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Simple Summary: Obesity has become a global pandemic involving an increase in the amount and
size of fat cells in the body. Obesity is highly associated with insulin resistance and type 2 diabetes.
Several medicinal plants have been reported to be useful in the prevention of obesity. Forskolin, a
bioactive compound of Coleus forskohlii, can promote lipolysis in mature adipocytes. However, the
effect of forskolin on body weight, glucose metabolism and adipocyte size of diet-induced obesity
is still rarely investigated. In this study, the effects of forskolin on the high-fat diet-induced obese
model were evaluated. Results showed that forskolin administration improves glucose metabolism
and reduces fat cell diameter in the high-fat diet-fed mice. Forskolin also suppresses adipocyte
differentiation of murine mesenchymal stem cells.

Abstract: The purpose of this study was to investigate the effects of forskolin on body weight, glucose
metabolism and fat cell diameter in high-fat diet-induced obese mice. Four-week-old male mice
(C57BL/6) were randomly assigned to 1 of 3 treatment groups: a high-fat diet plus 5% dimethyl
sulfoxide (vehicle), high-fat diet plus 2 mg/kg of forskolin (dissolved in 5% dimethyl sulfoxide) and
high-fat diet plus 4 mg/kg of forskolin (dissolved in 5% dimethyl sulfoxide). Forskolin or dimethyl
sulfoxide was administered intraperitoneally every two days. The results indicated that no significant
difference was observed in the body weight, feed intake and serum lipid parameters among groups
at 20 weeks of age. The blood glucose levels were significantly reduced in the groups treated with
2 mg/kg of forskolin before glucose tolerance test. Forskolin administration linearly decreased blood
glucose levels of high-fat diet-fed mice at 90 min and total area under curve (AUC) after insulin
tolerance test. The subcutaneous adipocyte diameter was significantly reduced in the groups treated
with 2 mg/kg of forskolin. Forskolin administration linearly reduced the gonadal adipocyte diameter
of high-fat diet-fed mice. Forskolin significantly reduced the differentiation of murine mesenchymal
stem cells into adipocytes and this was accompanied by a decrease in intracellular triglyceride
content and an increase in glycerol concentration in the culture medium. The subcutaneous adipocyte
diameter, gonadal adipocyte diameter and total AUC of insulin tolerance test were moderately
negatively correlated with the concentration of forskolin in the high-fat diet-induced obese model.
These results demonstrate that forskolin can regulate glucose metabolism and reduce fat cell diameter
of high-fat diet-fed mice and inhibit the adipocyte differentiation of murine mesenchymal stem cells.

Keywords: adipocyte; forskolin; glucose; mesenchymal stem cell; mouse; obesity

1. Introduction

Obesity has attained the status of a global pandemic with a huge impact on human
health [1]. Obesity or overweight is the leading risk factor for type 2 diabetes. Alternative
strategies to reduce weight gain and prevent obesity are an urgent unmet need. The
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reduction in fat cell size can normalize cellular function and improve health [2]. Several
anti-obesity agents, such as medicinal plants and their extracts, have been reported to
have beneficial effects for the prevention of obesity [3]. These natural compounds are
able to reduce fat accumulation either by attenuating adipocyte differentiation, enhancing
lipolysis, or reducing lipogenesis pathways [4].

Coleus forskohlii is a folk medicine and has been used for treating heart diseases, respi-
ratory disorders, constipation and intestinal disorder [5]. Forskolin, a bioactive compound
of Coleus forskohlii, enhances adenylate cyclase enzyme activity, thereby increasing intracel-
lular cyclic adenosine monophosphate (cAMP) concentration [6]. Increased intracellular
cAMP levels elevate hormone-sensitive lipase enzyme activity by the activation of protein
kinase A, resulting in promoting lipolysis in mature adipocytes [7–9]. In addition to lipoly-
sis, cAMP also involves the regulation of adipocyte differentiation. It has been reported
that forskolin promotes the differentiation of murine primary adipocyte precursor and pre-
adipocyte cell line [10,11]. However, forskolin treatment is unable to trigger the adipocyte
differentiation of swine stromal-vascular fraction [12]. Thus, the effect of forskolin on the
regulation of adipocyte differentiation still remains yet to be elucidated.

It has been demonstrated that Coleus forskohlii extract supplementation does not
alter the body weight of mice without affecting feed intake under a normal-fat diet feed-
ing [13,14]. A significant reduction of visceral fat weight is observed in the Coleus forskohlii
extract-fed mice [13]. The increased blood triglyceride levels and fatty liver are found in
mice after a high dosage of Coleus forskohlii extract supplementation under a normal-fat
diet feeding [14]. However, it has been demonstrated that Coleus forskohlii extract sup-
plementation does not alter the body weight of mice under high-fat feeding conditions
unless given in high doses which also decrease food intake [13,15]. Subcutaneous and
visceral adipocyte size is an important indicator of insulin resistance and highly correlates
with glucose metabolism [16,17]. Adipocyte hypertrophy in adipose tissue impairs glu-
cose metabolism and insulin sensitivity in humans [2]. Previous studies mainly focus on
the effects of Coleus forskohlii extract or forskolin on body weight and fat weight under
normal-fat or high-fat diet feeding [13–15]. It is particularly important to demonstrate
whether forskolin can reduce the fat cell diameter and normalize glucose metabolism in
the diet-induced obesity model.

Therefore, this study aimed to investigate the effects of forskolin on glucose and
insulin tolerance as well as adipocyte diameter in diet-induced obesity of mice. The results
provide a theoretical basis for the use of forskolin as a functional food for the prevention of
obesity and type 2 diabetes.

2. Materials and Methods

The National Ilan University Institutional Animal Care and Use Committee (IACUC
protocol 105-48) approved all animal procedures, which adhered to the ethical and humane
use of animals for research.

2.1. Animals and Diets

Male C57BL/6 mice at 4 weeks of age were randomly allocated to three different
treatment groups in a completely randomized design (n = 8–11 per group): (1) high-fat diet
group (60% calorie from fat, TestDiet 58Y1), (2) high-fat diet group plus intraperitoneal
administration of forskolin (2 mg/kg) and (3) high-fat diet group plus intraperitoneal
administration of forskolin (4 mg/kg). All mice were housed at 23 ◦C and light/dark cycles
of 12/12 h. Mice were fed ad libitum with a high-fat diet. Forskolin was purchased from
Sigma-Aldrich (F6886, St. Louis, MO, USA). Forskolin (dissolved in 5% dimethyl sulfoxide)
was administered intraperitoneally at a concentration of 2 or 4 mg/kg every two days. For
the high-fat diet alone group, dimethyl sulfoxide was administered intraperitoneally at a
concentration of 5% every two days. The experimental period was 16 weeks.
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2.2. Histology

Three mice per group were chosen at the end of the experiment (20 weeks old) based
on their average weight being within 5% of their average body weight and sacrificed by
cervical dislocation with anesthesia (tribromoethanol, 0.4 mg/g of body weight, intraperi-
toneal injection; Sigma, St. Louis, MO, USA). White adipose tissue was collected and
fixed in 4% paraformaldehyde and embedded in paraffin. Sections were cut and stained
with hematoxylin/eosin staining. For adipocyte size measurements, 200 consecutive fat
cells of the subcutaneous and gonadal fat pad from each mouse were selected for the area
measurement using Image J software (version 1.44, http://rsbwed.nih.gov/ij/ (accessed
on 30 December 2020)).

2.3. Glucose Tolerance Test and Insulin Tolerance Test

For glucose tolerance test, eight mice per group (20 weeks old) were fasted overnight,
blood samples were collected from tail vein and glucose concentrations were measured
at 0 min and 30 min and 90 min after intraperitoneal injection of glucose (1 g/kg body
weight). For insulin tolerance test, eight mice per group (20 weeks old) were fasted for 6 h,
blood samples were collected from tail vein and glucose concentrations were measured
at 0 min and 30 min and 90 min after intraperitoneal injection of bovine insulin (I0516,
Sigma-Aldrich, St. Louis, MO, USA) at 0.75 units/kg body weight. Blood glucose was
measured using a Accu-Chek glucometer (Roche Diagnostics, Mannheim, Germany).

2.4. Cell Culture and Mesenchymal Stem Cell Differentiation

C3H10T1/2 mesenchymal stem cells (CCL-226, American Type Culture Collection,
Manassas, USA) were cultured in Dulbecco’s modified Eagle medium (DMEM, Sigma-
Aldrich, St. Louis, MO, USA) with 10% fetal bovine serum (FBS, Thermo Fisher Scientific,
Waltham, MA, USA) at 37 ◦C in an atmosphere of 5% CO2. To determine the optimal con-
centration of forskolin for using in this study, dose-dependent cytotoxicity was examined
with different concentrations of forskolin (0–60 µM). Briefly, 1 × 103 cells were seeded
into each well of 96-well microtiter plates and treated with the indicated concentrations
of forskolin. After 48 h of treatment, the percentage of viable cells was quantified by
measuring the absorbance at 490 nm using a microtiter culture plate reader (MTS Assay
Kit, Abcam, Cambridge, MA, USA). For terminal adipocyte differentiation, confluent
C3H10T1/2 mesenchymal stem cells were cultured in the induction medium (DMEM con-
taining 10% FBS, 1 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine and 5 µg/mL
insulin) with different concentrations of forskolin for 2 days. The cells were then cul-
tured in growth medium (DMEM containing 10% FBS) and different concentrations of
forskolin (0–10 µM) for 6 days, with a medium change every 2 days. The dexamethasone,
3-isobutyl-1-methylxanthine and insulin were purchased from Sigma-Aldrich (St. Louis,
MO, USA). At the end of the experiment, the cells were stained in the culture plates with
Oil-Red O reagent (Sigma-Aldrich, St. Louis, MO, USA) to measure the degree of lipid
accumulation. The culture medium was harvested for glycerol measurement. Experiments
were performed with three independent experiments (performed at least in duplicate on
different cell passages and different dates, each consists of three replicates per treatment).

2.5. Glycerol, Free Fatty Acid and Triglyceride Level Analysis

At the end of the experiment (20 weeks old), blood samples from eight mice per group
were collected from the facial vein and separated after centrifugation at 1500 g for 10 min.
The concentrations of glycerol, free fatty acid and triglyceride in the serum were measured
using commercial assay kits (10011725, Cayman Chemical, Ann Arbor, MI, USA; K612-100,
Biovision, Milpitas, CA, USA; K622-100, Biovision, Milpitas, CA, USA) according to the
manufacturers’ instructions. The concentration of glycerol in the culture medium was
measured using commercial assay kits (10011725, Cayman Chemical, Ann Arbor, MI, USA)
according to the manufacturers’ instructions.

http://rsbwed.nih.gov/ij/
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2.6. Quantitative Reverse Transcription-PCR

Total RNA was reverse transcribed into complementary DNA using a Transcriptor
Reverse Transcriptase kit (Roche Applied Science, Indianapolis, IN, USA). Quantitative
reverse transcription-PCR was performed using a MiniopticonTM Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) and KAPA SYBR FAST qPCR Kit (Kapa Biosystems,
Inc., Boston, MA, USA). The internal control gene was 18S rRNA. The primers are as follows:
glucose transporter 4 (glut4) forward: 5′-ACATACCTGACAGGGCAAGG′-3′ and reverse:
5′-CGCCCTTAGTTGGTCAGAAG′-3′; 18S rRNA (18S) forward: 5′-ACGATGCCGACT
GGCGATGC-3′ and reverse: 5′- TCCTGGTGGTGCCCTTCCGT-3′. mRNA expression of
each gene was normalized to the 18S gene in the same sample. Threshold cycle (Ct) values
were obtained and the relative gene expression was calculated using the formula 2−∆∆Ct.

2.7. Statistical Analysis

All data were analyzed by one-way ANOVA through the general linear model pro-
cedure of SAS (SAS Institute, Cary, USA). Means were compared using Tukey honestly
significant difference test at a significance level of p ≤ 0.05. The linear-quadratic (LQ)
dose-effect was used to investigate the dose response and biologically effective dose of
forskolin in mice. The relationship between forskolin concentration, body weight, serum
lipid parameters (triglyceride, free fatty acid and glycerol), adipocyte diameter (subcu-
taneous and gonadal fat) and total area under curve (glucose tolerance test and insulin
tolerance test) in the same mice of different groups was analyzed by Pearson’s correlation
coefficient (r).

3. Results
3.1. Effects of Forskolin on Body Weight, Serum Lipids and Glucose Metabolism of High-Fat
Diet-Fed Mice

The effect of forskolin on body weight of mice under diet-induced obesity is shown in
Figure 1a. The results revealed that no significant difference in body weight was found
during the experimental period among the groups. A trend of decreased body weight
was observed with the administration of forskolin at 8 weeks of age (p = 0.067, one-way
ANOVA). A linear reduction in body weight of high-fat diet-fed mice was found as the
inclusion level of forskolin increased at 8 and 18 weeks of age (p ≤ 0.05 and p = 0.096). No
significant difference in feed intake was found among three groups (Figure 1b). Forskolin
administration did not cause a significant effect on serum lipid parameters of high-fat diet-
fed mice (Table 1). A quadratic trend in serum free fatty acid levels of high-fat diet-fed mice
was observed as the inclusion level of forskolin increased (p = 0.094). The effect of forskolin
on glucose metabolism of diet-induced obesity in mice is shown in Figure 2. In the glucose
tolerance test, the blood glucose levels were significantly reduced in the groups treated
with 2 mg/kg of forskolin before the administration of glucose (p < 0.05, one-way ANOVA)
(Figure 2a). No significant difference in glucose tolerance test was found among the groups
(Figure 2a). A linear and quadratic trend in blood glucose levels of high-fat diet-fed mice
was observed as the inclusion level of forskolin increased before glucose administration
(p = 0.054 and p = 0.057) (Figure 2a). There were no significant differences in blood glucose
levels and total area under curve (AUC) among three groups after the administration
of glucose (Figure 2b). In the insulin tolerance test, a trend of decreased blood glucose
levels of high-fat diet-fed mice was observed with the administration of forskolin at 0 and
90 min after intraperitoneal injection of insulin (p = 0.053 and p = 0.090) (Figure 2c). No
significant difference in insulin tolerance test was found among the groups (Figure 2c). A
linear trend in blood glucose levels of high-fat diet-fed mice was observed as the inclusion
level of forskolin increased before intraperitoneal injection of insulin (p = 0.052) (Figure 2c).
Forskolin administration linearly decreased blood glucose levels of high-fat diet-fed mice at
90 min after intraperitoneal injection of insulin (p ≤ 0.05) (Figure 2c). A linear response in
the total AUC of high-fat diet-fed mice was also observed as the inclusion level of forskolin
increased after insulin tolerance test (p ≤ 0.05) (Figure 2d).
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Table 1. Effect of forskolin on serum lipid profile of diet-induced obesity in mice. 

Item 
Forskolin (mg/kg) 
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p Value 

0 2 4 Linear Quadratic 
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Figure 1. Effects of forskolin on body weight and feed intake of diet-induced obesity in mice. (a) Body weight of high-fat
diet-fed mice in response to forskolin administration. Data are average body weight (g/mouse) of 8–11 mice per treatment.
a p value = 0.067 by one-way ANOVA. b p value = 0.049 by linear contrasts. c p value = 0.096 by linear contrasts. (b) Average
feed intake of high-fat diet-fed mice from the age of 10 to 16 weeks in response to forskolin administration. Data are average
feed intake (g/mouse/day) of 8–11 mice per treatment.

Table 1. Effect of forskolin on serum lipid profile of diet-induced obesity in mice.

Item
Forskolin (mg/kg)

SEM 2 p Value
p Value

0 2 4 Linear Quadratic

Triglyceride (nmol/µL) 0.06 1 0.04 0.05 0.006 0.372 0.380 0.275
Free fatty acid (nmol/µL) 0.76 0.61 0.87 0.057 0.181 0.454 0.094

Glycerol (nmol/µL) 14.6 12.7 11.8 0.730 0.307 0.126 0.763
1 Data are mean values of 8 mice per treatment; 2 SEM = standard error of mean.

3.2. Effects of Forskolin on Fat Cell Diameter of High-Fat Diet-Fed Mice and Adipocyte
Differentiation of Mesenchymal Stem Cells

The effect of forskolin on fat cell diameter of diet-induced obesity in mice is shown
in Figure 3. The subcutaneous and gonadal adipocyte diameter of forskolin-treated mice
was smaller than those of control mice (Figure 3a). After quantification of fat cell diameter,
the subcutaneous adipocyte diameter was significantly reduced in the group treated with
2 mg/kg of forskolin (p ≤ 0.05) compared with 0 mg/kg of forskolin (Figure 3b). A linear
and quadratic trend in the subcutaneous adipocyte diameter of high-fat diet-fed mice was
observed as the inclusion level of forskolin increased (p = 0.061 and p = 0.053) (Figure 3b).
A trend of decreased gonadal adipocyte diameter of high-fat diet-fed mice was found with
the administration of forskolin (p = 0.058) (Figure 3b). Forskolin administration linearly
reduced the gonadal adipocyte diameter of high-fat diet-fed mice (p ≤ 0.05) (Figure 3b). To
determine whether forskolin can regulate adipocyte differentiation, murine mesenchymal
stem cells were treated with forskolin and were then induced for adipocyte differentia-
tion. The result of cytotoxicity showed that 60 µM of forskolin significantly affected the
proliferation of mesenchymal stem cells (p ≤ 0.05), whereas 10 µM of forskolin did not
impair the proliferation of mesenchymal stem cells (Table 2). Thus, forskolin concentration
below 10 µM was selected for subsequent experiments. After 8-day adipogenic induction,
adipocyte differentiation dose-dependently decreased in forskolin-treated cells as com-
pared with control cells (Figure 4a). The intracellular triglyceride content quantified via Oil
Red O staining was significantly reduced in the groups treated with forskolin (Figure 4b,
p ≤ 0.05). A linear response in the intracellular triglyceride content was observed as the
inclusion level of forskolin increased (Figure 4b, p ≤ 0.05). The glycerol concentration in
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the culture medium was significantly increased in the groups treated with forskolin after
8-day adipogenic induction (Figure 4c, p ≤ 0.05). A quadratic trend in the glycerol concen-
tration in the culture medium was observed as the inclusion level of forskolin increased
(Figure 4c, p = 0.093). The expression of glut4 gene decreased in 10 µM forskolin-treated
cells compared with control cells (p ≤ 0.05) (Figure 4d). A linear reduction in glut4 mRNA
levels was also observed as the inclusion level of forskolin increased (p ≤ 0.05) (Figure 4d).
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Figure 2. Effect of forskolin on glucose metabolism of high-fat diet-induced obesity in mice. (a) Blood glucose levels of
high-fat diet-fed mice in response to glucose tolerance test. Data are average blood glucose levels of 8 mice per treatment.
a p value = 0.025 by one-way ANOVA. b p value = 0.054 by linear contrasts. c p value = 0.057 by quadratic contrasts.
(b) Area under curve of high-fat diet-fed mice in response to glucose tolerance test. Data are average blood glucose levels
of 8 mice per treatment. The bars indicate mean ± SD. (c) Blood glucose levels of high-fat diet-fed mice in response to
insulin tolerance test. Data are average blood glucose levels of 8 mice per treatment. a p value = 0.053 by one-way ANOVA.
b p value = 0.052 by linear contrasts. c p value = 0.090 by one-way ANOVA. d p value = 0.028 by linear contrasts. (d) Area
under curve of high-fat diet-fed mice in response to insulin tolerance test. Data are average blood glucose levels of 8 mice
per treatment. The bars indicate mean ± SD. a p value = 0.050 by linear contrasts.
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Figure 3. Effect of forskolin on adipocytes of high-fat diet-induced obesity in mice. (a) Hematoxylin and eosin staining
of the subcutaneous and gonadal fat tissue of mice fed on high-fat diet in response to forskolin treatment. Three mice
samples per group (n = 3) were stained and one representative result is shown. Bars indicate a length of 100 µm. (b) Effect
of forskolin on the fat cell diameter of diet-induced obesity in mice. Subcutaneous and gonadal adipose section from three
mice samples per group (n = 3) were measured. The bars indicate mean ± SD. a,b Means with no common superscript are
significantly different (p ≤ 0.05).

Table 2. Dose-dependent cytotoxicity of forskolin on C3H10T1/2 mesenchymal stem cells.

Forskolin (µM) Relative Cell Number

0 1.16 a,1

10 0.89 ab

20 0.87 ab

30 0.91 ab

40 0.88 ab

50 0.85 ab

60 0.72 b

SEM 2 0.038
p value 0.019

1 Data are mean values of 3 replicates per treatment; 2 SEM = standard error of mean; a,b Means of a column with
no common superscript are significantly different (p ≤ 0.05).

3.3. Association between Forskolin Concentration, Body Weight, Serum Lipid Parameters, Fat Cell
Diameter and Total AUC of Glucose and Insulin Tolerance Test

The results of correlation analysis between forskolin concentration, body weight,
serum lipid parameters, fat cell diameter and total AUC in the high-fat diet-fed mice of
different groups are shown in Figure 5a. The body weight (r = −0.25), serum triglyceride
levels (r = −0.22), serum glycerol levels (r = −0.37) and total AUC of glucose tolerance test
(r = −0.27) were slightly negatively correlated with the concentration of forskolin. The
subcutaneous adipocyte diameter (r = −0.64), gonadal adipocyte diameter (r = −0.67) and
total AUC of insulin tolerance test (r = −0.4) were moderately negatively associated with
the concentration of forskolin. However, the serum free fatty acid levels (r = 0.16) were
slightly positively correlated with the concentration of forskolin. The results of correlation
analysis between the fat cell diameter and total AUC in the high-fat diet-fed mice of
different groups are shown in Figure 5b. The subcutaneous adipocyte diameter (r = 0.6)
was moderately positively associated with the total AUC of glucose tolerance test. The
gonadal adipocyte diameter (r = 0.81) was strongly positively associated with the total
AUC of glucose tolerance test. The subcutaneous adipocyte diameter (r = 0.34) was slightly
positively associated with the total AUC of insulin tolerance test. The gonadal adipocyte
diameter (r = 0.49) was moderately positively associated with the total AUC of insulin
tolerance test.
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Figure 5. Pearson’s correlation analysis. (a) The correlation coefficient between the concentration
of forskolin with body weight, serum lipid parameters (triglyceride, free fatty acid and glycerol),
adipocyte size (subcutaneous and gonadal fat), or total AUC (glucose tolerance test and insulin
tolerance test) in high-fat diet-induced mice. (b) The correlation coefficient between adipocyte size
(subcutaneous and gonadal fat) and total AUC (glucose tolerance test and insulin tolerance test) in
high-fat diet-induced mice. Positive correlations are displayed in blue and negative correlations are
in red color. Circle sizes are proportional to the correlation coefficients.
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4. Discussion

In this study, we demonstrated for the first time that forskolin administration de-
creased blood glucose levels of high-fat diet-fed mice at 90 min and total AUC after
intraperitoneal injection of insulin. The subcutaneous and gonadal adipocyte diameter
of high-fat diet-fed mice was reduced in response to forskolin administration. Forskolin
attenuated the adipocyte differentiation of murine mesenchymal stem cells and this was
accompanied by a decrease in intracellular triglyceride levels and an increase in glycerol
concentration in the culture medium. The concentration of forskolin was moderately
negatively associated with subcutaneous adipocyte diameter, gonadal adipocyte diameter
and total AUC of insulin tolerance test.

In humans, it has been reported that oral ingestion of forskolin causes a significant
decrease in fat percentage and fat mass in overweight and obese men [18]. In another
study, the body weight and fat mass in mildly overweight women are not improved
after Coleus forskohlii extract supplementation [19]. Coleus forskohlii extract or forskolin
supplementation does not alter the body weight of mice under a normal-fat diet, whereas
the visceral fat weight of Coleus forskohlii extract or forskolin-fed mice is reduced [13,14].
Coleus forskohlii extract supplementation does not affect the serum cholesterol, phospholipid
and free fatty acid levels in normal-fat diet-fed mice, except blood triglyceride levels [14].
In contrast, the serum free fatty acid levels are increased in high-fat diet-fed mice after
forskolin administration [15]. In the present study, we found that forskolin administration
did not cause a significant effect on serum lipid parameters of high-fat diet-fed mice. It
has been demonstrated that orogastric administration of forskolin extract in combination
with high-fat diet feeding does not alter the body weight of mice [15]. Similarly, the body
weight of high-fat diet-fed mice was not affected after forskolin administration in the
present study. However, we demonstrated that subcutaneous and gonadal adipocyte
diameter of high-fat diet-fed mice was reduced in response to forskolin administration. The
regulation of adipocyte differentiation and lipolysis in differentiated adipocytes can control
the adipocyte size [2]. It has been demonstrated that forskolin is able to promote lipolysis
in mature adipocytes by the activation of hormone-sensitive lipase enzyme activity [7–9].
Here, we further demonstrated forskolin could attenuate the adipocyte differentiation of
murine mesenchymal stem cells. Thus, forskolin administration may regulate adipocyte
differentiation and lipolysis in the adipose tissue of high-fat diet-fed mice, resulting in
the reduction of fat cell diameter. However, the precise mechanisms of lipid metabolism
mediated by forskolin in the adipose tissue in response to high-fat diet feeding should be
investigated in future studies. In addition, whether forskolin administration can reshape
the body composition (fat mass and lean mass) and normalize adipocyte hypertrophy-
associated pathways (insulin resistance and chronic inflammation) is still needed to be
elucidated. Taken together, these findings demonstrate that Coleus forskohlii extract and
forskolin supplementation can reduce the fat mass and adipocyte size in human and
rodent models.

Overweight and obesity are risk factors for developing insulin resistance and type
2 diabetes [20]. Hepatic steatosis is highly associated with insulin resistance [21]. It has
been reported that Coleus forskohlii extract supplementation induces hepatic steatosis in
normal-fat diet-fed mice [13,14,22]. Whether Coleus forskohlii extract-induced fatty liver
impairs glucose metabolism in mice is still unclear. In contrast, forskolin administration
does not cause hepatotoxicity in mice [13]. In the present study, the fasting blood glu-
cose levels were reduced in the group treated with 2 mg/kg of forskolin. In addition,
forskolin administration also decreased blood glucose levels of high-fat diet-fed mice after
intraperitoneal injection of insulin, indicating that forskolin could improve insulin sensitiv-
ity. Previous studies have demonstrated that insulin sensitivity is inversely correlated with
subcutaneous and visceral adipocyte size in humans [2,16], indicating that reduction of fat
cell diameter by inhibiting adipocyte differentiation or enhancing lipolysis can mitigate
insulin sensitivity. Here, the subcutaneous and gonadal adipocyte diameter of high-fat
diet-fed mice in combination with forskolin administration was positively correlated with
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total AUC. The reduced subcutaneous and visceral adipocyte size may normalize the
insulin signaling transduction of adipocytes and these effects are mainly through forskolin-
mediated lipolysis in hypertrophic adipocytes. In addition, forskolin treatment reduces
adipocyte differentiation of murine mesenchymal stem cells. Thus, inhibition of adipocyte
differentiation and promotion of lipolysis by forskolin administration in adipose tissue
might contribute to the reduction of fat cell size, thereby improving glucose metabolism. In
addition, to adipose tissue, whether forskolin also involves in the regulation of pancreatic β
cell function or insulin secretion still needs to be verified in the future. Overall, the benefits
of forskolin on weight loss and reduced adipose cell size through inhibiting adipocyte
differentiation of mesenchymal stem cells or promoting lipolysis in mature adipocytes may
normalize insulin sensitivity under high-fat diet feeding, thereby exhibiting a preventive
effect on type 2 diabetes.

The effects of forskolin on lipolysis by increased cellular cAMP concentration and
activation of hormone-sensitive lipase enzyme activity in differentiated adipocytes have
been well-studied [7–9]. The elevation of cellular cAMP concentration also positively regu-
lates the early program of differentiation [23,24]. It has been demonstrated that forskolin
promotes the differentiation of murine primary adipocyte precursor and pre-adipocyte
cell line [10,11]. Here, we demonstrated that forskolin significantly reduced the differen-
tiation of murine mesenchymal stem cells into adipocytes. The previous study indicates
that a strong and sustained increase in cAMP levels can inhibit the process of adipogene-
sis [25]. Since the mesenchymal stem cells were simultaneously treated with forskolin and
3-isobutyl-1-methylxanthine (a cAMP activator) during early adipocyte differentiation in
the present study, the intracellular cAMP concentration may reach the inhibitory concentra-
tion of adipogenesis upon forskolin and 3-isobutyl-1-methylxanthine treatment. The actual
intracellular cAMP concentration during adipocyte differentiation of murine mesenchymal
stem cells in response to forskolin treatment still needs to be measured. Taken together,
these findings indicate that forskolin is able to regulate murine adipocyte differentiation
and these effects may depend on the intracellular cAMP concentration during the early
stages of adipocyte differentiation.

Regarding the effective dose of forskolin in mice, only one study reported that
forskolin does not alter the body weight of mice under a high-fat diet feeding [15]. Similarly,
we also found that forskolin did not change the body weight of mice under a high-fat
diet feeding even the forskolin concentration was increased (4 mg/kg of body weight) as
compared with a previous study (0.5 mg/kg of body weight) [15]. Under normal-fat diet
feeding, forskolin with a concentration range from 0.005 to 0.5 mg/g of feed does not has
an impact on body weight of mice [13,14,22]. When the dose is increased to 5 mg/g of
feed, the body weight was significantly reduced [13,22]. Based on these findings, 5 mg
forskolin/g of feed is high enough to reduce body weight in the mouse model. However, it
is unclear whether the dosage is still able to reduce body weight in high-fat diet-induced
obese model.

Long-term excessive energy intake disrupts the energy metabolism and adipocytes
are induced to become hypertrophic and insulin resistant. Here, we found that forskolin
administration decreased the size of hypertrophic adipocytes in adipose tissues without
altering the body weight and feed intake, implying energy partitioning among organs
was regulated in forskolin-treated high-fat diet-fed mice. Although it has been demon-
strated that Coleus forskohlii extract or forskolin can reduce the fat mass in obese humans
and mice [13,14,18]. It is particularly important to investigate the effect of forskolin on
energy partitioning among organs, such as adipose tissue and skeletal muscle in the future.
Adipocyte size plays an important role in energy and glucose metabolism and can be
regulated by adipocyte differentiation, lipolysis and lipogenesis. The lipolytic potential of
forskolin has been widely demonstrated in the past years in the in vitro models. Here, we
demonstrated that forskolin exerts an anti-adipogenic effect on adipocyte differentiation of
murine mesenchymal stem cells. Although the effect of forskolin on lipogenesis pathways
has not been confirmed, we may reasonably hypothesize that forskolin potentially reduces
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fat cell size of the high-fat diet-fed mice by increasing lipolysis, attenuating adipocyte dif-
ferentiation, or both. Since glucose metabolism is improved after forskolin administration
in the present study, many questions are left unanswered. For instance, whether the insulin
signaling pathway and inflammatory response in adipose tissue are improved by forskolin
still needs to be elucidated.

5. Conclusions

Forskolin administration improves glucose metabolism and reduces fat cell diameter
in the high-fat diet-fed mice. Forskolin negatively regulates adipocyte differentiation of
murine mesenchymal stem cells. Further research should investigate whether forskolin
stimulates interorgan crosstalk between the adipose tissue, liver and skeletal muscle to
contribute to lipid and glucose metabolism.
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