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δ-cells and β-cells are electrically coupled and regulate
α-cell activity via somatostatin
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Key points

� We used a mouse expressing a light-sensitive ion channel in β-cells to understand how α-cell
activity is regulated by β-cells.

� Light activation of β-cells triggered a suppression of α-cell activity via gap junction-dependent
activation of δ-cells.

� Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose
on glucagon secretion is mediated by β-cells via gap junction-dependent activation of
δ-cells/somatostatin secretion.

Abstract Glucagon, the body’s principal hyperglycaemic hormone, is released from α-cells
of the pancreatic islet. Secretion of this hormone is dysregulated in type 2 diabetes mellitus
but the mechanisms controlling secretion are not well understood. Regulation of glucagon
secretion by factors secreted by neighbouring β- and δ-cells (paracrine regulation) have been
proposed to be important. In this study, we explored the importance of paracrine regulation
by using an optogenetic strategy. Specific light-induced activation of β-cells in mouse islets
expressing the light-gated channelrhodopsin-2 resulted in stimulation of electrical activity in
δ-cells but suppression of α-cell activity. Activation of the δ-cells was rapid and sensitive to
the gap junction inhibitor carbenoxolone, whereas the effect on electrical activity in α-cells
was blocked by CYN 154806, an antagonist of the somatostatin-2 receptor. These observations
indicate that optogenetic activation of the β-cells propagates to the δ-cells via gap junctions,
and the consequential stimulation of somatostatin secretion inhibits α-cell electrical activity by a
paracrine mechanism. To explore whether this pathway is important for regulating α-cell activity
and glucagon secretion in human islets, we constructed computational models of human islets.
These models had detailed architectures based on human islets and consisted of a collection of
>500 α-, β- and δ-cells. Simulations of these models revealed that this gap junctional/paracrine
mechanism accounts for up to 23% of the suppression of glucagon secretion by high glucose.
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Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic dis-
order typically characterized by hyperglycaemia, insulin
resistance and insufficient insulin secretion from islet
β-cells (Leahy, 2005; American Diabetes Association,
2010). However, it is becoming increasingly apparent
that over-secretion of glucagon from islet α-cells
also contributes to the increased hepatic glucose
production and associated hyperglycaemia in T2DM.
The abnormalities in glucagon secretion in T2DM
include both loss of adequate suppression under hyper-
glycaemic conditions and insufficient release during
episodes of hypoglycaemia (Cryer, 2002, 2008; Cryer et al.
2003; Dunning et al. 2005; D’Alessio, 2011; Unger &
Cherrington, 2012). This has driven efforts to understand
the mechanisms regulating α-cells and glucagon secretion.

The glucagon-producing α-cells reside in a ‘paracrine
environment’; islets are multicellular micro-organs that
comprise predominantly α-, β- and δ-cells (Kim et al.
2009). Regulation of glucagon secretion involves both
intrinsic and paracrine mechanisms. The significance
of paracrine regulation of α-cells is one of the most
contested aspects of islet cell biology (Gromada et al.
2007; Jacobson et al. 2009; Walker et al. 2011; Gylfe,
2013, 2016; Gylfe & Gilon, 2014; Briant et al. 2016).
Numerous paracrine factors have been demonstrated to
be important for regulating glucagon secretion from
α-cells, including insulin (Franklin et al. 2005; Ravier &
Rutter, 2005), serotonin (Almaca et al. 2016), somatostatin
(Hauge-Evans et al. 2009) and urocortin3 (van der Meulen
et al. 2015). Understanding how paracrine factors regulate
glucagon secretion is fundamental to our understanding
of the pathophysiology of T2DM, because the paracrine
environment is known to be altered in this disease (Rahier
et al. 1983; Kilimnik et al. 2011).

Optogenetic strategies have been successfully used
in neurophysiology to study cell-to-cell communication
for over a decade (Deisseroth, 2015; Cerritelli et al.
2016). Recently, this technique has also been used to
study β-cell physiology (Reinbothe et al. 2014; Johnston
et al. 2016), but has not yet been used to elucidate
the paracrine regulation of α-cells. This strategy is the
perfect experimental paradigm for studying the paracrine
regulation of α-cell activity because, in contrast to
pharmacological approaches, it affords precise temporal
and spatial control of paracrine signals from the other cell
types.

In this study, we employed this strategy by using
islets from mice expressing channelrhodopsin-2 (ChR2)
specifically in β-cells in a transgenic cross of a floxed-ChR2
line and a mouse line expressing Cre under the rat insulin
promoter (RIP; Reinbothe et al. 2014). As these channels
are light-gated, β-cells from these mice can be electrically
activated by exposing whole islets or even single cells

to 488 nm light (‘opto-activation’). Our mouse model
allowed control of electrical activity in β-cells, which we
could modulate whilst recording from α- and δ-cells using
patch-clamp electrophysiology and Ca2+ imaging. Here
we provide evidence for a regulatory network extending
from the β-cells, via the δ-cells, to the α-cells that involves
both electrical transmission (via the gap junctions)
and diffusion of secreted (paracrine) factors. We also
evaluated the functional significance of these mechanisms
by constructing and simulating computational models of
human pancreatic islets.

Methods

Ethical approval

All animal experiments were conducted in accordance
with the UK Animals Scientific Procedures Act (1986) and
University of Oxford and Gothenburg University ethical
guidelines, and were approved by the respective local
Ethics Committees.

Animals used in this study

Mice expressing ChR2 (H134R) and yellow fluorescent
protein (YFP) under RIP (RIPCre+/−ChR2-YFP+/− mice)
were generated as previously described (Reinbothe et al.
2014). Electrical activity in β-cells in these mice can be
triggered by exposing the islet to 488 nm light. To facilitate
identification of δ-cells in intact islets we also used islets
from mice expressing a red fluorescent protein (RFP)
reporter in δ-cells under the somatostatin (SST) promoter
(SST-RFP; Egerod et al. (2015)).

Preparation of pancreatic islets

Mice of both sexes (age = 120 ± 10 days) were killed
by cervical dislocation (Schedule 1 procedure). Pancreatic
islets were isolated by liberase digestion. Islets were used
acutely and were, pending the experiments, maintained
in tissue culture for <24 h in RPMI medium containing
7.5 mM glucose prior to the measurements.

Calcium imaging in islet cells in response to
optogenetic stimulation of β-cells

Islets from RIPCre+/−ChR2-YFP+/− mice were incubated
on Cell-Tak-coated glass-bottom dishes (BD Biosciences,
Franklin Lakes, NJ, USA) overnight in RPMI and 10 mM

glucose (10G). The islets were washed with bath solution
(containing 2.8 mM glucose; 2.8G) and loaded with the
calcium dye Rhod-2 (5 μM; Thermo Fisher Scientific,
Inc., Waltham, MA, USA) for 45 min at 32°C, washed
and again incubated in bath solution for 30 min at 32°C.
Bath solution consisted of (in mM) 140 NaCl, 3.6 KCl,
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0.5 MgSO4·7H2O, 1.5 CaCl2 and 10 Hepes (pH 7.4
with NaOH). The islets were then continuously perfused
(1 ml min−1) with 2.8 mM glucose at 32–33°C on a
Zeiss LSM 700 confocal microscope. The membrane of
a single YFP+ β-cell was then photo-stimulated using
the bleaching function of the 488 nm laser line with
25 μs pixel dwell time. This was executed at 70% power
(7 mW fibre output) with 10 frame intervals between each
stimulus. The intracellular Ca2+ ([Ca2+]i) response to this
optogenetic stimulation could then be observed in YFP−
(non-β) cells of the same islet loaded with Rhod-2 (555 nm
channel). Cells that were spontaneously active at 2.8G
(likely to be α-cells; Le Marchand & Piston, 2010) were
not used for these experiments, which were intended to
focus on YFP− cells inactive at 2.8G (likely to be δ-cells).
Recent studies have demonstrated that some δ-cells are
active in low glucose (Shuai et al. 2016), suggesting that
our selection criteria may erroneously discard some δ-cells.
However, the cells selected for analysis comprised 10 ± 4%
of the cells in the confocal section (n = 8 islets), in fair
agreement with the fraction of δ-cells in mouse islets
(Cabrera et al. 2006). These considerations argue that
our measurements principally reflect the behaviour of
δ-cells. Regions of interest were restricted to the centre
of the cell, avoiding the membrane, to minimize the
risk of contamination of the quantified fluorescence by
neighbouring cells.

Patch-clamp electrophysiology

Islets isolated from RIPCre+/−ChR2-YFP+/−, non-ChR2-
expressing littermate controls and SST-RFP mice
were also used for patch-clamp electrophysiological
recordings. These recordings (in intact islets) were
performed at 33–34°C using an EPC-10 patch-clamp
amplifier and PatchMaster software (HEKA Electronics,
Lambrecht/Pfalz, Germany). Currents were filtered at
2.9 kHz and digitized at >10 kHz. A new islet was used
for each recording.

Standard whole-cell recording of GJ currents. Gap
junction (GJ) currents were recorded from RFP+
δ-cells in SST-RFP mice, under the standard whole-cell
configuration. Only recordings with an access resistance
of <50 M� were used for analysis. The pipette solution
consisted of (in mM) 120 KCl, 1 CaCl2, 1 MgCl2, 10 Hepes
(pH 7.15 with KOH), 3 MgATP and 0.05 EGTA. The bath
solution consisted of (mM) 138 NaCl, 5.6 KCl, 5 Hepes,
1.2 MgCl2·6H2O and 2.6 CaCl2 (pH 7.4 with NaOH).

GJ currents evoked in 20 mM glucose were recorded by
clamping the membrane at −70 mV and continuously
recording the membrane current. The GJ inhibitor
carbenoxolone (CARB; Sigma-Aldrich, St Louis, MO,
USA; Juszczak and Swiergiel (2009)) was used at a
concentration of 100 μM to block GJ currents. GJ current

amplitude was analysed in the presence of 20 mM glucose
before, during and after addition of CARB. RFP+ cells
were also identified as δ-cells by ‘electrophysiological
fingerprinting’, computed by using a multinomial logistic
regression function which can identify islet cell type with
94% accuracy (Briant et al. 2017).

Membrane potential recordings in islet cells in response to
optogenetic stimulation of β-cells. Membrane potential
recordings were conducted on RIPCre+/−ChR2-YFP+/−
and non-ChR2-expressing littermate controls using the
perforated patch-clamp technique, as previously described
(De Marinis et al. 2010). The pipette solution consisted of
(mM) 76 K2SO4, 10 NaCl, 10 KCl, 1 MgCl2·6H2O and
5 Hepes (pH 7.35 with KOH). For these experiments,
the bath solution contained (mM) 140 NaCl, 3.6 KCl,
10 Hepes, 0.5 MgCl2·6H2O, 0.5 Na2H2PO4, 5 NaHCO3

and 1.5 CaCl2 (pH 7.4 with NaOH). Amphotericin B
(40 mg ml−1, Sigma) was added to the pipette solution
to give electrical access to the cells (series resistance
of <100 M�). α-cells and δ-cells were confirmed by
absence of YFP, glucose-induced electrical activity and the
aforementioned logistic regression model (Briant et al.
2017). The recording chamber was then shielded from
ambient light and ChR2-expressing cells were stimulated
with 488 nm light pulses (10 ms duration, 20 Hz) using a
fibre-coupled LED with a collimator (WT&T, Pierrefonds,
QC, Canada), triggered by the HEKA amplifier. Similar
experiments were conducted in littermate controls to
ensure electrical responses were not due to the Becquerel
effect. The power output of the light source was calibrated
to deliver 0.5 mW mm−2 to the recording chamber.

All perforated patch-clamp recordings with opto-
activation were conducted at 5 mM glucose. Preliminary
experiments demonstrated that opto-activation of β-cells
at low glucose concentration produced small (<15 mV)
amplitude spikes (due to the low input resistance). At
5 mM glucose, KATP channels in β-cells are known to be
mostly shut (Trube et al. 1986), which would facilitate
opto-activation of these cells. We therefore chose 5 mM

glucose as the experimental condition because we wanted
to be close to the threshold for β-cell firing (EC50 = 8.3 mM

glucose; Antunes et al. 2000), but also sub-threshold to
that producing maximal inhibition of glucagon secretion
(6 mM glucose; Walker et al. (2011)).

Hormone secretion measurement

Islets from RIPCre+/−ChR2-YFP+/− mice were incubated
overnight in RPMI (7.5 mM glucose; 7.5G) in a cell
culture incubator. Size-matched batches of 20 islets were
pre-incubated in 0.3 ml of modified Krebs–Ringer buffer
with 2 mg ml−1 bovine serum albumin (KRB) and 3G,
for 1 h in a water bath at 370C. This was followed by a
1 h incubation in 0.2 ml KRB supplemented with 5 mM
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glucose in the dark. The medium was removed and trans-
ferred to dry ice, and the islets were further incubated
in 0.2 ml KRB with 5 mM glucose in the presence of
488 nm light pulses (20 Hz, 10 ms duration) for 1 h. The
medium was again removed and transferred to dry ice. For
hormone content measurements, the islets were lysed in
0.1 ml of acidic ethanol, followed by sonication on ice for
10 s. Insulin measurements were performed using a mouse
insulin assay system (Meso Scale Discovery, Rockville,
MD, USA), glucagon measurements were performed
using the Millipore RIA system and SST measurements
were performed using the Somatostatin EURIA radio-
immunoassay (Eurodiagnostica, Malmö, Sweden), which
is specific for somatostatin-14 (the somatostatin secreted
by the pancreatic δ-cells).

Statistical tests and time-series analysis of
experimental data

All data are reported as mean ± SEM, unless otherwise
stated; ‘n’ refers to the number of cell recordings and
‘N’ to the number of mice. Statistical significance was
defined as P < 0.05. All statistical tests were conducted
in Prism5 (GraphPad Software, San Diego, CA, USA). For
two groupings, a t test was conducted with the appropriate
post hoc test. For more than two groupings, a one-way
ANOVA was conducted. If the data passed normality
criteria (D’Agostino’s test of normality and Bartlett’s test of
equal variances), a parametric test was conducted with the
appropriate post hoc test (Tukey). If the normality criteria
were not met, a Kruskal–Wallis test with Dunn’s multiple
comparison test was conducted.

Time-series analysis of electrophysiological and Ca2+
imaging data was conducted in MATLAB v6.1 (2000;
The MathWorks, Natick, MA, USA). Light-pulse-triggered
peaks in membrane potential >20 mV were detected and
averaged. These peaks were also used to determine firing
frequencies before and during opto-activiation.

Computational methods

Models of the electrical activity in human islets
were constructed. All models were coded in the hoc
environment and simulated in NEURON using CVODE
and a 25 μs timestep (Carnevale & Hines, 2006). Videos
of these simulations can be accessed via the online
Supporting Information.

Morphology of human islet models

Experimental data of the cellular architecture of six human
islets from a previously published study were used to define
the morphology of the models (fig. 8 and table 2 in Hoang
et al. 2014). For each islet, the data provide the spatial
(x, y, z) location of each individual α-, β- and δ-cell

within the islet. We then placed the appropriate model
of electrical activity (α, β or δ, as given below) at each
such location, creating six human islet models (M1–M6).
The data also gave information about which cells are in
‘contact’ with one another (Hoang et al. 2014), which we
used to endow the model with mechanisms of cell-to-cell
communication.

α-cell model

As our focus is on understanding the regulation of
α-cell activity and glucagon secretion, the α-cell model
we developed was the most detailed. It built upon pre-
viously published models of the electrical activity in α-cells
(Diderichsen & Gopel, 2006; Fridlyand & Philipson, 2012;
Watts & Sherman, 2014; Pedersen et al. 2016; Watts et al.
2016).

The equation describing membrane potential in the
α-cell model is:

Ccell
dV

dt
= −(ICaL + ICaN + ICaT + INa + IK + IKATP

+ IKA + IL + IGIRK) (1)

where Ccell is the cell capacitance; ICaL, ICaN and ICaT

are L-, N- and T-type voltage-dependent Ca2+ currents,
respectively; INa is a voltage-dependent Na+ current;
IK is a delayed rectifier K+ current; IKA is an A-type
voltage-dependent K+ current; IK(ATP) is an ATP-sensitive
K+ current; and IL is a leak current. Both human and
mouse α-cells express SST receptors that are coupled to
G-protein inwardly rectifying potassium (GIRK) channels
(Braun, 2014). We therefore modified the recent model of
Briant et al. (2017) to include the GIRK current, IGIRK.
This had a maximal conductance density modulated by
the local SST concentration, [SST] – a concentration
determined by SST secretion from contacting δ-cells.

We also modelled glucagon secretion. The intracellular
calcium concentration, [Ca2+], was modelled as the sum
of calcium fluxes due to the total calcium current ( ICa =
ICaL + ICaN + ICaT) and a calcium buffering term:

d[Ca2+]

dt
= 2ICa

F d · d
+ ([Ca2+]0 − [Ca2+])

τ
(2)

Here, calcium is buffered to [Ca2+]0 with time-constant
τ, F d is Faradays constant and d is the depth of
the calcium domain. This calcium concentration drives
a system of differential equations describing glucagon
vesicle dynamics:

d[F A]

dt
= kb([F max] − [F A] − [VA])[Ca2+]4 − ku[F A]

− k1[F A][V] + k2[VA] (3)

C© 2017 University of Oxford. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 596.2 β-to-δ gap junction coupling 201

Table 1. Model parameters picked from normal distributions with mean μ and standard deviation σ to account for parameter
uncertainty

α-cell model β-cell model δ-cell model

Parameter μ σ Units Parameter μ σ Units Parameter μ σ Units

Ccell 4.2 0.1 pF Ccell 6.3 0.1 pF Ccell 4 0.1 pF
gNa 0.11 0.01 S cm−2 gCaL 0.003 0.01 S cm−2 gNa 0.11 0.01 S cm−2

gKDR 0.1 0.01 S cm−2 gKDR 0.004 0.01 S cm−2 gKDR 0.045 0.01 S cm−2

gCaL 0.007 0.01 S cm−2 gKslow 0.003 0.01 S cm−2 gKA 0.012 0.01 S cm−2

gCaN 0.006 0.01 S cm−2 gK, ATP 0.00048 S cm−2 gCaL 0.0065 0.01 S cm−2

gCaT 0.004 0.01 S cm−2 GJββ 40 1 pS gCaN 0.003 0.01 S cm−2

gpas 0.001 0.01 S cm−2 gCaT 0.005 0.01 S cm−2

gK, ATP 0.0008 S cm−2 gpas 0.0002 0.01 S cm−2

GJβδ 0–100 1 pS

The standard deviation in maximal conductance densities was chosen as 0.01 S cm−2 to mimic maximal conductance densities seen
in neurons (Seutin & Engel, 2010). The mean gap junction conductance between β- and δ-cells (GJβ−δ) is an unknown parameter. The
influence this parameter has on model output is considered in Fig. 8.

d[VA]

dt
= k1[F A][V] − (k2 + k3)[VA] (4)

d[Glg]

dt
= Nk3[VA] − kh[Glg] (5)

Here, calcium ions are assumed to reversibly bind to a
fusion protein F . Four calcium ions bind to this protein
at a rate kb, activating it. The concentration of activiated
fusion protein is [F A], coming from a pool of inactivated
proteins with concentration [F max]. The reverse process
has an unbinding rate ku. An activated fusion protein
binds to a vesicle (V) at a rate k1, activated it (VA).
This process is reversible with unbind rate k2. The
concentrations of inactivated and activated vesicles are [V]
and [VA], respectively. Destexhe et al. (1994) simplified this
system by assuming that there exists an inexhaustible pool
of inactivated vesicles, ready for activation. In particular,
[V] is constant and not depleted. This assumption is
adopted. An activated vesicle is then able to fuse to
the membrane of the cell, and release its contents. An
activated vesicle releases N molecules of glucagon (Glg) at
a rate k3. The concentration of glucagon released is [Glg].
This is depleted in the extracellular space by diffusion,
degradation and reuptake at a rate kh.

β-cell model

There are many excellent models of the electrical activity
in β-cells that could be selected (reviewed by Pedersen,
2009). As we are interested in the regulation of α-cell
physiology, we chose the five variable model of Bertram
et al. (2004). This simple model produces the desired
bursting behaviour, which is observed in human β-cells
(Riz et al. 2014), whilst minimizing computational
complexity.

δ-cell model

The equation describing membrane potential in the δ-cell
model was:

Ccell
dV

dt
= −(ICaL + ICaN + INa + IK + IKATP

+ IKA + IL) (6)

where Ccell is the cell capacitance; ICaL and ICaN are
the L- and N-type voltage-dependent Ca2+ currents,
respectively; INa is a voltage-dependent Na+ current;
IK is a delayed rectifier K+ current; IKA is an A-type
voltage-dependent K+ current; IK(ATP) is an ATP-sensitive
K+ current; and IL is a leak current. This model is identical
to the recent model of Briant et al. (2017), but we also
included eqns (2)–(5) to model SST secretion.

Modelling communication between electrically
coupled cells

We have outlined the architectures and individual cellular
components of the islet models. What remains to be
described is how contacting cells communicate with one
another.

GJ coupling between pairs of contacting β-cells. All
contacting β-cells were considered to form a functional GJ
with a strength (in pS) picked from a normal distribution
of mean 40 pS and standard deviation 1 pS. Each cell may
form 1–5 GJ connections with other cells, yielding a total
mean GJ conductance of 40–200 pS. This is supported
both by experimental and by simulation data from small
clusters of dispersed human β-cells (100–200 pS; Loppini
et al. (2015)) and β-cells recorded in intact mouse islets
(<170 pS, Zhang et al. (2008); 50–120 unitary strength,
Moreno et al. (2005); 20 pS, Perez-Armendariz et al.
(1991)).
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GJ coupling between contacting δ- and β-cells. β-cells
were also considered to be GJ coupled to δ-cells (see
Results). The strength of this coupling was treated as
an unknown parameter. We constrained our considered
range for this parameter to 0–100 pS, to mimic derivations
of the coupling strength between small clusters of
dispersed human β-cells (Loppini et al. 2015).

Paracrine signalling from δ- to α-cells. GIRK channels
have been shown to underlie the hyperpolarizing K+
currents activated by SST in rodent (Yoshimoto et al.
1999) and human (Kailey et al. 2012) α-cells. Instead of
explicitly modelling SST receptor dynamics, we assumed
that the released SST directly modulates the GIRK channel
conductance (g GIRK) in contacting α-cells according to the
equation:

g GIRK = k[SST] (7)

where k has units of μS/mM.

Cell-to-cell variability and parameter uncertainty

As shown by Briant et al. (2017), ionic and cellular electro-
physiological properties can be very variable in pancreatic
cells. To account for this variability and uncertainty in
conductance values, within an islet model, parameter
values for each individual cell were picked from a normal
distribution (Table 1). This produces an islet model with
cell-to-cell variability (within-islet variability). This islet
model was then simulated under conditions of low and
high glucose. This process was repeated 100 times for each
islet, yielding between-simulation variability. This allowed
us to account for variability and parameter uncertainty in
our simulation results – as has been done in cardiac and
neuronal modelling (Marder & Taylor, 2011; Sarkar et al.
2012; Walmsley et al. 2013; Muszkiewicz et al. 2016). All
simulation results are expressed as means ± SEM of these
100 simulations.
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Figure 1. Opto-activation of pancreatic β-cells
Electrical activity in β-cells (n = 5) was recorded from islets under the perforated patch-clamp configuration from
RIPCre+/−ChR2-YFP+/− mice (N = 5). A and B, opto-activation of ChR2 with 10 ms pulses of 488 nm light (20 Hz)
triggered action potentials in β-cells (A), but not in littermate controls (B). C, amplitude of the 20 Hz rhythm
produced depended on the glucose concentration applied. In 5 mM glucose it was on average 27.6 ± 1.4 mV.
D, example light-driven membrane potential changes (�Vm) in a β-cell, in different glucose concentrations. Both
individual and average sweeps are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 2. Opto-activation of β-cells triggers a strong suppression of α-cell activity
A, opto-activation (20 Hz) of β-cells caused a strong suppression of α-cell (n = 13) electrical activity. The magnitude
of this suppression was quantified by measuring the reduction in the minimal potential (B) and the amplitude of
this reduction (C). D, firing frequency was also suppressed. The variance in firing frequency and minimum potential
in the light-off condition were no different in RIPCre+/−ChR2-YFP+/− compared to control α-cells (Brown–Forsythe
test; P = 0.10 and P = 0.60, respectively). The delay to suppression (E) and recovery to firing (F) were also
characterized. Recordings from RIPCre+/−ChR2-YFP+/− mice (N = 7). Paired t test (∗∗P < 0.01). [Colour figure can
be viewed at wileyonlinelibrary.com]
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Results

Optogenetic activation of β-cells triggers a strong
inhibition of α-cell electrical activity

β-cells were perforated patch-clamped in islets isolated
from RIPCre+/−ChR2-YFP+/− mice (n = 5) and optically
excited with 20 Hz light pulses (Fig. 1). This generated
electrical activity with a 20 Hz rhythm. The amplitude of
this activity was 28 ± 1 mV (n = 5 cells, Fig. 1A and C).
The amplitude of this activity was glucose-dependent, with
only small amplitude (<15 mV) activity being possible in
lower glucose concentrations (Fig. 1C and D). In β-cells
from littermate controls, light stimulation did not evoke a
change in membrane potential (Fig. 1B).

Electrical activity in α-cells from RIPCre+/−ChR2-
YFP+/− mice exhibited strong inhibition in response to
opto-activation of β-cells (Fig. 2). This was associated
with a 12 mV hyperpolarization (Fig. 2B and C) and a
65% reduction of the action potential frequency (Fig. 2D).
Interestingly, there was a �10 s delay between optogenetic
activation of the β-cell and α-cell hyperpolarization
(Fig. 2E). Following cessation of optogenetic activation,

the membrane potential returned to baseline values within
15–20 s (Fig. 2F). Light stimulation had no effect on α-cell
electrical activity in islets from littermate controls (Fig. 2B
and D).

Stimulation of β-cells generates firing in δ-cells

In contrast to α-cells, opto-activation of β-cells in
RIPCre+/−ChR2-YFP+/− mice promptly stimulated δ-cell
electrical activity (Fig. 3A and D). In littermate controls,
light stimulation did not change the firing frequency
of δ-cells (Fig. 3B). SST secretion in response to 20 Hz
light pulses was also significantly increased (Fig. 3F).
Consistent with the observed hyperpolarization of α-cells
(Fig. 2), glucagon secretion was inhibited by 26% by
opto-activation of β-cells (Fig. 3G; P = 0.016), illustrating
the efficient control of glucagon secretion by paracrine
factors.

We next studied the time course of activation of δ-
and β-cells following opto-activation (Fig. 4). The delay
to peak potential following a 10 ms light pulse in β-cells
was only �17 ms (Fig. 4A and C). Importantly, this delay
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[Colour figure can be viewed at wileyonlinelibrary.com]
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was only marginally longer in δ-cells (�30 ms; Fig. 4B
and C), in contrast to the 10 s delay in α-cells (Fig. 2E). The
difference in the delays between the initiation of electrical
activity in β- and δ-cells, following optogenetic activation
of β-cells (�13 ms), suggests that δ-cells are quickly excited
following β-cell activation. This delay difference is similar
to calculations of the time needed for an islet cell to
be charged via GJ connections with a neighbouring cell
(Zhang et al. 2008). The time course of the Ca2+ response
in δ-cells was also investigated (Fig. 4D–F). Spatially
precise opening of ChR2 channels in the membrane of
a single YFP+ β-cell with the confocal laser generated
a time-locked Ca2+ response in δ-cells (Fig. 4E). We
therefore postulated that the observed stimulation of
membrane potential and intracellular Ca2+ in δ-cells by
opto-activating β-cells was via GJ coupling to β-cells.

δ-cells are GJ coupled to β-cells

To investigate the existence of GJ currents in δ-cells,
δ-cells were patch-clamped in SST-RFP mice (Fig. 5).
When islets were exposed to 20 mM glucose – a glucose
concentration known to evoke electrical activity in mouse

β-cells (Antunes et al. 2000) – voltage-clamped δ-cells
exhibited spontaneous inward current transients (Fig. 5A
and C). These currents represent action potentials fired
in the neighbouring β-cells that spread to the δ-cell
via GJs. These current transients had an amplitude of
75.1 ± 9.3 pA (n = 24 cells, Fig. 5B). These GJ currents,
expressed as a percentage of the amplitude at baseline,
were abolished by application of CARB (22 ± 2.2%,
P < 0.0001, n = 8 cells) and recovered following
CARB washout (59 ± 8.3%, P = 0.004; Fig. 5C). Taken
together, these data support the presence of functional
GJ connections between β- and δ-cells. Given that
β-cell action potentials have an amplitude of 50 mV, the
amplitude of the GJ current transients recorded in δ-cells
(75 pA) suggests that β- and δ-cells are connected via a
GJ conductance of 1.5 nS. This is similar to the 1.22 nS
estimated for β-cells (Zhang et al. 2008).

α-cell inhibition from β-cells via δ-cells

The long delay between optogenetic activation of the β-cell
and membrane repolarization in the α-cell (Fig. 2E), and
the slow reversal of this effect (Fig. 2F), suggests the
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involvement of a diffusible factor. We hypothesized that
the inhibition of α-cell activity following opto-activation
of β-cells in RIPCre+/−ChR2-YFP+/− mice (Fig. 2)
was via GJ-dependent activation of δ-cells and sub-
sequent stimulation of SST secretion (Figs 4 and 5),
which inhibits glucagon secretion by activation of α-cell
somatostatin-2 receptors (SSTR2). In support of this
hypothesis, application of the SSTR2 inhibitor CYN
154806 during opto-activation of β-cells blocked the
inhibition of electrical activity in α-cells (Fig. 6A–C).

Interestingly, the firing frequency in the presence of
CYN 154806 was >100% higher than under control
conditions (Fig. 6B). Application of CYN 154806 was
also associated with an 8 mV membrane depolarization
(Fig. 6C). These two effects suggest that SST is present
under basal conditions to affect both membrane potential
and α-cell electrical activity.

Simulation of human islets

To investigate whether the processes we have described
above modulate α-cell activity and glucagon secretion in
human islets, we simulated our six human islet models
(M1–M6) and modulated the degree of GJ coupling
between β- and δ-cells.

We first characterized the response of each islet model.
Videos of simulations of M1–M6 can be accessed in the
online supplementary material (Supporting Information,
Videos S1–6). Typical time-series for a selection of cells in
model M2 are depicted in Fig. 7. This model has 430 α-,
1468 β- and 366 δ-cells. In low glucose, only the α-cells
were electrically active (Fig. 7A and C). Application of
high glucose generated bursting in β-cells, which triggered
action potential firing in a neighbouring δ-cell via the GJs
and evoked somatostatin secretion (Fig. 7B and C). This
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in turn caused the suppression of firing in a neighbouring
α-cell (Fig. 7B and C). Firing in an α-cell not in contact
with any δ-cells was not suppressed by this paracrine
signalling, but solely by intrinsic mechanisms (Fig. 7C).
Glucagon secretion from the whole islet could then be
calculated (Fig. 7D).

We next explored the influence of β-to-δ-cell GJ
coupling on α-cell activity and glucagon secretion in islet
models M1–M6 (Fig. 8). For each model, we fixed the
mean GJ conductance between β- and δ-cells (GJβ-δ) to
be 0–100 pS (10 pS increments). As GJβ-δ was increased,
the suppression of glucagon secretion by glucose increased
in a sigmoidal fashion in all islet models. In model M1,
when GJβ-δ = 100 pS, the suppression of glucagon
secretion by high glucose was 40.4%, compared to 17.3%
when GJβ-δ = 0 pS (Fig. 8C). The difference, 23.1%, gives
the contribution of β-to-δ-cell GJ to this suppression. This
contribution differed slightly across the islet models but
was on average 21 ± 1% (n = 6, Fig. 8D).

Discussion

In this study we used an optogenetic strategy to investigate
the paracrine regulation of α-cells. We used a mouse model
that expressed ChR2 specifically in β-cells (Reinbothe et al.
2014). Using the perforated patch-clamp technique, we
could investigate the electrophysiological consequences of

opto-activating β-cells on α- and δ-cells. We found that
activating β-cells results in a strong suppression of α-cell
activity (Fig. 2) and that this suppression is mediated via
δ-cells (Figs 3, 4 and 6). The excitation of δ-cells was due to
functional GJ connections between β- and δ-cells (Figs 4
and 5). We therefore propose that α-cell activity in mouse
islets is regulated by β-cells via GJ connections to δ-cells (a
schematic summary of this pathway is depicted in Fig. 9).

To investigate the contribution of this pathway in
human islets, we constructed mathematical models of six
human islets and carried out simulations under conditions
of low and high GJ connectivity between β- and δ-cells
(Figs 7 and 8). The simulations demonstrated that in
human islets the β-to-δ-cell GJ pathway accounts for
�23% of the suppression of glucagon secretion in high
glucose (Fig. 8).

Functional GJ connections between β- and δ-cells

β-cells are electrically coupled (Meissner, 1976;
Perez-Armendariz et al. 1991; Moreno et al. 2005; Zhang
et al. 2008). In mouse (Moreno et al. 2005; Ravier et al.
2005) and human (Serre-Beinier et al. 2009) this is
mediated via the GJ protein connexin-36 (Cx36). In islets,
these junctions preferentially exchange cationic molecules
(Charpantier et al. 2007), allowing charge to pass between
β-cells. This results in the entrainment of β-cell activity
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and the recruitment of electrically silent β-cells. Evidence
has highlighted how crucial this coupling is for the
appropriate secretion of insulin in response to changing
glucose levels; deletion of Cx36 results in aberrant insulin
secretion and a loss of cell-to-cell synchrony (Ravier et al.
2005; Speier et al. 2007). Clearly, GJs have a crucial role in
the regulation of insulin output from islets.

In contrast, the role of GJs in the regulation of glucagon
and SST secretion from α- and δ-cells, respectively,
remains unknown. Studies have detected GJ-forming
proteins in non-β-cell fractions in mouse (Meda, 2013)
and human islets (Serre-Beinier et al. 2009), with single
cell RNA sequencing recently reporting the presence of
GJ transcripts in δ-cells (DiGruccio et al. 2016). Despite
these observations, functional GJs have only been recorded
between β-cells [see reviews by Farnsworth and Benninger
(2014) and Meda (2013)]. In this study, we provide
evidence that δ-cells are GJ connected to β-cells.

Our demonstration of GJ coupling between β- and
δ-cells is based on several observations. The first is
that δ-cells exhibited CARB-sensitive membrane currents
in the standard whole-cell voltage-clamp configuration
(Fig. 5). We note that the concentration of CARB used
(100 μM) is known to block electrical coupling between
central neurones, but has also been shown to have
off-target effects (see review by Connors 2012). However,
this does not undermine our additional evidence for GJ
coupling between β- and δ-cells; as well as recording
GJ currents in δ-cells, we demonstrate that δ-cell action
potentials can be triggered by opto-activation of β-cells
(Fig. 3) with a temporal delay similar to that observed
for GJ-coupled β-cells (Fig. 4; Zhang et al. 2008).
Furthermore, we also show that opto-activation of β-cells
causes a stimulation of SST secretion (Fig. 3). Together,
these data demonstrate the existence of functional GJ
connections between β- and δ-cells. This pathway explains
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Figure 7. Simulation of human islets
Architectures of six human islets were used to develop six models of electrical activity in human islets (see also
Supplementary Videos S1–6). These architectures are from a previously published study (Hoang et al. 2014); the
donor was a 51-year-old female with body mass index 29.3. A, islet Model 2 (M2) architecture and electrical activity
in low glucose at t = 1 s. B, M2 architecture and electrical activity in high glucose at t = 5 s. C, time-series traces of
a selection of cells from M2 in response to high glucose. High glucose triggered bursting in β-cells. This triggered
firing in neighbouring δ-cells via GJ connections. A neighbouring α-cell exhibited suppressed firing, following SST
release and GIRK channel activation. In comparison, distal α-cells did not exhibit SST-mediated suppression, but
did exhibit a reduction in action potential height, as has been demonstrated experimentally (Zhang et al. 2013).
D, the exocytosis of glucagon from each α-cell was also modelled, and so could be quantified for the entire islet.
[Colour figure can be viewed at wileyonlinelibrary.com]
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the coincidence in pulses of insulin and SST secretion
generated in response to glucose application in human
(Hellman et al. 2009) and mouse (Salehi et al. 2007)
islets.

Which proteins form GJs between β- and δ-cells?

Recently, single-cell RNA sequencing data have demo-
nstrated the presence of transcripts for pannexin (Panx1
and Panx2) and connexin (GJA4) proteins in δ-cells
(DiGruccio et al. 2016). In our study we observed GJ
currents in δ-cells that were blocked by CARB. This
drug is both a general connexin blocker (Giaume &
Theis, 2010) and an inhibitor of cell-to-cell connections
formed by pannexins (Michalski & Kawate, 2016). Our
data also demonstrate that the β-to-δ-cell GJ pathway

leads to suppression of α-cell activity. In keeping with our
data is the recent observation that Panx1-null transgenic
mice have an increase in basal glucagon release (Cigliola
et al. 2015). Together, these findings suggest that the
β-to-δ cell GJ connectivity we observe may be formed by
pannexins.

β-to-δ GJ connections regulate α-cell activity in mouse
islets: a novel paracrine pathway

It is not surprising that stimulation of β-cells generates an
inhibitory response in α-cells. The pathway we describe
can be added to the list of paracrine signals that
inhibit glucagon secretion [reviewed by Gromada et al.
(2007), Caicedo (2013), Briant et al. (2016) and Gylfe
(2013)], including insulin (Kawamori et al. 2009), Zn2+
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Figure 8. β-to-δ-cell GJs regulate α-cell activity and glucagon secretion in human islet simulations
A, within an islet, parameter values were picked from normal distributions (Table 1) to account for cell-to-cell
variability and parameter uncertainty. The model was then simulated under conditions of low and high glucose.
This process was repeated 100 times to account for parameter uncertainty. B, the GJ conductance between
β- and δ-cells (GJβ-δ ) was fixed between 0 and 100 pS and the model simulated under low and high glucose
conditions. The simulated glucagon secretion was then quantified and expressed as a % of that in low glucose.
Grey lines = repeat simulations for re-picked parameter values. C, suppression of glucagon secretion by high
glucose (% of maximum) at different values of GJβ-δ in islet model M1. D, suppression of glucagon secretion for
GJβ-δ = 0 pS and 100 pS in all six islet models (M1–M6). [Colour figure can be viewed at wileyonlinelibrary.com]
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(Ishihara et al. 2003), serotonin (Almaca et al. 2016),
γ-hydroxybutyrate and glycine (Li et al. 2013).
Indeed, glucagon secretion was inhibited by 26% by
opto-activation of β-cells over the hour-long secretion
protocol (Fig. 3G); although this is consistent with
our simulations, the suppression is probably due to a
combination of multiple paracrine pathways, rather than
solely due to the pathway we describe. What was surprising
was that application of the SSTR2 inhibitor CYN 154806
completely abolished α-cell hyperpolarization, due to
β-cell activation (Fig. 6). This cannot be explained
by non-specific expression of ChR2 in δ-cells because
fluorescence-activated cell sorting has confirmed that
ChR2 expression is highly restricted to β-cells (only
0.5 ± 0.1% of YFP+ cells are non-β-cells) in this
mouse model (Reinbothe et al. 2014). Acute exposure
of CYN 154806 produces intrinsic activity when it is
receptor-bound (Nunn et al. 2003). To minimize the
influence of this intrinsic activity in our patch-clamp
experiments, our application of CYN 154806 was kept

brief (8–10 min). We did not test whether CYN
154806 blocks the β-cell-mediated inhibition of glucagon
secretion.

In mouse islets, the favourability of δ-to-α commu-
nication due to their close proximity was first postulated
by Orci & Unger (1975). In this study we demonstrate
that this paracrine pathway between δ- and α-cells is
recruited when β-cells become active, via GJ connections
with δ-cells. These findings do not preclude paracrine
mechanisms observed in other studies; in fact, the studies
of Almaca et al. (2016) and Li et al. (2013) were
conducted in human islets – a paracrine environment very
architecturally different from that of mouse islets (Brissova
et al. 2005; Cabrera et al. 2006). For this reason, we also
sought to assess whether this GJ pathway regulates α-cell
activity and glucagon secretion in human islets. Given the
variability in human islet quality, function, donor details
and availability (Ihm et al. 2006; Hanson et al. 2010; Kayton
et al. 2015), we opted for the construction of mathematical
models of human islets in order to make this assessment.
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Figure 9. Schematic summary of the β-to-δ GJ pathway regulating α-cell activity
In conditions of high glucose, glucose is transported into β-cells via glucose transporters (GLUT) and metabolized
by the mitochondria. The consequential increase in ATP concentration closes KATP channels, causing membrane
depolarization, Ca2+ entry (via voltage-dependent Ca2+ channels; VDCCs) and therefore insulin secretion.
This secreted insulin may directly regulate glucagon secretion (Kawamori et al. 2009), but we show that the
aforementioned depolarization also drives cation flow through gap junctions (GJ) with coupled δ-cell(s). This leads
to depolarization of the δ-cell, triggering Ca2+ entry via VDCCs. This entry, together with Ca2+-induced Ca2+
release (CICR; Zhang et al. 2007) from intracellular Ca2+ stores, drives somatostatin (SST) secretion. Glucose may
also directly activate δ-cells by a KATP-dependent mechanism (not depicted; Braun et al. 2009; Gopel et al. 2000).
Released SST binds to SST receptor 2 (SSTR2) on α-cells, triggering a G-protein cascade (Gi) that activates G-protein
coupled inwardly rectifying K+ (GIRK) channels. This hyperpolarizes the α-cell, leading to suppression of glucagon
secretion. [Colour figure can be viewed at wileyonlinelibrary.com]
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Simulations of human islets

We developed six models of human islets. To our
knowledge, no such multicellular and architecturally
detailed models of islet electrical activity have been
constructed. We ensured our models accounted for
parameter uncertainty and cell-to-cell variability, as
has been demonstrated in large datasets of electro-
physiological recordings of islet cells (Briant et al. 2017).

Our simulations were able to capture some fundamental
aspects of the electrophysiological response to glucose,
including suppression of glucagon secretion by high
glucose (Fig. 7). Furthermore, when we increased the
degree of coupling between β- and δ-cells to 100 pS, we saw
a 23% increase in the suppression of glucagon secretion by
high glucose (Fig. 8). Our mathematical models of islets
therefore suggest that 23% of the inhibition of glucagon
secretion by high glucose can be attributed to the β-to-δ
GJ pathway, remarkably similar to the inhibition in our
secretion experiments (26%; Fig. 3G).

These simulations have significance not only for the
normal regulation of glucagon secretion, but also for
T2DM. Islet architecture is altered in T2DM, with islets
from T2DM donors exhibiting fewer β-to-δ contacts
(Kilimnik et al. 2011). In the context of our finding
of a β-to-δ GJ pathway, such a reduction in β-to-δ
cell contacts may explain the exacerbation of glucagon
secretion in high glucose characteristic of T2DM (Cryer,
2008). Furthermore, animal models with a hyperglycaemic
phenotype have reported a reduction of the number of GJs
between islet cells (Carvalho et al. 2012; Haefliger et al.
2013). This can be predicted to have two consequences:
first, a decrease in insulin secretion; and second, a
reduction in the suppression of glucagon secretion by
the β-to-δ-cell GJ pathway described here. This may
contribute to the hyperglucagonaemia under hyper-
glycaemic conditions that is a characteristic of T2DM and
that exacerbates the consequences of the insulinopaenia
(Cryer, 2008). It remains to be seen whether these findings
in T2DM are indeed extended to coupling between β- and
δ-cells.

Study limitations and future directions

One of our implicit modelling assumptions was that
immunocytochemically established contact between cells
(Hoang et al. 2014) implies functional GJ connectivity
between cells. Contact between cells does not imply GJ
coupling, but information pertaining to the electrical
connectivity of all cells in an islet would be extremely
difficult to obtain. To account for this, we treated GJ
connectivity between contacting cells as a free parameter;
and explored how the model output depended on
this parameter (Fig. 8) as well as allowing it to vary
according to a normal distribution (Table 1). We also

recognize that the immunocytochemical techniques used
by Hoang et al. (2014) to characterize islet architecture
may not have the level of precision required to capture
all cell-to-cell contacts. For example, δ-cells are known to
have long projections that extend beyond their immediate
neighbourhood; Brereton et al. (2015) demonstrated with
sequential electron microscopy images that rat δ-cells have
projections that extend >50 μm, contacting multiple
cells. These projections could not be captured by the
methodology of Hoang et al. (2014). However, the extent
and function (if any) of these projections have yet to be
fully characterized in mouse or human islets, and so were
not included in our models.

One may expect that we could correlate our simulation
findings with measures of islet architecture. For example,
does the degree of suppression of glucagon secretion by
high glucose correlate with the number of δ-cells, the
number of δ-to-α contacts, or graph theory measures
of connectivity and centrality (Striegel et al. 2015)? The
limiting factor in answering these questions is our sample
size – we only have six human islet architectures. As a
future direction, we aim to conduct simulations on a
larger sample of human islet architectures, so that we may
correlate islet architecture with islet function in islets from
non-diabetic and T2DM human donors.
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Video S1. Simulation of high glucose in human islet model
M1. Simulation of model of first islet architecture in high
glucose. This islet has 150 α-, 319 β- and 122 δ-cells.

Video S2. Simulation of high glucose in human islet model
M2. Simulation of model of second islet architecture in
high glucose. This islet has 430 α-, 1468 β- and 366
δ-cells.
Video S3. Simulation of high glucose in human Islet model
M3. Simulation of model of third islet architecture in high
glucose. This islet has 1093 α-, 1544 β- and 619 δ-cells.
Video S4. Simulation of high glucose in human islet model
M4. Simulation of model of fourth islet architecture in
high glucose. This islet has 970 α-, 2256 β- and 351
δ-cells.
Video S5. Simulation of high glucose in human islet
model M5. Simulation of model of fifth islet architecture
in high glucose. This islet has 650 α-, 1174 β- and 275
δ-cells.
Video S6. Simulation of high glucose in human islet model
M6. Simulation of model of sixth islet architecture in high
glucose. This islet has 838 α-, 1362 β- and 661 δ-cells.
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