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Abstract: Mastering the systematic analysis of tumor tissues on a large scale has long been 

a technical challenge for proteomics. In 2001, reverse phase protein arrays (RPPA) were 

added to the repertoire of existing immunoassays, which, for the first time, allowed  

a profiling of minute amounts of tumor lysates even after microdissection. A characteristic 

feature of RPPA is its outstanding sample capacity permitting the analysis of thousands of 

samples in parallel as a routine task. Until today, the RPPA approach has matured to  

a robust and highly sensitive high-throughput platform, which is ideally suited for 

biomarker discovery. Concomitant with technical advancements, new bioinformatic tools 

were developed for data normalization and data analysis as outlined in detail in this review. 

Furthermore, biomarker signatures obtained by different RPPA screens were compared 

with another or with that obtained by other proteomic formats, if possible. Options for 

overcoming the downside of RPPA, which is the need to steadily validate new antibody 

batches, will be discussed. Finally, a debate on using RPPA to advance personalized 

medicine will conclude this article. 

Keywords: cancer; reverse phase protein array; reverse phase protein arrays (RPPA); 

signaling pathways; immunoassay; antibody 

 

OPEN ACCESS



Microarrays 2015, 4 521 

 

 

1. Analytical Needs of Personalized Oncology 

With the development of personalized therapeutics for oncology, the systematic and targeted 

analysis of selected proteins in tumor tissues is currently receiving increasing interest. As a matter of 

fact, the majority of proteins that can be by targeted by therapeutics are cell surface receptors or 

proteins involved in cellular signaling. Yet, the number of clinically approved biomarkers is much 

lower than the number of proteins that could potentially be inhibited with small molecule drugs and 

therapeutic antibodies. Apart from prime examples such as therapeutic antibodies targeting the HER2 

receptor in breast cancer or CD20 in malignant lymphoma, the majority of cancer types are still in 

need of suitable biomarkers that allow patient-tailored treatment. Hence, a systematic characterization 

of those membrane receptors and signaling proteins that can be targeted with the repertoire of currently 

available targeted drugs would be required in the first place to advance the personalized treatment of 

cancer patients. Therefore, immunoassay-based technologies present a promising experimental 

approach since they can quickly deliver quantitative information on the expression of already known 

target proteins. 

Screening clinical tissues for target proteins of potential pharmaceutical interest requires large 

numbers of well-documented clinical samples to yield statistically relevant data. High capacity 

platforms such as reverse phase protein arrays (RPPA), for example, are therefore well suited for this 

purpose. However, targeted proteomics requires first of all profound insights into cellular processes 

underlying cellular transformation and metastasis and a good knowledge of biochemistry. Fundamental 

changes of the cellular proteome occur immediately post-excision, a process described as cold 

ischemia. In fact, clinical tissues are still alive and biochemical processes will still proceed as long as 

enzymes are not inactivated by freezing or other suitable measures [1]. Enzymatic activities can also 

be re-activated during sample-thawing and lysate preparation. With this in mind, suitable measures are 

required to preserve the cellular proteome during all working steps of sample preparation and sample 

handling. Especially, the phosphoproteome is subjected to fast regulation since the turnover rates  

of kinases and phosphatases are high, and protein kinases will particularly benefit from the ample ATP 

reservoir of cancer cells. Several studies aimed for quantifying the turnover of protein composition as 

well as the proteome during cold ischemia. Apparently, 30% of all proteins change within the first half 

hour after surgical excision [2]. However, after 30 min of cold ischemia, about 75% of protein  

and phosphoproteins seem to be stable until 24 h after surgery [3]. Therefore, biochemical processes 

occurring post-excision need to be taken into account as an important pre-analytical factor that will 

influence the resulting sample quality and require standardized procedures regarding tissue handling as 

well as sample preparation to ensure comparable sample quality. Hence, to set-up a bio-bank, clinical 

tissues need to be processed under consistent conditions over many years to exclude artifacts resulting 

from tissue handling and storage. 

2. Use of RPPA for Biomarker Discovery 

The RPPA principle relies on the very simple dot-blot idea of probing for specific proteins in crude 

lysates that were printed as small dots on a solid phase carrier. This simple concept was adapted to 

robotics-based arraying to achieve a higher accuracy to fulfill the requirements of a quantitative 
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analysis [4]. Tumor lysates obtained by microdissection were profiled for the phosphorylation state of 

cancer-relevant signaling proteins by printing each sample as serial dilution onto nitrocellulose coated 

glass slides. This proof-of-principle approach illustrated that AKT signaling is enhanced at the tumor 

invasion front. Technically, this example documented also that immunoassays can be carried out in 

multiplex by using only a single antibody for each target protein [4]. In the following years, this 

straightforward idea was adapted to a highly versatile immunoassay platform, mostly by exploiting 

technical advancements made in robotics, signal detection and by the introduction of elaborated 

bioinformatics approaches that serve the purpose of data normalization and data analysis. 

Today, up to a few thousand individual samples can be analyzed in parallel by RPPA which 

illustrates the utility of this approach for the analysis of signaling networks or for screening of  

e.g., drugs [5] or microRNAs [6]. However, RPPA must not necessarily involve thousands of samples 

as experimentation can also be carried out at a small-scale format. Printing of replicate arrays—for 

example, printing 2, 3, 4 or 16 identical arrays on a single slide—is technically feasible with  

state-of-the-art arrayers and guarantees optimal usage of quite costly nitrocellulose-coated slides.  

Each subarray can be probed with a different primary antibody employing incubation chambers 

tailored towards the use of standard glass slides. That again illustrates the highly versatile character of 

RPPA (Figure 1). 

 

Figure 1. Reverse phase protein arrays (RPPA) experimentation involves (A) printing of 

samples in a neatly organized array format onto, for example, nitrocellulose-coated glass 

slides; (B) Incubation with a highly, target-specific primary antibody to detect  

proteins-of-interest, or a certain phosphorylation sites; (C) Signal detection of the primary 

antibody is commonly performed by fluorescence, chemiluminescence or colorimetric 

methods; (D) Target intensities are quantified after scanning and analyzing signal 

intensities of individual spots; (E) Data processing and quality control can be performed 

with the R-package RPPanalyzer (Table 1), for example. 

Once samples of interest have been arrayed on the desired number of replicate slides in the format 

of choice, individual target proteins are detected with highly specific primary antibodies. As outlined 

previously, antibody validation presents a fundamental prerequisite. Thus, antibody cross-reactivity 

must be kept at a minimum for RPPA [7,8]. To verify antibody specificity, it is also possible to calculate 

a correlation factor between Western blot signals and array-based signals for a particular set of samples. 

However, it must be kept in mind that many proteins are expressed at similar levels in all cell lines  

and, in this instance, a correlation factor is of little use to judge antibody quality. Hence, even excellent 

and highly specific antibodies evaluated this way will yield mediocre correlation factors for the given 
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set of samples. Visualization of primary antibodies captured by their corresponding target proteins on 

the array is carried out using suitable secondary antibodies, similar to Western blot or 

immunohistochemistry (IHC). Depending on high-resolution imaging systems available in the 

laboratory, secondary antibodies can be conjugated with different labels. Suitable are fluorescent dyes, 

for example, and preferentially those carrying near infrared (NIR) fluorescent dyes since most 

nitrocellulose surfaces still show substantial auto fluorescence in the visible range [9,10]. Likewise, 

enzyme-coupled secondary antibodies permit readout via chemiluminescence [11,12] or dye precipitation 

approaches, known from IHC [13,14]. 

In recent years, the highly robust character of NIR fluorescence-based detection has gained 

increasing attention in the field of RPPA. Compelling features of NIR fluorescence are low 

background on nitrocellulose-coated surface and with most biological materials so that a highly 

sensitive detection of target proteins is possible over several orders of magnitude. A restricted 

sensitivity in NIR detection was observed when working with highly vascularized clinical materials. 

However, in this instance, this obstacle can be overcome by macro- or microdissection. As an 

additional advantage, and in particular, outcompeting dye precipitation approaches, slides detected 

with NIR fluorescence show a very smooth background devoid of smears or other staining artifacts. 

For this reason, signal analysis does not require a spatial correction, which simplifies the data analysis 

procedure. In addition, NIR detection is technically highly robust and compatible with many different 

blocking buffer components and comprises only a single working step. As the only caveat, quite costly 

high-resolution NIR-laser based scanning systems are required for signal visualization. As a low-cost 

alternative, RPPA slides can also be read using a black/white scanning system. In this instance, signal 

detection must be carried out using dye precipitation kits [14,15]. Chemiluminescence signals can be 

monitored using standard X-ray film or CCD-camera based scanning systems, which are available as 

standard equipment in most laboratories. A downside of chemiluminescence is the requirement of 

accurate planning of slide exposure times since the emitted light fades away within a relatively short 

time, a process that also lowers the detection limit. 

A few words should be said on handling slides during the detection process. A major demand is on 

avoiding drying of the relatively small nitrocellulose surface area while simultaneously aiming at  

a thorough removal of liquid remnants frequently restrained in the corners of the small incubation 

chamber. However, in routine settings, inter-array CV (coefficient of variation) values in a range <5% 

can be obtained, even for a manual slide detection approach [15]. In case staining artifacts such as 

smears or scratches are observed, slides should be excluded from the downstream data analysis 

procedure and detection should be repeated with a new slide. Freshly printed slides can be stored by 

freezing (−20 °C) and little deterioration in terms of signal quality is observed during the first two 

years of storage. Thus, printing a large number of slides is recommended for large projects since RPPA 

slides can be used as resource to preserve clinical samples and to validate a new working hypothesis at 

later time points in this way. Most RPPA groups control the quality of the printing process, especially 

when printing large slide numbers comprising tens or hundreds of identical slides, by staining few 

additional slides, e.g., every 10th slide of a printing run, with a total protein stain such as colloidal 

gold, Sypro Ruby or FAST Green FCF [15]. 
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Table 1. Non-commercial software tools for RPPA data processing/analysis. 

Tool Implemented Quantification Methods Implemented Normalization Methods Accessibility Comments References 

Supercurve 3 parameter logistic “SuperCurve”  
model, non-parametric model of  
Hu et al. [16] 

variable slope normalization of  
Neeley et al. [17], surface adjustment 
using positive control spots of  
Neeley et al. [18] 

[19], OOMPA R 
repository 

classifier for quality 
control of RPPA of  
Ju et al. [20] 

- 

Normacurve “SuperCurve” extension model: Non-parametric model of Hu et al. [16] with 
additive extension of sample and spatial effects 

R package [21] no package 
documentation 
available 

[22] 

Rppanalyzer linear model, serial dilution curve of 
“Zhang et al. [23] 

normalization with total protein dye, 
housekeeping protein normalization, 
median normalization, protein 
quantification assays 

R package  
(CRAN, R-Forge) 

wrapper function to 
“SuperCurve”  
model available 

[24,25] 

Rppapipe - - web-based platform, 
R package 
(Bioconductor) 

tool for analysis of  
pre-quantified and 
normalized datasets 

[26] 

Reverse Phase 
Protein 
Microarray 
Analysis Suite 

- normalization by a single normalizer  
or the geometric mean of several selected 
normalizers 

VBA Excel macro registration necessary [27] 

Miracle 3 parameter logistic “SuperCurve”  
model, logistic model of Tabus et al. [28], 
serial dilution curve of Zhang et al. [23]  
non-parametric model of Hu et al. [16] 

median loading, variable slope 
normalization of Neeley et al. [17], 
housekeeping protein normalization 

web application, R 
package “Rmiracle” 
(GitHub) 

significance of 
relative sample 
differences by 
Dunnett’s test [29] 

[30] 
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After signal detection has been completed, numeric values have to be assigned to all spots on all 

slides. This can easily be achieved by relying on standard scanner software or software tailored 

towards the analysis of array images. Most software approaches developed for RPPA data 

normalization and data analysis incorporate also additional experimental information and handle easily 

the integration of sample-specific information, e.g., clinical data or time points, as well as information 

on inhibitors in case RPPA is used for the analysis of biological experimentation. 

3. Points to Consider before Sample Printing 

3.1. Experimental Design 

Successful biomarker discovery requires a careful reflection of all aspects that might play a role 

during data analysis. Key points comprise the experimental design that was chosen to approach the 

clinical question at hand. Thus, a definition of quality control (QC) measures and control samples 

meaningful for data analysis is required to analyze RPPA data. Using the same types of controls is also 

necessary to compare RPPA data across different RPPA platforms. 

As RPPA enables a relative quantification of proteins in large sample sets, experimental effects that 

might take influence on raw data must be taken into account such as the dynamic range of measurements 

or spatial effects that might result from staining artifacts of the signal detection approach. In addition, 

sample loading has to match the signal detection range. To compensate experimental noise, for example, 

normalization approaches were developed which require additionally printed spots, such as sample 

dilution series or so-called loading control spots to account for uneven staining. All normalization 

methods require an array design that comprises printing of control samples and technical replicates to 

gain statistically relevant results. Apart from statistical aspects, the information inherent to replicate 

spots serves several other functions that become important during data analysis: on the one hand,  

it presents the basis to apply certain normalization methods, on the other hand, it also facilitates data 

comparability with already existing RPPA data sets, provided that the same controls were used. 

For RPPA, two fundamentally different approaches exist. The first one is based on printing each 

sample as serial dilution, thus simultaneously providing a sufficient number of data points for downstream 

data analysis. Samples can also be printed in a single concentration which may be the approach of 

choice when the sample volume is too limited to allow for the preparation of serial dilutions, for 

example when working with scarce patient material. In this instance, it is highly important to choose  

a method for signal detection with a low experimental noise since this negatively impacts on data 

quality. However, co-printing serial dilutions of meaningful controls is also required in case samples 

are supposed to be printed in a single concentration to calibrate the signals obtained by the actual 

samples as realized in the second approach for RPPA. In this instance, samples are printed as  

three technical replicate spots to balance statistical power and to guarantee optimal spatial usage [22,28]. 

Relative protein quantification approaches, as commonly employed in RPPA, can also benefit from not 

simply aggregating sample replicates but using the information of individual replicate spots as measure 

of within-sample variability, as realized by the non-parametric estimation of protein expression levels 

by Li and coworkers as the Reno-approach [31]. 
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3.2. Protein Quantification 

Two principally different mathematical approaches are employed to infer numeric values that 

reflect the expression level of proteins assessed by RPPA: parametric and non-parametric models 

(Figure 2). 

 

Figure 2. Parametric and non-parametric approaches for protein quantification in RPPA 

data sets. While parametric approaches employ pre-defined functions to describe the relationship 

between measured expression levels and protein concentration, non-parametric approaches 

are comparably more data-adaptive and use e.g., protein-specific response curves. 

Such statistical models contain so-called parameters that can either describe certain experimental 

characteristics, e.g., background noise or saturation level, and are defined before fitting the model to 

the data or are not defined initially. Thus, parametric models employ certain assumptions regarding  

the function used to describe the relation between the observed expression levels and the unobserved 

and yet unknown protein concentration. On the contrary, non-parametric models do not imply such  

a predefined form of the model, so that they are highly data-adaptive. 

Parametric approaches have employed linear models [11,32] or sigmoidal curves [12,28] to 

determine a response curve, the relationship between the observed signal and the protein concentration. 

Zhang et al. [23] used the Sips model, which is similar to a logistic model, to determine the 
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relationship between signals in successive dilution steps. Zhang and colleagues argued that the 

response curve depends on factors such as the target protein concentration and exposure time during 

signal detection, specific or non-specific interactions of reporter molecules with proteins of a particular 

sample or of the slide matrix. While the impact of experimental factors might be difficult to quantify 

and to incorporate into a statistical model, the serial dilution curve method allows the determination of 

experimentally meaningful model parameters that can be optimized further. 

However, non-parametric methods seem to prevail due to their flexibility and their robust results. 

Non-parametric examples include the model of Hu et al. [16] which was based on the assumption that 

protein expression equals a non-parametric monotonically increasing function. The regularized 

approach by Li et al. [31] proposed an estimation of protein levels based on individual non-aggregated 

dilution series replicates to account for within-sample or within-group variability. Non-parametric 

parameters are more difficult to interpret but do not impose prior assumptions on experimental factors 

such as the reaction kinetics of the RPPA signal detection procedure. 

3.3. Loading Control Normalization 

Loading controls are required to account for measurable effects caused by properties of the starting 

material e.g., unequal total protein concentration or different cell numbers. Thus, a normalization step 

is required to permit the actual data analysis. Different approaches have been described which are 

based on adjusting the total protein concentration of individual samples to a pre-defined value prior to 

spotting. Protein quantification assays such as BCA or Bradford are frequently employed to determine 

the total protein concentration prior to spotting. In general, the accuracy of total protein assays is 

restricted by chemical inference with certain compounds and limited by a short linear range, not to 

mention the additional time needed for the experimental protocol. Alternatively, signals can be 

adjusted post detection. Post-printing normalization with a total protein dye requires additional slides 

of a print run to be stained with a total protein dye, for example Fast Green FCF, Sypro Ruby or 

colloidal gold. Antibody-detected slides are normalized based on data of a corresponding normalizer 

slide via a spot-specific correction factor that reflects the deviation of the protein concentration 

determined from the median of all spots. Target protein signals are then corrected via division by the 

correction factors, rescaling can be carried out by multiplication of spot intensities with the median of 

the corresponding normalizer array. Housekeeping proteins such as β-Actin have been used to 

normalize RPPA data [33,34]. However, even housekeeping proteins are subjected to biological 

regulation and have therefore limited these approaches. 

Different normalization approaches were specifically tailored towards the needs of RPPA data 

analysis, e.g., median loading, loading control, variable slope, and invariable protein set normalization, 

as reviewed in [35]. Median Loading (ML) normalization considers row and sample effects as additive 

at the log scale. The sample effect is estimated from the median protein expression estimates of the 

samples across all arrays. The main assumptions of the median loading approach is that all arrays are 

printed in a consistent manner and that changes observed for up- or downregulated proteins can still  

be seen after median normalization [36]. A key idea behind this approach is that the majority of target 

proteins assessed by RPPA will be comparable for the majority of samples. However, if a low number 

of target proteins are probed by RPPA or only proteins subjected to regulation will be measured, the 
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ML approach will be biased. Loading control incorporates similar ideas, yet the value reflecting 

median expression is calculated individually for each target protein and then subtracted from  

a particular sample [35]. 

Variable Slope (VS) normalization [17] takes into account the independent nature of individually 

stained RPPA slides. A slide-specific value is determined and included in the additive sample and row 

effect model in a multiplicative manner, thus yielding slightly different response curves for different 

slides. This approach was coupled with the “joint sample” model implemented in the suite of R packages 

“SuperCurve” (Table 1). These “joint sample” models use all the information of the array together 

with the individual protein concentrations for each sample to estimate parameters. The array 

information is based on assumptions such as that the surface chemistry and therefore the interactions of 

antibodies probed on a slide probed with a specific antibody are similar. For example, information 

available for each dilution point about rate of signal increase is used to yield improved estimates of 

protein concentration with a lower variance. “SuperCurve” relies on a three-parameter logistic 

equation to model the dependency of signal intensities from unknown protein expression values. 

Recently, Liu et al. [35] employed an approach initially introduced for the analysis of high-throughput 

expression profiling data for loading control and variance stabilization, which was based on the invariant 

marker set concept [36]. This concept was adjusted to RPPA specific settings by introduction of a set 

of invariant proteins, so-called markers that form a virtual reference sample to normalize all samples. 

First, target protein signals are ranked and the variance is calculated across all samples, and data 

showing the highest rank variance are removed from the RPPA data set. This selection process is 

repeated until the number of target-protein derived data has reached a pre-determined number. Then, in 

this way, the reduced data set is trimmed further by removing the 25% highest and 25% lowest values. 

Next, averaging the remaining values of every protein across all samples generates the virtual 

reference sample (VS). The actual sample data is then normalized with respect to the virtual reference 

sample by lowess smoothing using an MA-plot approach as described in Pelz et al. [36]. So-called 

MA-plots or Bland-Altman-plots are often used to visualize the distribution of pairwise comparisons in 

transcriptomic experiments. The x-axis presents the log2 gene expression level and the y-axis reflects 

log2 fold-change with respect to a reference sample. This concept was employed by the VS approach 

and showed promising results with respect to loading effect correction and variance stabilization, and 

resulted in RPPA data that showed a good correlation with IHC/fluorescence in situ hybridization 

(FISH) data available for the same set of samples. 

3.4. Spatial Normalization Methods 

RPPA data quality depends strongly on the image quality obtained by the signal detection approach 

of choice. Certain detection methods, especially those comprising several working steps, can result in 

unevenly stained images caused by rim effects, for example. This spatial bias needs to be addressed by 

proper data analysis measures. The most obvious and most simple approach to tackle artifacts resulting 

from uneven staining or surface inhomogeneity is choosing a random sample distribution. However,  

in recent years, sophisticated methods were developed to improve RPPA data quality by co-printing of 

control spots. 
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In 2009, Anderson et al. [37] suggested to increase the statistical power by reducing the coefficient 

of variation so that variability resulting from spatial heterogeneity can be kept under control. This 

approach, termed “Array Microenvironment Normalization”, foresees printing a layout composed of  

an alternating checkerboard pattern of positive control spots and experimental sample spots. Controls 

were designed to match samples with respect to their total protein concentration as well as having  

a target protein concentration within the linear range of detection. Assuming that the relation of  

these concentrations is equal for all controls and independent from the position on the array, variations 

between individual control spots were attributed to spatial heterogeneity. Although the method improved 

the reproducibility of protein quantification, this approach is associated with a considerable increase of 

costs and efforts, as the number of samples that can be analyzed by RPPA is reduced. 

The surface adjustment method developed by Neeley et al. [18] in 2012 requires a significantly 

lower number of control spots and relies on duplicate sample delivery in two differently defined 

printing patterns. This approach uses a generalized additive model to estimate a smoothed surface from 

which the positive control values are estimated for each spot of the array in relation to all other 

positive control spots. In case positive control spots were printed as dilution series, step-to-step 

differences can be used to perform an intensity-based adjustment by scaling each spot to the signal 

intensity of its immediate surface environment. With this method, a higher inter-slide reproducibility 

was obtained. However, the power of this approach was not directly compared with the one developed 

by Anderson and colleagues. 

A recent approach from Kaushik et al. [38] accounts for spatial variability by using a simple  

bi-linear interpolation technique that yields a theoretical surface representing the spatial variation as 

basis for a calculation of correction factors. Inter-slide and intra-slide technical replicate agreement 

and intra-slide biological replicate agreement were determined in a 238-slide melanoma cell line study 

to evaluate this method. Intra-slide reproducibility of technical replicates was good and correlation 

between inter-slide replicates was high, however, the evaluation via correlation was not a good 

measure of data quality after normalization because variability between biological replicates can occur 

for other reasons besides surface inhomogeneity or signal detection artifacts. 

3.5. Combined Methods 

Another approach which combines quantification, loading control normalization and spatial normalization 

is the “SuperCurve”-based method NormaCurve, published in 2012 by Troncale et al. [22]. NormaCurve 

proposes basically an extended “SuperCurve” model composed of a non-parametric model to quantify 

relative protein expression from Hu et al. [16]. An additive extension takes into account sample effects 

and spatial effects. Compared to other “Super-Curve”-based models, this one allows a full and reproducible 

removal of spatial bias as it considers positive control and total protein stained arrays for normalization 

and spatial covariates for correction of the spatial bias, respectively. The resulting model was further 

explored to assess the reproducibility of control arrays between slides, the optimal number of replicate 

spots and the minimally required number of serial dilution steps, as addressed in the following section. 
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3.6. Number of Serial Dilutions Steps 

In general, RPPA data analysis relies on serial dilution data of samples to assess the dynamic range 

of the measurements and to derive valid quantitative data, as outlined by Zhang et al. [23]. To assess 

the optimal number of dilution steps, Troncale and colleagues [22] printed samples as 15-step serial 

dilutions and used this information as surrogate gold standard. Hence, data of the 2, 3, 5, 6 or 14 upper 

dilution steps was compared against the surrogate gold standard. Relative expression levels were 

estimated for each of the resulting dilution curves and compared to the “true” protein concentrations 

estimated from the two highest number dilution series, comprising 14 and 15 dilutions steps. Dilution 

series data were compared by cross-validation. A significant improvement of accuracy was observed 

for dilution series comprising more than three dilution steps. Based on this, authors recommend 

printing samples as five-step serial dilution series. 

3.7. Analyte Normalization for Complex Biological Samples 

Particularly complex tissue samples such as samples obtained from whole tissue specimens that 

might include blood vessels or show enrichment with stroma components so that additional normalization 

measures are required. In that case, analyte normalization, as described by Chiechi et al. [27], can correct 

for sample-to-sample variability but certainly requires suitable controls to permit a valid data analysis. 

Most RPPA normalization approaches described here are available as non-commercial software 

tools (Table 1). In any case, experimentalists and data analysts should make themselves familiar with 

the requirements of their data analysis pipeline, especially as this also concerns sample preparation, 

identification of suitable positive and negative controls and the choice of a particular detection method 

for signal visualization. However, it is also important to notice that data normalization comprising  

a large number of different steps increases the risk of over-normalization and raises the question of 

adequate data quality. 

3.8. Quality Control 

Monitoring the quality of raw data constitutes a key element of RPPA data analysis. Variability of 

data will be observed even under optimized experimental conditions and needs to be addressed with 

standardized quality control measures. Image quality control checks have mostly relied on the visual 

examination of slide image files, correlation analysis of technical replicates, inspection of negative 

control slides detected by omitting the primary antibody and included also quantile-quantile plots 

comparing negative control slides and actual RPPA slides. 

A considerable disadvantage of the visual inspection is a high degree of examiner variability that 

might produce inconsistent results. Ju and coauthors tackled this problem by setting up an automated 

data analysis pipeline [20]. Inspection of RPPA images relies on a generalized linear model as a logit 

to a logistic function returning a likelihood factor that represents slide quality. Evaluation of this 

automated approach showed prediction accuracies of 84%–87% when compared to a combined evaluation 

of three RPPA experts, considering the fact of missing a gold standard of RPPA quality control. This 

approach has been implemented in the “SuperCurve” R package and is available for public use. Since 

the classifier is array design-specific, it is of limited use in other experimental settings. However, 
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RPPA Core Facilities where experimental settings remain unchanged over many years benefit from 

such a classifier. The lack of flexibility of this type of approaches portrays the need for standards for 

RPPA-based targeted proteomics. Individual projects with a platform-tailored experimental design still 

require running quality control steps manually. In such cases meaningful and intuitive display of raw 

data results are of great help to complement the visual inspection which might take into account spot 

shape and size, spot intensity, background intensity, uneven patches as well as variation in the positive 

controls. Zhang et al. [23] suggested to use the “serial dilution curve” as intuitive means for QC 

(Quality check) as depicted in Figure 3. 

 

Figure 3. Serial dilution curve. (A) In the serial dilution plot the observed signal is plotted 

against the observed signal at the next dilution step. Dilution series which are very close or 

identical with the identity line indicate quality problems, as the dilution series fails to 

generate lowered signals. a and M are the intersection points at background level and 

saturation level, respectively; (B) Example of dilution curves from four samples with 

different initial concentrations. The dilution steps remain constant; (C) Simulated RPPA 

data generated with the Sips model as presented in Zhang et al. [23]; (D) Serial dilution 

curve for simulated data shown in (C). The continuous (blue) line corresponds to the serial 

dilution curve. The dashed (black) line represents the identity line. Scripts for plot generation 

were taken from [23]. 
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The visual inspection of RPPA images and of quantile-quantile plots is the current practice for 

quality control although it presents a time-consuming procedure and might entail inconsistent results. 

Consequently, there is definitely a need for automated and flexible quality check approaches for RPPA 

to exclude low quality images from RPPA data sets. 

3.9. Further Considerations 

Although more than 1000 samples may be printed on a single slide and up to a few hundred 

different proteins can be probed by RPPA [6,15], certain experimental settings might still involve 

larger numbers of samples to be analyzed in a high-throughput-fashion. Thus, several slides might be 

required to accommodate all samples of a study. In addition, in clinical settings it might be of interest to 

compare results from different studies or across different labs. 

In this instance, issues such as inter-slide variability and normalization are pivotal but finding  

an appropriate normalization approach presents still a challenge [17,36]. Data of positive control spots, 

serial dilutions and of slides stained for total protein are required for several reasons. This data increases 

the accuracy of the estimated protein expression levels, adjusts for slide-to-slide variability and compensates 

for differences in sample loading. Additionally, effects caused by spatial artifacts can be compensated 

as these might be additive in comparisons of slides from different print runs or from independent 

signal detection runs. Thus, the experimental design should include a well-defined set of controls 

shared by RPPA printing runs over many years and by different groups. 

Again, the advantage of standardized array design and analysis approaches comes forward and 

points towards the fact that uniquely designed experimental set-ups might be confounded by a lack of 

standardization. For this reason, existing methods need to be compared to define an appropriate work 

flow as standard for RPPA experimentation. Nevertheless, a certain flexibility regarding the experimental 

design of new projects and new biological questions will require different set-ups. Consequently, 

flexible methods are needed which in addition can be used in a standardized pipeline for data analysis. 

Non-flexible tools only developed for in-house solutions do not help to reach this goal in the near future. 

4. RPPA Data Analysis Tools 

Several different software packages have been used for RPPA imaging and data analysis. Most 

packages were initially developed for microarray data analysis in general. Commercial software 

packages include Array Pro (MediaCybernetics, Rockville, MD, USA), GenePix Pro (Molecular 

Devices, Sunnyvale, CA, USA) and Mapix (Innopsys, Carbonne, France). In the last years, it was 

realized that comprehensive software tools specifically designed for RPPA applications provide more 

accuracy and improve the user-friendliness for the growing RPPA community. For this reason, 

exclusively software tools for RPPA data analysis tools were discussed. 

Table 1 gives an overview of currently available non-commercial tools and lists the methods 

implemented in the different approaches (see previous section). 
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4.1. Data Handling 

An important, but often underestimated, task of RPPA data analysis is sample management and 

sample tracking. Most existing solutions of RPPA data analysis tools neglect this aspect. The 

“SuperCurve” suite provides a tcl/tk-based graphical user interface, which eases the data management 

for experimental biologists. The other tools expect either basic knowledge with R, are not sufficiently 

documented or were only implemented as post-analysis tools. Only MIRACLE (Table 1) enables  

a biologist-friendly web-interface that is easily accessible and supports R with a direct import/export 

interface for data analysts with experience in programming [30]. 

The complexity of RPPA data also suggests implementing a data management system for standardization 

of RPPA data. Such a concept was introduced by Stanislaus et al. [39] who tried to form an RPPA 

Information Management System in 2008, including a reverse phase protein array markup language 

(RPPAML) to describe, document and disseminate RPPA data. Currently, the project is apparently not 

further maintained although it would be beneficial for the growing RPPA community. Reasons for this 

could be the implementation of RPPAML for the commercial software MATLAB while not providing 

an interface to R methods that are widely used in this field. MIRACLE [30] can currently substitute 

some of the data handling and sample tracking functionalities needed as it balances user-friendliness 

and flexibility. However, standardized RPPA data analysis programs are required to handle the 

complex information associated with proteomic experimentation and to make this information available 

for public proteomic databases. 

4.2. Data Integration 

Introduction of a commonly accepted RPPA data standard would also be of high importance in 

regard to studies dealing with cross-platform data analysis. As the awareness for complex biological 

regulatory mechanisms grows, there is an increased request for “omics” data integration [40]. Investigation 

of the interplay between different functional cellular levels and of cellular communication can lead to 

more complete models of physiological and disease states. This rather holistic systems biology approach 

can thus lead to more specific and personalized treatment options [41]. 

However, in order to stimulate integrative and translational research, clinical data sets need to be 

publicly available and processed with standardized pipelines. In addition, communication of integrative 

study results and integration with clinical decision-making has to be adapted to the idea of personalized 

treatments. Nevertheless, cross-platform data integration constitutes a challenging, but highly promising 

and conclusive concept to advance clinical treatment decisions. 

5. Current State and Future Perspectives of RPPA 

Of major value for RPPA experimentation is a thorough knowledge regarding protein signaling 

networks and antibody specificity as this is the key for successful RPPA experimentation. 

Unfortunately, the majority of antibody vendors leaves antibody validation to customers and provides 

limited information about suitable controls. Characterizing and handling large numbers of antibodies 

therefore constitutes a huge workload for RPPA labs, especially since re-testing has to be carried out 

with the purchase of each new antibody lot. A major concern is that antibody providers might not be 
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able to maintain their quality in the long run as this might be compromised for the sake of improved 

financial return. 

Different printing and signal detection approaches as well as data analysis tools have evolved since 

the introduction of RPPA as a highly sensitive large-scale platform for targeted proteomics [15]. The 

RPPA field would definitely benefit from a comparison of different RPPA platforms to evaluate that 

the different strategies taken for RPPA return the same results. Such efforts are currently ongoing and 

its publication will be of value for the field. The question of whether scientific findings such as 

biomarker signatures can be reproduced on different RPPA platforms or even on other technical 

platforms, e.g., by mass spectrometry, presents also a highly interesting question. Reviewing the 

current literature returned encouraging examples. 

The analysis of hormone receptor-positive breast cancer employed RPPA to compare proteomic 

signatures of low- and high-grade breast cancer. The identified biomarker signature comprised  

caveolin-1, NDKA, RPS6, and Ki-67 and could determine the recurrence risk in patients with ER+ breast 

cancer implying that it could potentially also be applied to predict a need for chemotherapy [7,42]. 

Moreover, the clinically relevant and biologically insightful observation that caveolin-1 expression of  

tumor-associated fibroblasts inversely correlates with clinical outcomes in patients with ER+ breast 

cancer was already made years ago by using IHC [43]. The observation that also stroma proteins might 

be identified as part of a biomarker signature supports the idea of understanding cancer as a “tumor 

organ” with stroma cells as integral partners of the tumor that sustain tumor growth. The prognostic 

relevance of tumor stroma proteins with respect to grading and patient outcome was also identified by 

a LC-MS/MS-based analysis of breast cancer specimens. Likewise, the mass spectrometry approach 

identified different sets of proteins and showed that structural proteins of the tumor stroma are highly 

abundant in low-grade tumors and additionally identified proteins directly or indirectly associated with 

transforming growth factor β (TGFβ1) signaling as upregulated in the tumor stroma [44]. 

RPPA-based profiling of breast cancer specimens including all known histological subtypes, 

including also HER2+ breast cancer and triple negative breast cancer (TNBC) in addition to ER+ 

breast cancer samples, identified a small subset of breast cancer patients with relatively high levels of 

pHER2(Y1248) but without overexpression of HER2. This therapeutically relevant finding showed  

co-expression of HER2 along with either EGFR or HER3, and hints towards a subgroup of breast 

cancer patients that can potentially benefit from therapies targeting the full EGFR/ERBB module [45]. 

Hennessy et al. [3] reported six independent groups with distinct proteomic profiles and characteristic 

overall survival after analyzing 128 breast tumors using 82 antibodies recognizing cancer-relevant 

proteins and phosphoproteins. Two subgroups showed high level expression of stroma proteins such as 

collagen VI and caveolin-1, of which collagen VI was also part of a proteomic signature to separate 

luminal A vs. luminal B tumors. The prognostic relevance of stroma proteins emerged also in the 

analysis of the TCGA work that reported fibronectin, collagen VI, and caveolin-1 as part of stroma 

signatures named reactive I and reactive II [46,47]. One of the stroma subclusters comprised exclusively 

luminal A tumors, the second group consisted of luminal A and luminal B tumor, relying on the 

transcript-based PAM50 score as reference point. Reactive I and reactive II groups did not differ with 

respect to tumor cell content, and a supervised analysis did not indicate differences with respect to 

genetic aberrations, e.g., mutation, DNA copy number or methylation. 
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These findings illustrate the potential of RPPA for biomarker discovery and place it next to 

established approaches such as IHC and mass spectrometry [48,49]. A direct comparison of RPPA in 

terms of assay sensitivity with other targeted immunoassay approaches such as the more recently 

introduced ABCD-technique [50] might be of interest for the field of immunoassays. In this sense, the 

high sample capacity and high accuracy of RPPA make this platform promising for the validation  

and quantification of target proteins identified by mass spectrometry, for example. Ideally, these 

approaches work hand in hand by exploiting the potential of mass spectrometry for de novo discoveries 

and the capacity of IHC to identify the subcellular localization of the protein of interest. Moreover, 

RPPA appears to be extremely valuable to advance personalized medicine where information on the 

abundance of targetable receptors, for example, is required. Numerous drugs target receptor tyrosine 

kinases to date, for example, and the majority of these drug targets can be quantified in clinical tissues 

by RPPA. Thus, using RPPA for tumor profiling seems to be highly promising also for cancer types 

not as well characterized as breast cancer. This will open up new therapeutic strategies for patients 

suffering from rare malignancies or metastatic disease who then may soon have new opportunities to 

benefit from targeted therapies. 
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