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Simple Summary: Checkpoint inhibitors and anti-angiogenic therapies are treatments that slow the
progression of renal cell carcinoma, the most common type of kidney cancer. Checkpoint inhibitors
and anti-angiogenic therapies work in different ways. Checkpoint inhibitors help to prevent tumors
from hiding from the body’s immune system, while anti-angiogenic therapies slow the development
of blood vessels that tumours need to help them to grow. Studies have shown that treatment with
combination checkpoint inhibitor plus anti-angiogenic therapy can achieve better outcomes for
patients with renal cell carcinoma than treatment with anti-angiogenic therapy alone. In this review,
we consider how combination checkpoint inhibitor plus anti-angiogenic therapy works, and we
review the current literature to identify evidence to inform clinicians as to the most effective way to
use these different types of drugs, either one after the other, or together, for maximum patient benefit.

Abstract: Anti-angiogenic agents, such as vascular endothelial growth factor (VEGF) receptor tyrosine
kinase inhibitors and anti-VEGF antibodies, and immune checkpoint inhibitors (CPIs) are standard
treatments for advanced renal cell carcinoma (aRCC). In the past, these agents were administered
as sequential monotherapies. Recently, combinations of anti-angiogenic agents and CPIs have been
approved for the treatment of aRCC, based on evidence that they provide superior efficacy when
compared with sunitinib monotherapy. Here we explore the possible mechanisms of action of these
combinations, including a review of relevant preclinical data and clinical evidence in patients with
aRCC. We also ask whether the benefit is additive or synergistic, and, thus, whether concomitant
administration is preferred over sequential monotherapy. Further research is needed to understand
how combinations of anti-angiogenic agents with CPIs compare with CPI monotherapy or combi-
nation therapy (e.g., nivolumab and ipilimumab), and whether the long-term benefit observed in
a subset of patients treated with CPI combinations will also be realised in patients treated with an
anti-angiogenic therapy and a CPI. Additional research is also needed to establish whether other
elements of the tumour microenvironment also need to be targeted to optimise treatment efficacy, and
to identify biomarkers of response to inform personalised treatment using combination therapies.

Keywords: vascular endothelial growth factor; immune checkpoint inhibitors; advanced renal cell
carcinoma; combination therapy
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1. Introduction

Historically, the treatment of patients with renal cell carcinoma (RCC) was limited by
the lack of efficacy of cytotoxic chemotherapy. While cytokine-based immunotherapies
(interleukin-2, interferon-alfa) showed activity, they typically benefited only a small subset
of patients [1]. The identification of von Hippel Lindau gene (VHL) mutations in RCC, and
the discovery that such mutations induce angiogenic pathways via upregulation of hy-
poxia inducible factors, led to the development of therapies that target angiogenesis [2–4].
Anti-vascular endothelial growth factor (VEGF) monoclonal antibodies (mAbs) and small-
molecule tyrosine kinase inhibitors (TKIs) are agents that block VEGF signalling by inacti-
vating VEGF or VEGF receptors (VEGFR), respectively, thereby exerting anti-angiogenic
effects within the tumour microenvironment [3]. Another treatment for various cancers
including RCC is the emerging class of immune checkpoint inhibitors (CPIs). CPIs act by
restoring the immune response against tumour cells, which is selectively suppressed in
many cancers [5].

Anti-angiogenic agents (i.e., TKIs and anti-VEGF mAbs) and CPIs have been shown
to improve survival in patients with advanced RCC (aRCC) and have become standard
treatments for the management of this disease [6–8]. These agents have typically been
administered as sequential monotherapies, with a first treatment given until disease pro-
gression, followed by a switch to a second treatment and possibly further treatments.
Combinations of anti-angiogenic agents and CPIs have the potential to target distinct and
complementary pathways simultaneously, and provide additional clinical benefit com-
pared with sequential use of single-agent regimens [9,10]. Combination anti-angiogenic
agents plus CPIs regimens are under investigation in aRCC, with encouraging clinical data
available so far. Indeed, four anti-angiogenic-CPI combination regimens (axitinib plus
either pembrolizumab or avelumab, and cabozantinib plus nivolumab and lenvatinib plus
pembrolizumab) have been approved by the US Food and Drug Administration (FDA) for
the first-line treatment of patients with aRCC.

In this review, we explore the possible mechanism of action of a combination therapy
consisting of an anti-angiogenic agent and a CPI for the treatment of patients with aRCC.
We also summarise relevant preclinical and clinical evidence on combination therapies and
examine whether these data support a synergistic effect of such combinations for critical
clinical endpoints. Finally, we discuss the potential benefits or detriments of concomitant
versus sequential treatment strategies, the choice of the optimal agents of combinations
in terms of tolerability and efficacy, and the role of predictive biomarkers of response to
these treatments.

2. Literature Search Strategy

The review draws on published evidence identified by a systematic search of the
PubMed bibliometric database. PubMed was initially searched for English-language articles
published up to July 2020 reporting preclinical and clinical (phase I, phase II, or phase III)
trial data relevant to combination therapy with anti-angiogenic agents and CPIs for the
treatment of RCC. Supplemental manual searches were conducted using the proceedings
from key congresses (2016–2020) considered by the authors to be of greatest relevance
(the Annual Meeting of the American Society of Clinical Oncology [ASCO]; the ASCO
Genitourinary Cancers Symposium [ASCO GU]; the Annual Meeting of the European
Society for Medical Oncology [ESMO]). Search results were screened manually to identify
articles relevant to the review topic (see the Supplementary Table S1 for details of the search
strategies, inclusion criteria, and the list of relevant references). During the development of
the review, the authors identified additional key articles and congress presentations that
were published after the bibliometric search (July 2020). These relevant publications were
included to maximise relevance and timeliness of the review.
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3. Literature Review and Discussion
3.1. The Tumour Microenvironment—A Complex System Consisting of Multiple Cell Populations

The tumour microenvironment (TME) broadly consists of tumour, immune, endothe-
lial and stromal elements [11]. The immune compartment includes professional antigen-
presenting dendritic cells, specific antitumoral effector cell populations such as cytotoxic
T cells, inhibitory T-regulatory and TH17 cells, and nonspecific ‘innate’ immune popu-
lations such as natural killer (NK) cells, myeloid-derived suppressor cells (MDSC) and
tumour-associated macrophages [12,13]. The tug of war between the tumour and the host is
strongly influenced by a number of factors, including the molecular biology of the tumour
as well as the state of immune system activation.

3.2. Truncal Mutations in Clear Cell RCC Drive Tumour Biology

The genetics and molecular biology of the tumour cell profoundly influence the
TME. The most common form of RCC, clear cell renal cell carcinoma (ccRCC), is strongly
associated (60–80% of all cases) with mutations in the VHL tumour suppressor gene, located
on chromosome 3p, leading to loss of function of the VHL protein [14,15]. VHL is a key
component of the hypoxia sensing pathway and a negative regulator of angiogenesis.
VHL deficiency leads to hypoxia-independent upregulation of numerous metabolic and
pro-angiogenic genes due to the overexpression of hypoxia inducible factors 1 alpha and
2 alpha (HIF-1α and HIF-2α) [16,17]. Pro-angiogenic genes include VEGF, adrenomedullin
and angiopoietin 2 [17]. AXL, a signalling molecule associated with both increased tumour
invasiveness and aggressivity, is an HIF-1α and HIF-2α client gene and is upregulated in
ccRCC tumour cells. Upregulated AXL is associated with a worse prognosis and increased
metastatic potential [18,19]. Additionally, ADORA2A, the gene encoding the adenosine 2a
receptor (A2AR) is regulated by HIF-1α [20] and HIF-2a [21]. ADORA2A and NT5E (CD73)
expression is upregulated in human ccRCC tissue [22], although it is unclear whether this
increased expression is driven by tumour or microenvironmental cells.

Secondary mutations in RCC frequently affect chromatin remodelling genes, which are
also found on chromosome 3p [23–25] and components of the phosphoinositide-3-kinase (PI3K)
pathway [15]. Mutations in polybromo-1 (PBRM1), a switch/sucrose nonfermenting (SWI-SNF)
complex gene involved in gene access, have been shown to promote angiogenesis [26,27], and
activating mutations in the PI3K pathway have been shown to modulate cell growth and
angiogenesis in both a hypoxia dependent and independent manner [28].

3.3. ccRCC Driven Changes in TME Influence Endothelial and Immune Compartments

The net effect of the molecular changes in ccRCC is a TME rich in VEGF and other pro-
angiogenic and immunoregulatory factors, which impact the immune microenvironment [29].
High levels of circulating VEGF downregulate dendritic cells [30,31] and effector T cells
(Figure 1) [32]. A stimulatory effect may be seen on suppressor immune cell populations
including regulatory T cells and MDSC (Figure 1). Regulatory T cells themselves have been
shown to be pro-angiogenic [33].

In normal, non-cancerous physiology, immune checkpoint proteins such as cytotoxic T
lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are negative
regulators of T cells to maintain self-tolerance and control adaptive immune responses
against novel antigens including tumour antigens [5]. Binding of PD-1 to its ligand pro-
grammed cell death ligand 1 (PD-L1) results in downregulation of activated T cell function
(Figure 1), ultimately leading to T cell exhaustion [5]. CTLA-4, which is expressed following
T cell activation, limits the extent of T cell activation by outcompeting the immunostim-
ulatory ligand CD28 in binding B7 on antigen-presenting cells [5]. Using a variety of
mechanisms, many cancers co-opt these checkpoint proteins to selectively suppress and
escape immune surveillance. For example, upregulation of PD-L1 is driven by a tumour
cell-autonomous reaction to immune cell production of interferon gamma in melanoma [34]
and in ccRCC [27]. PD-L1 is overexpressed in 23–56% of ccRCCs [35–37].
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microenvironment [27,38,39]. Microenvironmental adenosine, which is generated via 
CD39 and CD73 mediated conversion of adenosine triphosphate to adenosine (Figure 1), 
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adaptive and innate immune systems, by binding to cell surface A2AR [40–42]. Con-
versely, A2AR enhances the immunosuppressive activity of myeloid and regulatory T 
cells [43]. 

Figure 1. Interactions of clear cell RCC and the tumour microenvironment. A2AR, adenosine A2A
receptor; AMP, adenosine monophosphate; ATP, adenosine triphosphate; CD, cluster of differentia-
tion; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; IDO, indoleamine 2,3-dioxygenase; IFNγ,
interferon gamma; IFNγR, IFNγ receptor; Kyn, kynurenine; M2 phenotype, alternatively-activated
phenotype; MDSC, myeloid-derived suppressor cell; MER-TK, MER proto-oncogene, tyrosine kinase;
PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; RCC, renal cell carcinoma;
TAM, tumor-associated macrophage; Treg, regulatory T cell; Trp, tryptophan; Tyro-3, tyrosine-protein
kinase receptor TYRO3; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.

Expression of Tyro-3, MER-TK and AXL also occurs on tumour-associated macrophages.
High AXL expression is associated with a shift towards an M2, immunosuppressive phe-
notype, and a decrease in effector immune cell infiltration in the RCC tumour microen-
vironment [27,38,39]. Microenvironmental adenosine, which is generated via CD39 and
CD73 mediated conversion of adenosine triphosphate to adenosine (Figure 1), inhibits
the antitumor function of various immune cells, including components of the adaptive
and innate immune systems, by binding to cell surface A2AR [40–42]. Conversely, A2AR
enhances the immunosuppressive activity of myeloid and regulatory T cells [43].
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Indoleamine 2,3 dioxygenase (IDO) is a cell surface receptor involved in trypto-
phan metabolism [44]. High levels of interferon gamma-induced IDO production by
macrophages was originally shown to reduce T cell function [45]. IDO is upregulated
in multiple cancers, and has been shown to suppress effector T cell function and induce
regulatory T cells and MDSCs (Figure 1) [46]. IDO is upregulated in ccRCC, and is predom-
inantly found on endothelial cells [47]. Intriguingly, IDO appears to promote angiogenesis
by inhibiting IFN-gamma-mediated vascular pruning by immune cells [46].

3.4. Components of Combination Therapy: Mechanism of Action of Anti-Angiogenic Agents

VEGF-targeted anti-angiogenics inhibit VEGF signalling, thereby blocking its pro-
angiogenic and immunomodulatory functions within the tumour microenvironment [3,4].
TKIs are small molecules that inhibit VEGFR by binding to its active domain, and include
agents such as sorafenib, pazopanib, sunitinib, axitinib, cabozantinib, lenvatinib, and
tivozanib [3] (Figure 2; Supplementary Table S2). Anti-VEGF mAbs, such as bevacizumab,
bind directly to VEGF and prevent its interaction with VEGFR [3] (Figure 2; Supplementary
Table S2). In aRCC, blocking of VEGFR by TKIs has been shown to result in a number
of physiological changes, including reduced blood vessel density, alterations in pericyte
coverage, and decreased tumour perfusion, which may lead to acute infarction of the
VEGF-dependent tumour microenvironment and tumour necrosis [48–51]. Vascular re-
modelling without necrosis that can lead to enhanced T cell infiltration of the tumour
microenvironment has also been observed with these agents [50,52].

Most TKIs targeting VEGFR also block additional tyrosine kinases, including platelet-
derived growth factor receptor (PDGFR; pazopanib, sunitinib, axitinib, lenvatinib), c-Kit
(cabozantinib, sunitinib, pazopanib), FLT3 (sunitinib, cabozantinib), MET (cabozantinib),
AXL (cabozantinib), or fibroblast growth factor receptor (FGFR; pazopanib, lenvatinib) [53].
Many of these additional targets, such as MET, PDGFR and c-Kit, are implicated in angiogen-
esis as well as tumour cell proliferation [3,53]. Furthermore, PDGFR, MET, AXL, and FGFR
have been shown to play a role in resistance to VEGFR inhibition, which is common with
TKIs and results primarily from ‘angiogenic escape’ through activation of compensatory
vascular signalling pathways [3,19,53]. Inhibition of the VEGF pathway together with these
additional targets may therefore simultaneously target multiple and parallel key pathways
important to tumour vascularisation and growth (Figure 2; Supplementary Table S2).

3.5. Components of Combination Therapy: Mechanism of Action of CPIs

CPIs are monoclonal antibodies that block checkpoint proteins, thereby restoring
the anti-tumour immune response [5]. Nivolumab and pembrolizumab (anti-PD-1) and
atezolizumab and avelumab (anti-PD-L1) block the interaction of PD-L1 and PD-1, thereby
permitting a T cell anti-tumour response [5] (Figure 2; Supplementary Table S2). Ipilimumab
(anti-CTLA-4) inhibits CTLA-4, thereby releasing B7 to bind to CD28 and resulting in aug-
mented antigen presentation and T cell activation [5] (Figure 2; Supplementary Table S2).

3.6. Possible Mechanisms of Action of Combination Therapies

The combination of an anti-angiogenic agent and a CPI could potentially provide a
clinical benefit compared with monotherapy either by acting additively, with both agents
having independent effects, or by acting synergistically, with one agent enhancing or
prolonging [54] the activity of the other (Figure 2; Supplementary Figure S1). However,
anti-angiogenics and CPIs could conversely have antagonistic effects, thereby dampening
the outcome compared with the additive effect obtained with sequential monotherapies
(Figure 2; Supplementary Figure S1) [9,10]. In the following, we review relevant preclinical
and clinical data on combination therapies in comparison with monotherapies, which may
help to elucidate the mechanism of the action of combination therapies.
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3.7. Preclinical Data on Immune-Modulatory Activities of Anti-Angiogenic Agents in RCC

Available preclinical data on monotherapy with TKIs and anti-VEGF mAbs in VHL
wild type RCC models indicate that targeting the VEGF pathway alleviates immunosup-
pression in the tumour microenvironment (Table 1; Figure 2). For example, bevacizumab,
sunitinib, and cabozantinib have been shown to increase infiltration of the tumour with
cytotoxic T cells [50,55–57]. This indirect effect of TKIs and bevacizumab on immune cells
may result from normalisation and remodelling of the tumour vasculature [51] or expres-
sion of T cell chemokines [10], and is likely mediated by inhibition of the VEGF signalling
pathway [10]. TKIs and anti-VEGF mAbs have also been shown to have direct effects
on immune cells by targeting myeloid and lymphoid cells that express relevant receptors
including VEGFR, FLT3, MET, c-KIT, or members of the TAM receptor kinase family (TYRO,
AXL, MER) [58] (Figure 2). Bevacizumab, sunitinib, cabozantinib, sorafenib, and axitinib
have been shown to stimulate the differentiation of monocytes into dendritic cells, increase
levels of cytotoxic T cells, and to reduce the levels and homing of regulatory T cells and
MDSCs to tumours [55,56,59–66], effects which may help to counteract cancer-immune
tolerance and stimulate an immune reaction against the tumour. Targets other than the
VEGF pathway may be implicated in these direct effects on immune cells. For example,
c-Kit is involved in accumulation of MDSCs and the development of regulatory T cells [67],
and members of the TAM receptor kinase family are involved in the tumour-associated
macrophage transition from M1 (immune-stimulating) to M2 (immune-suppressive) [68].
Another immune-modulatory effect observed with cabozantinib is the reduction in PD-L1
expression on tumour cells, thereby increasing the tumour’s sensitivity to T cell-mediated
killing [69,70]. This effect may be mediated by inhibiting c-MET, which is a stimulatory
factor of PD-L1 expression and which is overexpressed in many RCCs [69,70]. How-
ever, it should be noted that PD-L1 expression does not predict response to cabozantinib
therapy [71]. In line with these in vitro observations, there is also in vivo evidence from
animal models of non-ccRCC and other tumours, which suggests that combinations of
a TKI (including sunitinib or cabozantinib) with immune-based therapies (e.g., chimeric
antigen receptor-modified T cells) increase the anti-tumour efficacy (based on tumour
shrinkage) and prolong survival compared with immuno-monotherapy [61,67,69].

However, there are also reports that some anti-angiogenic agents may have antago-
nistic effects on the CPI response and increase, rather than decrease, immunosuppression
of the tumour microenvironment. For example, sunitinib and bevacizumab have been
shown to increase the levels of circulating and tumour-infiltrating regulatory T cells or
MDSCs [50,72,73] possibly as a response to VEGF blockade-dependent hypoxia and the
ensuing upregulation of chemokines such as SDF-1 (CXCL12) [73]. There are also reports
of reduced responsiveness of dendritic cells to inflammatory signals with sorafenib [74],
and sunitinib and bevacizumab have been found to increase expression of PD-L1 [50,74].
Furthermore, the increase in tumour immunosuppression has been associated with the
development of resistance to anti-angiogenic agents [50,75]. This effect might be mediated
by MDSCs that produce pro-angiogenic proteins, or reprogrammed T lymphocytes that pos-
sess immunosuppressive characteristics. However, in the absence of immune-competent
models of VHL null ccRCC, it remains unclear which (if any) of these preclinical findings
apply to the unique biology of this disease.
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Table 1. Immune-modulatory effects of anti-VEGF TKIs and mAbs in RCC.

Agent Model or Study Type
(Mouse and/or Human) Effect Reference

Immune-modulatory effects resulting in reduced immunosuppression of tumour microenvironment

Bevacizumab

Human • Increased tumour infiltration with cytotoxic T cells [50]

Human • Increased tumour infiltration with cytotoxic T cells [57]

Human • Stimulation of maturation of monocytes into dendritic cells [59]

Mouse • Reduced levels of peripheral MDSCs [60]

Sorafenib Human • Stimulation of maturation of monocytes into dendritic cells [59]

Sunitinib

Human • Increased tumour infiltration with cytotoxic T cells [50]

Mouse • Reduced levels of MDSCs in the tumour microenvironment [62]

Human • Increased tumour infiltration with cytotoxic T cells
• Reduced levels of MDSCs and regulatory T cells in tumours

[55]

Human • Reduced peripheral levels of regulatory T cells [63]

Human • Reduced levels of MDSCs [64]

Human • Increased levels of dendritic cells [65]

Axitinib Mouse • Reduced levels of MDSCs in the tumour [66]

Cabozantinib

Mouse & human

• Increased levels of cytotoxic T cells
• Increased tumour infiltration with lymphocytes
• Increased cancer cell sensitivity to T cell-mediated killing
• Reduced levels of regulatory T cells and MDSCs

[56]

Mouse & human • Reduced expression of PD-L1 on surface of cancer cells
• Increased cancer cell sensitivity to immune effector cells

[61]

Human • Reduced expression of PD-L1 [70]

Immune-modulatory effects resulting in increased immunosuppression of tumour microenvironment

Bevacizumab
Human • Increased tumour infiltration with regulatory T cells

• Increased expression of PD-L1
[50]

Human • Increased levels of regulatory T cells [72]

Sunitinib
Human • Increased tumour infiltration with regulatory T cells

• Increased expression of PD-L1
[50]

Mouse • Increased tumour infiltration with MDSCs [73]

Sorafenib Mouse & human
• Reduced migration of dendritic cells
• Reduced responsiveness of dendritic cells to inflammatory signals
• Reduced induction of antigen-specific T cells

[74]

Anti-VEGF, anti-vascular endothelial growth factor; mAbs, monoclonal antibodies; MDSC, myeloid-derived
suppressor cell; mRCC, metastatic renal cell carcinoma; PD-L1, programmed cell death ligand 1; RCC, renal cell
carcinoma; TKI, tyrosine kinase inhibitor.
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3.8. Clinical Data on Combination Therapies

The first VEGF-targeted anti-angiogenic plus CPI combinations in a phase I trial in
patients with aRCC tested the combination of sunitinib or pazopanib plus nivolumab. With
both regimens, substantial clinical activity was observed but high-grade toxicities limited
future development of either combination regimen [76]. Other combinations studied in
RCC were pazopanib plus pembrolizumab, and sunitinib plus tremelimumab. Again, both
regimens were not further investigated owing to unfavourable tolerability [77,78].

More recently, other combinations of anti-angiogenics and CPIs have been investigated
in aRCC with varying results. A phase III trial (NCT02420821) of atezolizumab plus beva-
cizumab versus sunitinib in the first-line setting assessed progression-free survival (PFS) in
patients with PD-L1+ tumours and overall survival (OS) in the overall study population as
co-primary endpoints (Table 2) [79]. In patients with PD-L1+ tumours, atezolizumab plus
bevacizumab demonstrated significantly longer PFS (investigator assessed) than sunitinib
(hazard ratio [HR] PFS, 0.74 [95% confidence interval, CI, 0.57–0.96]; p = 0.0217); in the
overall study population, there was no significant difference in PFS between atezolizumab
plus bevacizumab versus sunitinib. However, when efficacy endpoints were assessed by
an independent review committee (IRC), PFS in patients with PD-L1+ tumours was similar
between the combination and sunitinib monotherapy (HR PFS, 0.93 [0.72–1.21]). Notably, in
the IRC PFS analysis, there was a trend for longer PFS with the combination versus sunitinib
in patients with PD-L1-negative disease (PD-L1 expression < 1%)(HR PFS, 0.84 [0.67–1.04]),
suggesting that the PD-L1 expression level may not be an appropriate predictive biomarker
for selecting patients for this combination, or that the Ventana SP142 test used in this
study, which scored immune cell PD-L1 positivity but not tumour cell positivity, may not
be the ideal assay. Median OS was comparable between the combination and sunitinib
monotherapy both overall and in patients with PD-L1+ tumours further suggesting that
any benefits from this combination were, at best, additive rather than synergistic [79].

Four other anti-angiogenic–CPI combinations have recently been approved as first-line
treatments of aRCC based on positive findings in phase III trials (Table 2). The combination
of pembrolizumab plus axitinib (approved by the FDA in April 2019) versus sunitinib was
investigated in treatment-naïve patients with aRCC, with OS and PFS in the intention-to-
treat population as co-primary study endpoints (NCT02853331) [80,81]. At the first interim
analysis, median follow-up of 13 months, the risk of death was 47% lower with pem-
brolizumab plus axitinib than with sunitinib (HR [95% CI] OS, 0.53 [0.38–0.74]; p < 0.0001).
The combination was also associated with a lower risk of disease progression (HR PFS,
0.69 [0.57–0.84]; p < 0.001) and higher objective response rate (ORR; 59.3% versus 35.7%;
p < 0.001) than sunitinib monotherapy. The survival benefits of pembrolizumab plus axi-
tinib versus sunitinib for OS and PFS were observed in all subgroups examined, including
all International Metastatic RCC Database Consortium (IMDC) risk groups and PD-L1
expression categories [80]. In a subsequent analysis conducted at median follow-up of
27 months, the PFS benefit was maintained (HR, 0.71), but the OS benefit was reduced (HR
[95% CI] OS, 0.68 [0.55–0.85]; p < 0.001) and was no longer apparent for the favourable risk
population (HR [95% CI] OS, 1.06 [0.60–1.86]) [82]. Pembrolizumab plus axitinib continued
to demonstrate superior efficacy (vs. sunitinib) at the time of the final prespecified analysis
(42.8 months median follow-up) in terms of PFS (HR [95% CI] 0.68 [0.58–0.80]; p < 0.0001)
and OS (HR [95% CI] 0.73 [0.60–0.88]; p < 0.001) and with an ORR of 60.4% vs. 39.6%
(p < 0.0001) [81].

The combination of avelumab plus axitinib (approved by the FDA in May 2019) has
also been assessed versus sunitinib as first-line treatment for aRCC in a phase III trial
(NCT02853331) with PFS and OS in the subset of patients with PD-L1+ tumours included as
independent primary endpoints [83,84]. Patients with PD-L1+ tumours receiving avelumab
plus axitinib had improved PFS (HR, 0.62 [0.49–0.78]; p < 0.001) and ORR (odds ratio, 3.39
[2.35–4.90]) compared with those receiving sunitinib. The PFS and ORR benefits of the
combination were also observed in the overall study population (HR PFS, 0.69 [0.57–0.83];
p < 0.001; odds ratio ORR, 3.00 [2.23–4.00]). OS data were immature in most recent analyses [84].
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A phase III trial (N = 651; NCT03141177) tested the combination of cabozantinib
plus nivolumab versus sunitinib in previously untreated patients with aRCC [85]. The
primary endpoint was PFS, as determined by a blinded independent central review. At
a median follow-up of 18 months, the median PFS was 16.6 months (95% CI, 12.5–24.9)
with nivolumab plus cabozantinib and 8.3 months (95% CI, 7.0–9.7) with sunitinib (HR
for disease progression or death, 0.51 [0.41–0.64]; p < 0.001). The probability of OS at
12 months was 86% (95% CI, 81–89) with nivolumab plus cabozantinib and 76% (95% CI,
71–80) with sunitinib (HR, 0.60 [98.89% CI, 0.40–0.89]; p = 0.001). An objective response
occurred in 56% of the patients receiving nivolumab plus cabozantinib and in 27% of those
receiving sunitinib (p < 0.001). Efficacy benefits with nivolumab plus cabozantinib were
consistent across IMDC subgroups; particularly notable was the PFS benefit for nivolumab
plus cabozantinib in patients with bone metastases (HR, 0.38 [95% CI, 0.25–0.59]) [86].
The combination received FDA approval in January 2021 for the treatment of patients
with aRCC.

In a phase 1b/2 trial (NCT02501096), the combination of lenvatinib plus pembrolizumab
showed an impressive 51% (40–61%) ORR in patients with aRCC who had progressed
despite prior CPI therapy, potentially signalling a favourable front-line result [87]. In a
follow-up phase III trial (NCT02811861), patients with aRCC and no previous systemic
therapy (N = 1069) were randomly assigned to receive lenvatinib (20 mg orally once daily)
plus pembrolizumab (200 mg intravenously once every 3 weeks), lenvatinib (18 mg orally
once daily) plus everolimus (5 mg orally once daily), or sunitinib [88]. The primary end-
point was PFS, as assessed by an independent review committee. PFS was significantly
longer for lenvatinib plus pembrolizumab compared with sunitinib (23.9 versus 9.2 months,
respectively; HR, 0.39 [0.32–0.49]; p < 0.001). OS was also longer with lenvatinib plus
pembrolizumab than with sunitinib (HR, 0.66 [0.49–0.88]; p = 0.005) but was similar for
lenvatinib plus everolimus and sunitinib (HR, 1.15 [0.88–1.50]; p = 0.30).

Other combination regimens involving the TKIs–tivozanib plus nivolumab and cabozan-
tinib plus atezolizumab or nivolumab± ipilimumab are under investigation in a number of
phase I or phase I/II studies (Table 3), with (preliminary) reported ORRs ranging from 25%
to 71% [89–94]. Of note, the majority of these phase III studies use sunitinib as a control arm
rather than the combination of nivolumab plus ipilimumab, which has been established to
be superior to sunitinib. For cabozantinib, an additional evaluation of cabozantinib plus
nivolumab and ipilimumab versus nivolumab and ipilimumab is being undertaken to help
address this deficiency in the current data (NCT03937219).

In terms of tolerability of the currently approved CPI/anti-angiogenic combinations,
hypertension, fatigue, and diarrhoea were among the most common any grade adverse
events (AEs) reported in the phase III trials of avelumab plus axitinib, and pembrolizumab
plus axitinib; incidences were generally similar to those in the sunitinib monotherapy
arms [80,83]. Phase III trials of atezolizumab plus bevacizumab found hypertension,
fatigue, diarrhoea and proteinuria to be the most common AEs, but that atezolizumab plus
bevacizumab offered a more favourable overall toxicity profile than sunitinib monotherapy
(Table 2) [79]. Elevated levels of liver enzymes were among the most common grade 3 or
4 AEs reported for avelumab plus axitinib, and pembrolizumab plus axitinib, and were
also more frequent among patients treated with atezolizumab plus bevacizumab than
with sunitinib monotherapy [79,80,83]. The most common AEs with the combination of
cabozantinib plus nivolumab were diarrhoea, palmar–plantar erythrodysesthesia syndrome
(PPES), hypertension, hypothyroidism and fatigue; and the most common grade ≥ 3 AEs
were hypertension, hyponatraemia and PPES [85]. For the combination of lenvatinib plus
pembrolizumab the most common AEs were diarrhoea, hypertension, hypothyroidism,
decreased appetite and fatigue [88]. Hypertension was the most common grade ≥ 3 AE
with the lenvatinib plus pembrolizumab combination [88].

Hypothyroidism was reported with all of the combinations; the incidence of hypothy-
roidism (any grade) ranged from 22% to 47% [79,80,83,85,88], which is higher than expected
with CPI monotherapies and may in part be related to the known effect of axitinib on thy-
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roid function [80]. These findings, and in particular the results with the less selective
VEGF pathway inhibitors [53] sunitinib or pazopanib, suggest that the tolerability of a
combination regimen may depend on careful selection of the type of anti-angiogenic agent,
its dose, and potentially its timing.

A number of the treatment-related toxicities described above, including diarrhoea,
transaminitis and fatigue, could arise from either anti-angiogenic or CPI therapy, or
both. One proposed approach to triaging and managing such overlapping toxicities in
patients receiving combination anti-angiogenic/CPI therapy involves withholding the
anti-angiogenic agent in patients experiencing grade 1–2 overlapping toxicities, to see if
symptoms improve [95]. If grade 3 toxicities arise, the approach recommends withholding
both agents, with judicious resumption of either, or both, once toxicities resolve. Considera-
tion of permanent discontinuation of either, or both, agents is recommended in patients
who experience grade 4 toxicities [95].

3.9. Open Questions and Clinical Relevance of the Mechanism of Action of Combination Therapy

The phase III trials of atezolizumab plus bevacizumab, avelumab plus axitinib, pem-
brolizumab plus axitinib, nivolumab plus cabozantinib and lenvatinib plus pembrolizumab
demonstrated a clinical benefit with the combination regimen over sunitinib monotherapy.
It remains unclear, however, whether the observed improvement with the combinations rel-
ative to sunitinib reflects additive, synergistic, or even sub-additive effects of the individual
components due to the lack of clear-cut clinical readouts of biological synergy.

Certain endpoints and clinical observations will help determine whether combination
therapy is preferred over sequential administration of several therapies. In the case of
additive effects, concomitant administration is likely to result in the same clinical outcome
as sequential administration; in the case of a synergistic interaction, however, concomitant
use of anti-angiogenics and CPIs may provide greater clinical benefit than their sequential
administration, such as improvements in complete and durable response rates, as well
as the ability to stop therapy while maintaining response. Additionally, the PFS with the
combination regimen should exceed the overall PFS observed with the sequential approach
and the median OS, landmark OS, or cumulative treatment-free survival would be superior
with the combination than with the agents used in sequence (Figure 3). On the other hand,
concomitant use may lead to additive or even synergistic AEs, owing to simultaneous
exposure to multiple drugs. Combination regimens would possibly also involve each
component being administered for a longer time period than when used sequentially,
and this could prolong exposure to treatment-related toxicities (and costs). Whereas
early combinations involving pazopanib and sunitinib have shown unfavourable safety
profiles, available phase III data of combinations with axitinib [80,83], cabozantinib [89–91],
lenvatinib [93], or tivozanib [92] suggest more favourable tolerability with these regimens
(Table 2). Further research is needed to establish the optimal components, doses and
duration of treatment with these combination regimens.

Instead of combining a CPI with an anti-angiogenic agent, a combination could also
involve two CPIs, such as nivolumab plus ipilimumab [36], which is approved in the US and
Europe for first-line treatment of RCC. In these regimens, both agents act on the immune
system via complementary pathways to further potentiate the anti-tumour immune reaction.
However, owing to the similar AE profiles of CPIs (resembling inflammatory pathologies
and rheumatic diseases) [96–98], CPI–CPI combinations could lead to enhanced immune-
related toxicity. No direct comparative data are available assessing the safety of CPI–CPI
versus CPI–anti-angiogenic combinations in aRCC; based on cross-study comparisons,
certain treatment-related AEs such as rash or colitis appear to be more frequent with
CPI–CPI regimens than with CPI monotherapies in aRCC [36,99]. Further comparisons of
CPI–CPI versus CPI–anti-angiogenic combinations have yet to be initiated to address these
critical questions.
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3.10. Choosing a Particular Combination Regimen

With multiple CPI-based combination regimens available for front-line use in RCC,
treatment decisions have to be made with the goal of optimising patient outcomes. In the
absence of head-to-head comparator trials, it can be tempting to compare results across
studies, but such comparisons are fraught with hazards. Although all of the pivotal
benchmark CPI-based combination trials used sunitinib as the control arm, there are
multiple potential (non-treatment) effect-modifying differences between the various trials.
These include, but are not limited to, differences in patient populations, in outcome and
PD-L1 expression definitions and in trial design (e.g., different use of endpoints, crossover
permissibility, length of accrual, censoring and scheduling and means of assessment) and
are summarised in Supplementary Table S3.

Additionally, no CPI–anti-VEGF trials have used endpoints such as landmark PFS,
landmark OS and treatment-free survival, which are typically associated with an effective
immune response against the tumour [100].

The different receptor kinases that the available TKI target may influence their safety
profiles, and pharmacokinetic variation of these TKIs may affect the ability to discern treatment-
related toxicities of the specific agent within treatment combinations (Supplementary Table S3).
When considering the viability of between-trial comparisons of quality-of-life outcomes,
the assessment tool and assessment schedule are also important factors to consider
(Supplementary Table S3).

Thus, to inform clinical decision-making, there is both a need for longer follow-up of ex-
isting trials and also for additional studies specifically designed to compare regimens directly
and using standardised biomarkers, endpoints relevant to the immunotherapy era, and
universally available crossover and salvage CPI therapy. Some key exploratory endpoints
for consideration when designing future registration trial are summarised in Figure 4.
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3.11. Predictive Biomarkers for Combination Therapies

Predictive biomarkers could help identify patients who are more likely to respond to
combination therapy. PD-L1 was initially thought to be a promising candidate predictor
for anti-PD-1/PD-L1-based treatments, based on its overexpression in a subset of ccRCC
tumours (23–56% depending on assay [35–37]) and because of its association with poor
prognosis [37]. However, its role is not well understood [37,101], and the available clinical
trial data are not conclusive. Whereas, in some analyses, patients with PD-L1+ tumours
seemed to respond better to the combination than to sunitinib monotherapy [102], other
analyses showed combination therapy to be more beneficial than sunitinib across all PD-L1
subgroups [80] or in fact in patients with PD-L1-negative disease only [79]. This suggests
that PD-L1 may not be entirely predictive of a CPI combination response but may in fact be
a measure of poor prognosis and a predictor of inferior response to anti-angiogenic agents.

Other potential response biomarkers could be based on the gene expression signatures
of immune response pathways, as reported in the phase II trial assessing atezolizumab
plus bevacizumab versus sunitinib [102]. It was found that the clinical benefit was greater
with atezolizumab plus bevacizumab than with sunitinib in patients with high expression
of the T-effector gene signature, and that sunitinib was more effective than atezolizumab
monotherapy (but showed a similar benefit to atezolizumab plus bevacizumab) in tumours
with high myeloid inflammation gene expression [102]. The improved clinical outcome
with atezolizumab plus bevacizumab compared with atezolizumab monotherapy in the
high myeloid inflammation subgroup suggests a role for bevacizumab in overcoming
innate inflammation-mediated resistance in these tumours. Whether this effect on MDSCs
is sufficient to enhance the durability of memory T cell activation and lead to a durable
off-treatment response remains to be determined.

Several additional in-depth high-throughput immune profiling studies provide a
broader picture of the immune system landscape to aid identification of a range of biomark-
ers which could allow personalised application of combination therapies [38,39,103–105]
(summarised in [14]). These studies identify subsets of patients with distinct TME phe-
notypes, including those that are more broadly angiogenic versus immune cell infiltrated.
Recently, an analysis of the IMmotion 151 dataset identified seven molecular subtypes
with differential response to sunitinib versus atezolizumab plus bevacizumab, with ge-
nomic features correlating to specific subsets [104]. Mutations in PBRM1 and KDM5C
were associated with angiogenic and stromal subtypes, and these subtypes were most
likely to respond to sunitinib. Mutations in CDKN2A/B and TP53 were associated with
proliferative subtypes and sarcomatoid histology, and these subtypes were more likely to
respond to atezolizumab plus bevacizumab [104]. Whether these profiles can be employed
in therapeutic decision-making, particularly with regard to the current FDA-approved
combination regimens, requires prospective validation.

Lastly, there is controversy over the impact of chromatin remodelling gene mutations
in RCC on treatment response in RCC. Whereas some studies have implicated PBRM1
mutations as a having a positive influence on immunotherapy response [38,106,107], others
have suggested that, in the VEGFR TKI naïve population, PRBM1 mutations may be
associated with decreased response to immune therapy [27,102]. Future work is needed to
clarify these observations and to expand them to the impact of SETD2 and BAP1 mutations
on immunotherapy response.
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Table 2. Efficacy and safety results reported for phase III trials of TKIs/anti-VEGF mAb plus CPI combinations in patients with RCC.

Combination Study Phase Patient Population Efficacy Safety Reference

Anti-VEGF mAb + CPI

Bevacizumab +
atezolizumab versus
sunitinib
(NCT02420821)

III mRCC (treatment-naïve) PFS; ORR
Overall (N = 915)

• Atezolizumab + bevacizumab: 11.2 months; 37%
• Sunitinib: 8.4 months; 33%

PD-L1+ (n = 362)
• Atezolizumab + bevacizumab: 11.2 months; 43%
• Sunitinib: 7.7 months; 35%

sRCC (n = 142)
• Atezolizumab + bevacizumab: 8.3 months; 49%
• Sunitinib: 5.3 months; 14%

Grade 3–4 TRAEs

• Atezolizumab + bevacizumab: 40%
• Sunitinib: 54%

[79]

TKI + CPI

Pembrolizumab +
axitinib versus sunitinib
(NCT02853331)

III aRCC (treatment-naïve) PFS; ORR; survival after 12 months
Overall (N = 861)

• Pembrolizumab + axitinib: 15.1 months;
59%; 90%

• Sunitinib: 11.1 months; 36%; 78%

Intermediate/poor IMDC risk (n = 592)
• Pembrolizumab + axitinib: 12.6 months;

56%; 87%
• Sunitinib: 8.2 months; 30%; 71%

Intermediate/poor IMDC risk sRCC (n = 105)
• Pembrolizumab + axitinib: NR; 59%; 83%
• Sunitinib: 8.4 months; 32%; 80%

Grade 3–4 AEs

• Pembrolizumab + axitinib: 76%
(most common: hypertension [22%];
increased ALT [13%); diarrhoea [9%];
increased AST [7%]; PPES [5%])

• Sunitinib: 71% (most common:
hypertension [19%]; decreased
neutrophils [7%]; neutropenia [7%];
fatigue [7%]; thrombocytopenia [6%];
decreased platelets [7%])

[80,108,109]
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Table 2. Cont.

Combination Study Phase Patient Population Efficacy Safety Reference

Avelumab + axitinib
versus sunitinib
(NCT02684006)

III RCC (treatment-naïve) PFS; ORR
Overall (N = 886)

• Avelumab + axitinib: 13.3 months; 53%
• Sunitinib: 8.0 months; 27%

PD-L1+ (n = 560)
• Avelumab + axitinib: 13.8 months; 56%
• Sunitinib: 7.0 months; 27%

sRCC (n = 108)
• Avelumab + axitinib: 7.0 months; 47%
• Sunitinib: 4.0 months; 21%

Japanese (n = 67)
• Avelumab + axitinib: NE; 61%
• Sunitinib: 11.2 months; 18%

Grade 3–4 TEAEs (overall population)

• Avelumab + axitinib: 71% (most
common: hypertension [26%];
diarrhoea [7%]; increased ALT [6%];
PPES [6%])

• Sunitinib: 72% (most common:
hypertension [17%]; anaemia [8%];
neutropenia [8%]; thrombocytopenia
[6%]; decreased neutrophils [6%];
decreased platelets [5%])

[83,84,110,111]

Cabozantinib +
nivolumab versus
sunitinib
(NCT03141177)

III aRCC (treatment-naïve) PFS; ORR
Overall (N = 651)

• Cabozantinib + nivolumab: 16.6 months; 56%
• Sunitinib: 8.3 months; 27%

Grade ≥ 3 AEs

• Cabozantinib + nivolumab: 75%
(most common: hypertension [13%];
hyponatraemia [9%]; PPES [8%];
diarrhoea [7%]; increased lipase [6%];
hyperphosphataemia [6%];
increased ALT [5%])

• Sunitinib: 71% (most common:
hypertension [13%]; PPES [8%];
hyponatraemia [6%])

[85]
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Table 2. Cont.

Combination Study Phase Patient Population Efficacy Safety Reference

Lenvatinib +
pembrolizumab,
lenvatinib + everolimus
versus sunitinib
(NCT02811861)

III aRCC (treatment-naïve) PFS; ORR
Overall (N = 1069)

• Lenvatinib + pembrolizumab: 23.9 months; 71%
• Lenvatinib + everolimus: 14.7 months; 54%
• Sunitinib: 9.2 months; 36%

Grade ≥ 3 AEs

• Lenvatinib + pembrolizumab: 82%
(most common: hypertension [28%];
diarrhoea [10%]; weight decrease
[8%]; proteinuria [8%])

• Lenvatinib + everolimus: 83% (most
common: hypertension [23%];
diarrhoea [12%]; proteinuria [8%];
fatigue [8%]; weight decrease [7%];
decreased appetite [6%];
stomatitis [6%])

• Sunitinib: 72% (most common:
hypertension [19%]; diarrhoea [5%])

[88]

AE, adverse event; ALT, alanine aminotransferase; Anti-VEGF, anti-vascular endothelial growth factor; aRCC, advanced renal cell carcinoma; AST, aspartate aminotransferase; CPI,
checkpoint inhibitor; mAb, monoclonal antibodies; mRCC, metastatic renal cell carcinoma; NE, not estimable; NR, not reported; ORR, objective response rate; OS, overall survival;
PD-L1, programmed cell death ligand 1; PD-L1+, PD-L1-selected population; PPES, palmar–plantar erythrodysesthesia syndrome; PFS, progression-free survival; sRCC, RCC with
sarcomatoid histology; TEAE, treatment-emergent adverse event; TKI, tyrosine kinase inhibitor; TRAE, treatment-related adverse event.

Table 3. Ongoing clinical trials of combination CPI/anti-VEGF-targeted therapy (TKI or mAb) in RCC.

NCT Number Phase Population Intervention
Agent type

Statusref

Anti-PD-1 Anti-PD-L1 Anti-CTLA-4

TKI + CPI

NCT02493751 I RCC (treatment-naïve) Axitinib + avelumab x Active, with results [112,113]

NCT02684006 III RCC (treatment-naïve) Axitinib + avelumab versus sunitinib x Active, with results [83,84,113,114]

NCT03341845 II Localised RCC Axitinib + avelumab as neo-adjuvant x Recruiting [115]

NCT04698213 II Metastatic RCC Avelumab + intermittent axitinib x Recruiting

NCT02133742 Ib Treatment-naïve aRCC Axitinib + pembrolizumab x Complete, with results [116]

NCT04370509 II Locally advanced or metastatic RCC Axitinib + pembrolizumab x Recruiting
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Table 3. Cont.

NCT Number Phase Population Intervention
Agent type

Statusref

Anti-PD-1 Anti-PD-L1 Anti-CTLA-4

NCT02853331 III RCC Axitinib + pembrolizumab
versus sunitinib x Active, with results [80,113,117]

NCT03086174 Ib RCC and melanoma Axitinib + toripalimab x Active

NCT03172754 I/II aRCC Axitinib + nivolumab x Recruiting

NCT02496208 I Genitourinary tumours
including RCC Cabozantinib + nivolumab ± ipilimumab x x Recruiting, with results [86,89]

NCT03200587 I mRCC Cabozantinib + avelumab x Active

NCT03170960 Ib Solid tumours including RCC Cabozantinib + atezolizumab x Recruiting, with results [90]

NCT03149822 I/II mRCC Cabozantinib + pembrolizumab x Active, with results [91]

NCT03635892 II Non-ccRCC Cabozantinib + nivolumab x Recruiting

NCT04413123 II Non-ccRCC Cabozantinib + nivolumab + ipilimumab x x Recruiting

NCT04322955 II Metastatic ccRCC Cabozantinib + nivolumab +
Cytoreductive nephrectomy x Recruiting

NCT03866382 II Non-ccRCC Cabozantinib + nivolumab + ipilimumab x x Recruiting

NCT03141177 III mRCC (treatment-naïve) Cabozantinib + nivolumab
versus sunitinib x Active, with results [85]

NCT03937219 III mRCC (treatment-naïve) Cabozantinib + nivolumab + ipilimumab
versus nivolumab + ipilimumab x x Active

NCT04338269 III Locally advanced or metastatic RCC Cabozantinib + atezolizumab
versus cabozantinib x Recruiting

NCT03937219 III Treatment-naïve locally advanced or
metastatic RCC

Cabozantinib + nivolumab + ipilimumab
versus nivolumab + ipilimumab x x Active

NCT03793166 III mRCC Cabozantinib + nivolumab
versus nivolumab x Recruiting [118]

NCT03136627 I/II mRCC Tivozanib + nivolumab x Active, with results [92,119]
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Table 3. Cont.

NCT Number Phase Population Intervention
Agent type

Statusref

Anti-PD-1 Anti-PD-L1 Anti-CTLA-4

NCT03006887 Ib Solid tumours including RCC Lenvatinib + pembrolizumab x Completed

NCT02501096 Ib/II Solid tumours including RCC Lenvatinib + pembrolizumab x Active, with results
[87,93,94,120,121]

NCT02811861 III RCC Lenvatinib + pembrolizumab or
lenvatinib + everolimus versus sunitinib x Active, with results [88]

Anti-VEGF mAb + CPI

NCT02210117 I mRCC amenable to curative surgery mRCC amenable to curative surgery x x Active, with results [122]

NCT02348008 Ib/II RCC Pembrolizumab + bevacizumab x Completed, with results [123,124]

NCT02420821 III mRCC (treatment-naïve) Atezolizumab ± bevacizumab
versus sunitinib x Active, with results [79,125]

Anti-VEGF, anti-vascular endothelial growth factor antibodies; aRCC, advanced renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; CPI, checkpoint inhibitor; CTLA-4, cytotoxic
T lymphocyte antigen; mAb, monoclonal antibody; mRCC, metastatic renal cell carcinoma; NCT, National Clinical Trial; PD-1, programmed cell death protein 1; PD-L1, programmed cell
death ligand 1; RCC, renal cell carcinoma; Ref, related reference; TKI, tyrosine kinase inhibitor.
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4. Conclusions

The interest in combining anti-angiogenic agents with a CPI for the treatment of
aRCC, initially driven by clinical observations, has been fostered by findings that anti-
angiogenic TKIs and anti-VEGF mAbs may also have immune-modulatory effects. The
available clinical data suggest that combinations of anti-angiogenics and CPIs provide a
clinical benefit in patients with aRCC relative to sunitinib monotherapy. Safety profiles
have been shown to vary depending on the individual components, highlighting the
importance of selecting the optimal agent and dose. The question as to whether the efficacy
benefit observed with combination treatments is additive or synergistic, and whether
concomitant administration is preferred over sequential mono-modality approaches, and
if so in which patients, is unlikely to be answered by the current trials and therefore will
require further investigation. Validated biomarkers of response to CPI-based combination
regimens would facilitate personalised treatment with a specific combination or a sequence
of single-agent/single modality-regimens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14030644/s1, Figure S1. Schematic diagram of the pos-
sible mechanisms of action of anti-angiogenic plus CPI combination therapy in RCC; Table S1:
Anti-angiogenic agents and immune checkpoint inhibitors for the treatment of aRCC; Table S2:
Anti-angiogenic agents and immune checkpoint inhibitors for the treatment of aRCC; Table S3:
Considerations for interpreting results of CPI/anti-VEGF treatment combinations in RCC.
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