0.0685	0.6177	0.041^{*}
C1	$0.3751(2)$	$0.2702(2)$	$0.63738(18)$	$0.0293(4)$
H1A	0.4230	0.2959	0.7179	0.044^{*}
H1B	0.3328	0.3894	0.5589	0.044^{*}
H1C	0.5036	0.1873	0.5939	0.044^{*}
C5	$0.3510(3)$	$-0.3102(2)$	$0.78120(19)$	$0.0340(4)$
H5A	0.2924	-0.3745	0.8861	0.051^{*}
H5B	0.4844	-0.3946	0.7432	0.051^{*}
H5C	0.2284	-0.2762	0.7197	0.051^{*}
B1	$-0.0405(3)$	$0.3123(3)$	$0.7713(2)$	$0.0289(4)$
C4	$0.6200(3)$	$-0.1878(2)$	$0.85213(18)$	$0.0333(4)$
H4A	0.6693	-0.0721	0.8429	0.050^{*}
H4B	0.7483	-0.2698	0.8077	0.050^{*}

H4C	0.5749	-0.2542	0.9588	0.050^{*}
H1D	$-0.083(2)$	$0.4427(19)$	$0.6758(15)$	$0.032(4)^{*}$
H1E	$-0.189(2)$	$0.2332(19)$	$0.8155(16)$	$0.034(4)^{*}$
H1F	$0.023(2)$	$0.3383(19)$	$0.8634(17)$	$0.036(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
N1	$0.0196(6)$	$0.0158(6)$	$0.0184(6)$	$-0.0027(5)$	$-0.0032(5)$	$-0.0047(5)$
C3	$0.0245(8)$	$0.0191(7)$	$0.0183(7)$	$-0.0020(6)$	$-0.0041(6)$	$-0.0041(6)$
N2	$0.0222(7)$	$0.0187(6)$	$0.0260(7)$	$-0.0015(5)$	$-0.0044(5)$	$-0.0072(5)$
C2	$0.0311(9)$	$0.0279(9)$	$0.0229(8)$	$0.0000(7)$	$-0.0093(7)$	$-0.0081(7)$
C1	$0.0259(9)$	$0.0240(8)$	$0.0347(9)$	$-0.0071(7)$	$0.0007(7)$	$-0.0066(7)$
C5	$0.0367(10)$	$0.0230(8)$	$0.0421(10)$	$-0.0019(7)$	$-0.0055(8)$	$-0.0131(8)$
B1	$0.0284(10)$	$0.0236(9)$	$0.0273(10)$	$0.0026(8)$	$-0.0018(8)$	$-0.0063(8)$
C4	$0.0255(9)$	$0.0317(9)$	$0.0404(10)$	$0.0024(7)$	$-0.0102(8)$	$-0.0107(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C3	1.5039 (16)	C1-H1A	0.9800
N1-C2	1.4818 (17)	C1-H1B	0.9800
N1-C1	1.4806 (17)	C1-H1C	0.9800
N1-B1	1.615 (2)	C5-H5A	0.9800
C3-H3A	0.9900	C5-H5B	0.9800
C3-H3B	0.9900	C5-H5C	0.9800
$\mathrm{C} 3-\mathrm{N} 2$	1.4393 (17)	B1-H1D	1.117 (13)
N2-C5	1.4622 (18)	B1-H1E	1.131 (14)
N2-C4	1.4612 (18)	B1-H1F	1.137 (14)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800	C4-H4A	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800	C4-H4B	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800	C4-H4C	0.9800
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{B} 1$	108.16 (10)	N1-C1-H1C	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	109.62 (10)	H1A-C1-H1B	109.5
C2-N1-B1	110.43 (11)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	110.11 (10)	H1B- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	108.59 (10)	N2-C5-H5A	109.5
C1-N1-B1	109.93 (12)	N2-C5-H5B	109.5
N1-C3-H3A	108.8	N2-C5-H5C	109.5
N1-C3-H3B	108.8	H5A-C5-H5B	109.5
H3A-C3-H3B	107.7	H5A-C5-H5C	109.5
N2-C3-N1	113.61 (10)	H5B-C5-H5C	109.5
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8	N1-B1-H1D	105.7 (7)
N2-C3-H3B	108.8	N1-B1-H1E	106.1 (7)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	112.85 (12)	N1-B1-H1F	106.4 (7)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	112.82 (11)	H1D-B1-H1E	111.1 (10)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	110.31 (11)	H1D-B1-H1F	113.7 (10)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	H1E-B1-H1F	113.2 (10)

supporting information

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	$-114.53(13)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$119.61(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$59.36(14)$

N2-C4-H4A	109.5
N2-C4-H4B	109.5
N2-C4-H4C	109.5
H4A-C4-H4B	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$
-60.04 (14)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$
59.36 (14)

