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Abstract 

Background:  Hospital-acquired pressure injuries (HAPrIs) are areas of damage to the skin occurring among 5–10% of 
surgical intensive care unit (ICU) patients. HAPrIs are mostly preventable; however, prevention may require measures 
not feasible for every patient because of the cost or intensity of nursing care. Therefore, recommended standards 
of practice include HAPrI risk assessment at routine intervals. However, no HAPrI risk-prediction tools demonstrate 
adequate predictive validity in the ICU population. The purpose of the current study was to develop and compare 
models predicting HAPrIs among surgical ICU patients using electronic health record (EHR) data.

Methods:  In this retrospective cohort study, we obtained data for patients admitted to the surgical ICU or cardiovas-
cular surgical ICU between 2014 and 2018 via query of our institution’s EHR. We developed predictive models utilizing 
three sets of variables: (1) variables obtained during routine care + the Braden Scale (a pressure-injury risk-assessment 
scale); (2) routine care only; and (3) a parsimonious set of five routine-care variables chosen based on availability from 
an EHR and data warehouse perspective. Aiming to select the best model for predicting HAPrIs, we split each data set 
into standard 80:20 train:test sets and applied five classification algorithms. We performed this process on each of the 
three data sets, evaluating model performance based on continuous performance on the receiver operating charac-
teristic curve and the F1 score.

Results:  Among 5,101 patients included in analysis, 333 (6.5%) developed a HAPrI. F1 scores of the five classification 
algorithms proved to be a valuable evaluation metric for model performance considering the class imbalance. Models 
developed with the parsimonious data set had comparable F1 scores to those developed with the larger set of predic-
tor variables.

Conclusions:  Results from this study show the feasibility of using EHR data for accurately predicting HAPrIs and that 
good performance can be found with a small group of easily accessible predictor variables. Future study is needed to 
test the models in an external sample.
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Background
Hospital-acquired pressure injuries (HAPrIs), formerly 
called pressure ulcers or bedsores, are areas of injury 
to the skin and underlying tissue caused by external 

pressure, usually over a bony area. In the United States, 
costs attributable to HAPrIs exceed $26 billion a year [1]. 
HAPrIs are considered mostly preventable and defined 
as a "never event" or "serious reportable event" by the 
National Quality Forum [2]. HAPrIs occur among 5–10% 
of critical-care patients [3], with the highest risk among 
surgical critical-care patients [4].

Most HAPrIs are preventable; however, prevention 
may require using measures not feasible for every patient 
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because of cost or nursing time [5]. Therefore, recom-
mended standards of practice include pressure injury 
(PrI) risk assessment at each nursing shift and with 
changes in patient status [6]. Unfortunately, the risk-
assessment tools currently in use, such as the widely used 
Braden Scale [7], classify most critical-care patients as 
"high risk" [8–13], and therefore do not give critical-care 
nurses the information they need to allocate limited PrI 
prevention resources appropriately. A PrI risk-assess-
ment tool allowing nurses to differentiate PrI risk among 
critical-care patients is imperative.

Electronic health records (EHRs) and data analytics 
can improve HAPrI risk assessment. Recent advances 
in machine learning (ML) present an opportunity to 
modernize and enhance future HAPrI risk assessment 
using the extensive data readily available in the EHR. 
Risk assessment and predicting future events are areas 
where combining modern ML techniques may identify 
novel patterns unapparent to humans to predict a tar-
get (in our case, HAPrI development). The benefits of 
ML approaches are particularly relevant in the ICU set-
ting because of the dynamic physiologic nature of criti-
cal care patients. Unlike traditional prognostic tools like 
the Braden Scale, an ML approach can incorporate non-
linear, complex interactions among variables (including 
correlated variables) [14].

The purpose of the current study was to develop and 
compare models predicting HAPrIs among surgical 
critical-care patients using EHR data. The specific aims 
were to (1) develop and compare predictive models, and 
(2) develop and compare more parsimonious predictive 
models using data readily available—and easily accessi-
ble—in the EHR.

Methods
Design
We chose a retrospective cohort design. All data were 
entered into structured fields in the EHR (EPIC©) and 
then obtained via a query from our institution’s enter-
prise data warehouse (EDW).

Sample
Adult patients (aged ≥ 18  years) who were admitted to 
the surgical intensive care unit (SICU) or cardiovas-
cular surgical intensive care unit (CVICU) at a Level 
1 trauma center and academic medical center in the 
western United States between 2014 and 2018 were 
included in the sample. We included patients with com-
munity-acquired (present on admission) PrIs because 
those patients have risk for subsequent HAPrIs [15]. We 
excluded patients admitted to the ICU for less than 24 h 
because these short-stay patients were unlikely to mani-
fest a HAPrI with this duration of exposure [16]. In those 

patients with multiple ICU stays, our data were limited 
to the first ICU stay. At our facility, all ICU patients are 
placed on pressure redistribution mattresses [17].

Measures
HAPrI outcomes
There are six stages of HAPrIs defined by the National 
Pressure Injury Advisory Panel (NPIAP) [18]. Stage 1 
HAPrIs are areas of nonblanching redness or discol-
oration in intact skin. Stage 2 HAPrIs represent partial-
thickness tissue loss with exposed, viable dermis. Stage 
3 HAPrIs are full-thickness wounds not extending into 
muscle, bone, or tendon. Stage 4 HAPrIs are full-thick-
ness wounds extending down to muscle, tendon, or bone. 
Deep-tissue injuries (DTIs) are areas of intact or nonin-
tact skin with a localized area of persistent, nonblanch-
able, deep-red, maroon, or purple discoloration revealing 
a dark wound bed or blood-filled blister. Finally, unstage-
able HAPrIs are areas of full-thickness tissue loss. These 
cannot be evaluated because eschar or slough obscures 
the area. Among these stages, only Stage 1 HAPrIs are 
reversible, sometimes resolving within hours after pres-
sure offloading.

The outcome variable was the development of a HAPrI 
(Stages 2–4, DTI, or unstageable injury); Stage 1 PrIs 
were not included because they are often reversible, 
sometimes healing within hours [19, 20]. We used the 
initial (first recorded) HAPrI for patients with multiple 
injuries. Nurses at our hospital conduct a head-to-toe 
skin inspection once per shift, recording information 
about HAPrIs in a structured field in the EHR (EPIC©). 
We used the structured fields from the nursing documen-
tation section of the EHR to record HAPrIs. We chose to 
use the structured fields from nursing documentation 
because a prior study showed that International Classifi-
cation of Diseases codes underreport HAPrIs [21], likely 
because HAPrIs are noticed by nurses during head-to-
toe skin assessments but not always flagged for inclu-
sion in physician notes or billing codes. Furthermore, we 
relied on nursing documentation because it is the only 
accurate source of data for the date and time the HAPrI 
developed. All possible HAPrIs recorded in the nursing 
documentation at our facility are verified by a certified 
wound nurse, thus ensuring accuracy.

Potential predictor variables
Using Coleman and colleagues’ conceptual framework 
for PrI etiology [22], we conducted a systematic review 
of the literature aimed at identifying risk factors for 
HAPrIs among critical-care patients [3]. Additionally, 
we conducted interviews with subject-matter experts, 
including clinicians at our study site: wound nurses, 
ICU nurses, intensivist physicians, surgeons, dieticians, 
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physical therapists, nursing assistants, anesthesiolo-
gists, and other healthcare team members. The result of 
this formative work is reflected in Table 1.

We developed our predictive models utilizing three 
different sets of variables, depicted in Fig.  1. The first 
set included all of the available data: data produced in 
the EHR during routine care and Braden Scale scores 
recorded by nurses. The second set of predictor vari-
ables included only data produced during routine care 
(excluding Braden Scale scores). The third data set 
had a parsimonious group of five variables we selected 
because they were easily accessible in EHRs from a 
data-warehouse perspective.

Analysis
Data preprocessing
We obtained data from our study site’s EDW; the query 
was performed by a team of biomedical informaticists. 
We limited our data to events occurring before the 
HAPrI outcome to mitigate target leakage (also called 
data leakage). Target leakage happens when a predictive 
model includes information unavailable when the model 
is applied to prospective data.

By validating the data in the human-readable system, 
we ensured that the query was accurate in terms of vari-
able definitions and meaning and date/time stamps. A 
practicing critical-care nurse who worked within the 
EPIC© EHR system compared information obtained in 

Table 1  Predictor variables

Laboratory data

 L1 Serum lactate Maximum serum lactate (mg/dL)

 L2 Serum creatinine Maximum serum creatinine (mg/dL)

 L3 Serum glucose Maximum serum glucose (mg/dL)

 L4 Hemoglobin Minimum hemoglobin (mg/dL)

 L5 Serum albumin Minimum serum albumin (mg/dL)

 L6 Arterial PaO2 Minimum arterial partial pressure of oxygen (mmHg)

 L7 Arterial pH Minimum arterial (pH)

Nursing skin assessment data

 N1 Thin epidermis Thin epidermis with subcutaneous tissue loss

 N2 Skin tear Presence of a skin tear

 N3 Community acquired pressure injury Community-acquired pressure injury present at admission

Surgical time

 S1 Longest surgery Longest single surgery, measured from start of anesthesia 
to stop of anesthesia

Vasopressor infusions

 V1 Vasopressin dose Highest dose of vasopressin (units/min)

 V2 Norepinephrine dose Highest dose of norepinephrine infusion (mcg/kg/min)

 V3 Norepinephrine infusion Norepinephrine received (yes/no)

 V4 Epinephrine infusion Epinephrine received (yes/no)

 V5 Phenylephrine infusion Phenylephrine received (yes/no)

 V6 Dopamine infusion Dopamine received (yes/no)

 V7 Vasopressin infusion Vasopressin received (yes/no)

Other potential predictors

 O1 MEWS score Maximum Modified Early Warning score

 O2 GCS Minimum Glasglow Coma Scale score

 O3 Fluid status Maximum daily net intake (in L)

 O4 Length of ICU stay prior to HAPrI Length of stay in the ICU prior to HAPrI development

 O5 Riker score Minimum Riker Sedation and Agitation Scale Score

 O6 BMI Admission Body Mass Index (kg/m2)

Braden Scale Scores

 B1 Braden Scale total Minimum total Braden Scale Score

 B2 Braden Mobility Subscale Minimum Braden Mobility Subscale Score

 B3 Braden Friction and Shear Minimum Braden Friction and Shear Subscale Score
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the query against data in the human-readable system 
for 30 randomly selected participants, including 15 par-
ticipants with HAPrIs. We chose the number 30 because, 
in earlier work conducted within a legacy EHR system, 
it was necessary to review up to 10 cases to find some 
inconsistencies; we tripled that figure to be conservative 
[23].

Missing data
Missing data were quantified and then assessed for pat-
terns of missingness using graphical clustering displays. 
For variables not informatively missing, we replaced the 
missing data with values found using single-value ran-
dom forest imputation. For clinically informatively miss-
ing variables, known by clinicians to be associated with 

increased severity of illness, we substituted a "0" for miss-
ing and a "1" for not missing.

Imbalanced classes
Due to the nature of the data, there is a strong class 
imbalance of HAPrIs; more specifically, the majority of 
patients in ICUs do not develop HAPrIs, and this can 
present a problem when applying ML methods for pre-
diction. For example, in models designed to optimize 
accuracy, the resulting predictive algorithms can end 
up classifying all outcomes as belonging to the major-
ity class, and the accuracy of the model will be con-
sidered high. To remedy the high-class imbalance, we 
employed synthetic minority oversampling technique 
(SMOTE) in the training data [24]. By applying SMOTE 

Fig. 1  Datasets
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to the data before the algorithms, we ensured that mod-
els would better classify the outcomes in the minority 
class.

In addition to sensitivity and specificity, we consid-
ered both precision (also called positive predictive 
value) and recall (also called sensitivity) in evaluat-
ing model performance. The precision and recall of a 
model focus on the proportion of true positives and are 
calculated by

and

In words, precision is the ratio of correctly predicted 
positives to the total predicted positives, whereas 
recall is the ratio of correctly predicted positives to the 
total actual positives. The F1 score is a summary score 
accounting for both precision and recall, defined as

(1)precision =
TPs

TPs + FPs

(2)recall =
TPs

TPs + FNs

(3)F1Score = 2 ·
precision · recall

precision+ recall

This quantity is the harmonic mean of precision and 
recall and preferable over a simple average because it 
penalizes extreme values.

All post-EPIC© data preparation (frequencies, assess-
ment of missingness, imputation) was performed in R 
version 3.6.1. The SMOTE procedure and model devel-
opment and evaluation were performed using Python 
version 3.7.0. Figure 2 depicts the data-analysis workflow.

Statistical analysis
To identify factors associated with HAPrIs, we conducted 
univariate analysis. We used a Mann–Whitney U test for 
ordinal variables, a t-test or Mann–Whitney U test for 
parametric versus nonparametric continuous variables, 
and a Pearson chi-square or Fisher exact test, as appro-
priate, for categorical variables.

For any given prediction or estimation problem, it is 
not possible beforehand to know the true form of rela-
tionships between variables and, therefore, not possible 
to know a priori which learning algorithm would be best. 
This can be particularly true when relationships between 
variables are complex, non-linear, and nested within each 
other. For this reason, our approach was to apply differ-
ent types of models to different sets of variables (features) 
with different pre-processing techniques and compare 
the models’ performance. The performance of each 
model was evaluated both as a binary classifier using a 

Fig. 2  Data analysis workflow
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confusion matrix and having continuous predicted prob-
abilities for true positive and negative cases plotted as 
receiver operator characteristic (ROC) curves, with esti-
mates of area under such curves (AUC). No post-pre-
diction calibration was performed for generated models, 
although distributions of predicted probabilities were 
assessed (and probabilities from logistic regression are 
already naturally calibrated). Candidate models included 
keras (neural networks, with two hidden layers, each with 
20 nodes each, and one output layer with a single node), 
random forests (ensembles of decision trees), gradient 
and adaptive (AdaBoost) boosting (algorithm focuses 
more on the examples that previous [internal] ’weak 
learners’ misclassified, i.e., focuses more on hard-to-train 
cases), and multivariable logistic regression. All data pro-
cessing and analysis steps were performed in Python v. 
3.7 with all machine learning models available from the 
sklearn library [25]. For reproducibility and transpar-
ency, all code and results are hosted on and accessible 
through our Open Science Framework (OSF) page, https​
://tinyu​rl.com/OSF-Predi​cting​-HAPrI​.

Results
Sample characteristics
Our final sample consisted of 5,101 adult SICU and 
CVICU patients. One patient was excluded due to the 
absence of a medical record number; without the medical 
record number, we could not access data for other varia-
bles. The sample was predominantly male (n = 3302, 65%) 
and White (n = 4256, 83%). The mean age was 58  years 
(SD = 17).

HAPrI outcome
HAPrIs developed among 333 patients (6.5%), which 
is consistent with our institution’s quarterly prevalence 
surveys.

Predictor variables
Table  2 outlines the univariate relationships between 
predictor variables and HAPrI outcomes. However, indi-
vidual variable significance was not used to guide model 
development. Variables sets were selected based on 
ontologies presented in Fig. 1.

Predictive models
Confusion matrices for categorical (binary) prediction 
for each model and each set of features were produced 
and are available through the online supplement. Addi-
tionally, prediction probabilities vs. true event status are 
presented for each model as receiver operating char-
acteristic (ROC) curves, with summary area under the 
curve (AUC) scores. The ROC curves using the Rou-
tine Care + Braden Scale data set for all five algorithms 

are presented in Fig.  3 (AUC range: 0.774–0.812); ROC 
curves using the Routine Care data set are shown in Fig. 4 
(AUC range: 0.761–0.822); and ROC curves in the Par-
simonious data set are presented in Fig.  5 (AUC range: 
0.775–0.821). F1 scores for each type of algorithm across 
data sets (Routine Care + Braden Scale; Routine Care; 
Parsimonious) are shown in Table 3.

Although performance measures are generated on 
continuous scales, model performance is often evalu-
ated within classes (from poor to excellent) and within 
the context of model deployment within the decision 
support setting. In this setting, model performance 
was comparable across the different data sets (Rou-
tine Care + Braden Scale; Routine Care; Parsimonious) 
and types of algorithms: neural networks (Keras), ran-
dom forest, gradient boosting, adaptive boosting (Ada-
Boost), and multivariable logistic regression. Overall, 
the best performing model in the Routine Care + Braden 
Scale data set based on the AUC was logistic regression 
(AUC = 0.81), while random forest had the highest F1 
score (F1 = 0.36). In the Routine Care data set, gradient 
boost generated the best discrimination based on the 
AUC (AUC = 0.82) and random forest and logistic regres-
sion tied for the highest F1 score (F1 = 0.30). Finally, Keras 
had the highest AUC at 0.82 in the parsimonious data set, 
while gradient boost had the highest F1 score at 0.35.

Discussion
In this study, using data from surgical ICU patients 
within a single hospital system, we developed and com-
pared models to predict HAPrIs in three data sets: Rou-
tine Care plus the Braden Scale, Routine Care, and a 
parsimonious set of five easily accessible predictor vari-
ables. This work represents a first step toward developing 
a model implementable in the EHR to provide real-time 
HAPrI risk assessment. In 2019, a guideline published 
by the NPIAP and its sister organizations, the Euro-
pean Pressure Injury Advisory Panel and the Pan Pacific 
Pressure Injury Alliance, recommended an automated 
approach to HAPrI risk assessment using data readily 
available in the EHR [5]. Advantages to harnessing data 
produced during routine care include more comprehen-
sive evaluation of predictive factors related to HAPrI risk 
but missing from the Braden Scale (e.g., variables related 
to perfusion [3], severity of illness [26], and surgical fac-
tors [26–29]), the ability to update the risk prediction at 
frequent intervals with changes in patient status [9], and 
significantly decreasing the amount of time clinicians 
spend on data entry—currently, nurses manually record 
Braden Scale scores once per shift.

Our study results highlight the importance of con-
sidering class imbalance when evaluating model per-
formance. The various types of models in our study all 

https://tinyurl.com/OSF-Predicting-HAPrI
https://tinyurl.com/OSF-Predicting-HAPrI
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demonstrated good performance on the ROC curve. 
However, because HAPrIs are relatively rare, occur-
ring in < 10% of ICU patients, continuous performance 
on the ROC curve may overestimate a model’s util-
ity due to the large number of true negatives [30]. F1 
scores present an additional approach to evaluating the 
model’s performance by utilizing a weighted average of 

precision and recall. Employing F1 scores was a strength 
in our study, enabling more accurate estimation of the 
model’s true utility for predicting HAPrIs. For exam-
ple, in the Routine Care + Braden Scale data set, gradi-
ent boosting was the best performer based on the area 
under the ROC curve, whereas logistic regression was 
the best performer based on F1 score. However, the 

Table 2  Potential predictor variables and hospital-acquired pressure injury development

HAPrI, hospital-acquired pressure injury; arterial PaO2, arterial partial pressure of oxygen; MEWS, Modified Early Warning Scale; GCS, Glasglow Coma Scale; Riker, Riker 
Sedation and Agitation Scale; BMI, body mass index

Variable All patients Patients with no HAPrI
n = 4768

Patients with a HAPrI
n = 333

p value

Demographic data

 Age in years, M (SD) 57.8 (17%) 58 (17%) 58 (15%) p = .74

 Sex, male, n (%) 3302 (65%) 3086 (65%) 216 (65%) p = 1.0

 Race, White, n (%) 4256 (83%) 3988 (84%) 268 (81%) p = .13

 Ethnicity, non-Hispanic, n (%) 4452 (87%) 4166 (87) 286 (86%) p = .54

Laboratory data

 Serum lactate (mg/dL), M (SD) 4.0 (3.7) 3.9 (3.6) 5.9 (5.0) p < .001

 Serum creatinine (mg/dL), M (SD) 1.9 (1.9) 1.8 (1.9) 2.8 (2.1) p < .001

 Serum glucose (mg/dL), M (SD) 231 (148) 228 (143) 285 (200) p < .001

 Hemoglobin (mg/dL), M (SD) 9.0 (2.6) 9.1 (2.6) 7.6 (2.2) p < .001

 Serum albumin (mg/dL), M (SD) 3.1 (0.8) 3.2 (0.7) 2.7 (0.6) p < .001

 Arterial PaO2 (mmHg), M (SD) 54 (40) 55 (40) 46 (31) p < .001

 Arterial pH, M (SD) 7.27 (0.11) 7.27 (0.10) 7.22 (0.13) p < .001

Nursing skin-assessment data

 Thin epidermis, n (%) 882 (18%) 801 (17%) 81 (24%) p = .001

 Skin tear, n (%) 641 (13%) 548 (11%) 93 (28%) p < .001

 Community-acquired pressure injury, n (%) 168 (3%) 138 (2.9%) 30 (9%) p < .001

Surgical time

 Longest surgery, minutes, M (SD) 181 (156) 179 (152) 204 (197) p < .001

Vasopressor infusions

 Vasopressin dose (units/min), M (SD) 0.01 (0.03) 0.01 (0.03) 0.02 (0.03) p < .001

 Norepinephrine dose (mcg/kg/min), M (SD) 0.06 (0.42) 0.05 (0.29) 0.25 (1.18) p < .001

 Norepinephrine (yes/no), n (%) 1154 (23%) 982 (21%) 172 (52%) p < .001

 Epinephrine (yes/no), n (%) 1490 (29%) 1352 (28%) 138 (41%) p < .001

 Phenylephrine (yes/no), n (%) 190 (4%) 173 (4%) 17 (5%) p = .22

 Dopamine (yes/no), n (%) 205 (4%) 186 (4%) 19 (5%) p = .14

 Vasopressin (yes/no), n (%) 1757 (34%) 1586 (33%) 171 (51%) p < .001

Other potential predictors

 MEWS score, M (SD) 4.3 (1.9) 4.1 (2.0) 6.2 (1.9) p < .001

 GCS, M (SD) 9.2 (4.8) 9.3 (4.7) 6.8 (4.6) p < .001

 Fluid status (liters), M (SD) 2.3 (2.1) 2.2 (2.0) 3.7 (2.6) p < .001

 Length of ICU stay prior to HAPrI (days), M (SD) 5 (7) 4.6 (6.2) 13 (9.9) p < .001

 Riker score, M (SD) 2.8 (1.2) 2.9 (1.2) 2.1 (1.2) p < .001

 BMI (kg/m2), M (SD) 30.1 (12.4) 30.1 (12.5) 30.7 (11.0) p = .36

Braden Scale scores

 Braden Scale total score, M (SD) 13 (3) 13 (3) 11 (3) p < .001

 Braden Mobility subscale, M (SD) 2.0 (0.7) 2.1 (0.7) 1.6 (0.7) p < .001

 Braden Friction subscale, M (SD) 1.9 (0.5) 1.9 (0.5) 1.6 (0.6) p < .001
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Fig. 3  ROC curve for routine care + Braden Scale

Fig. 4  ROC curve for routine care
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gradient boosting algorithm was "accurate" because it 
primarily predicted the majority class—no HAPrI—and 
this is reflected in its lower F1 score.

Beyond classifying variables as missing or observed 
before imputation, it may be worthwhile considering 
modeling the observation in future work; for exam-
ple, using a Heckman two-stage modeling approach 
(a model for observation and a model for outcome) 
[31]. However, we did not pursue this as we were not 
as interested in effect estimation (and therefore not 
as concerned with bias in estimated coefficients) but 
in building light and transportable models generating 
accurate prediction scores.

In our study, the inclusion of the Braden Scale mod-
estly improved the models’ performance. In contrast, a 

prior study found no improved performance when the 
Braden Scale was added to other variables obtained 
from routine-care documentation in the EHR [32]. 
Although including the Braden Scale did improve per-
formance in our study, it requires clinicians to manually 
input six values during each shift. Reducing the time 
clinicians spend documenting is a worthy goal since 
documentation burden contributes to clinician burnout 
[33].

Models developed in the Parsimonious data set per-
formed almost as well as the models developed using 
the larger number of predictor variables in the Routine 
Care data set. This finding is consistent with results from 
prior studies conducted among patients undergoing car-
diovascular surgery [34, 35]. The Parsimonious model 
performance is encouraging in terms of clinical feasibil-
ity for eventual model implementation, demonstrating 
that a small group of informative variables can predict 
HAPrIs almost as well as a more comprehensive group of 
variables.

In our analysis, classic (parametric) multivariable 
logistic regression performed similarly to modern (non-
parametric) machine learning models, including neu-
ral networks (Keras), random forest, gradient boosting, 
and adaptive boosting (AdaBoost). When performance 
is similar, logistic regression may be preferable to more 
complicated machine learning approaches for reasons of 

Fig. 5  ROC curve for parsimonious

Table 3  F1 scores for algorithms

RF, random forest

Keras RF AdaBoost Gradient 
boost

Logistic 
regression

Routine 
care + Braden 
Scale

0.28 0.36 0.29 0.28 0.31

Routine care 0.27 0.30 0.26 0.26 0.30

Parsimonious 0.34 0.26 0.33 0.35 0.28
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interpretability, computing power, and compactness, i.e., 
logistic regression is human-interpretable (coefficients 
give an immediate indication of size and direction of 
effect) and less computationally expensive. Furthermore, 
logistic regression models can be incorporated and run 
within most EHR systems (including EPIC©), simplifying 
model implementation. Our finding that multivariable 
logistic regression showed good performance in predict-
ing HAPrI compared to other machine learning methods 
is consistent with a previous study [32].

Our study includes several limitations. Although we 
sought to include a comprehensive set of predictor varia-
bles, it is possible that other unexamined variables would 
improve predictive performance. For example, we did 
not consider some potential risk factors, including medi-
cations such as corticosteroids [36] or events like intra-
operative blood loss [27], because those factors were 
more challenging to obtain in our EHR. Similarly, we 
chose not to collect data about preventive interventions 
like repositioning because prior studies have shown that 
documentation in the EHR does not necessarily reflect 
what was ’really’ done [37]—particularly relevant in the 
setting of a busy ICU, where nurses have many compet-
ing priorities. Preventive interventions, especially repo-
sitioning, are also confounded by critical illness because 
repositioning is sometimes not possible due to hemody-
namic instability.

Conclusion
Overall, results from this study show the feasibility of 
using EHR data for accurately predicting HAPrIs and 
that good performance can be found with a small group 
of easily accessible predictor variables. Future study is 
needed to test the models in an external sample.
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