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Abstract Introduction: Changes in cerebrospinal fluid (CSF) tau and amyloid b (Ab)42 accompany develop-

ment of Alzheimer’s brain pathology. Robust tau and Ab42 immunoassays were developed to estab-
lish a tau/Ab42 cutoff distinguishing mild-to-moderate Alzheimer’s disease (AD) subjects from
healthy elderly control (HC) subjects.
Methods: ACSF tau/Ab42 cutoff criteriawas chosen,which distinguished the groups andmaximized
concordance with amyloid PET. Performance was assessed using an independent validation cohort.
Results: Atau/Ab425 0.215 cutoff provided 94.8%sensitivity and77.7%specificity.Concordancewith
PETvisual readswas estimated at 86.9% in aw50%PETpositive population. In thevalidation cohort, the
cutoff demonstrated 78.4% sensitivity and 84.9% specificity to distinguish the AD and HC populations.
Discussion: A tau/Ab42 cutoff with acceptable sensitivity and specificity distinguished HC from
mild-to-moderate AD subjects and maximized concordance to brain amyloidosis. The defined cutoff
demonstrated that CSF analysis may be useful as a surrogate to imaging assessment of AD pathology.
� 2017 Merck Sharp & Dohme Corp., Luminex Corporation, Philip Scheltens, Charlotte E. Teunis-
sen, James Burke, S. Lance Macaulay, Geir Br�athen, Sigrid Botne Sando, Linda R., White, David G.
Darby, Stephanie R. Rainey-mith. Published by Elsevier Inc. on behalf of Alzheimer’s Association.
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Keywords: Alzheimer’s disease; Diagnostic test assessment; PET; Amyloid b42; Tau
1. Introduction

Amyloid b (Ab) and tau pathology precede clinical symp-
toms in Alzheimer’s disease (AD) by many years [1–4].
Cerebrospinal fluid (CSF) tau and Ab [5–10] correlate with
brain pathology and AD diagnosis [11–13]. Intensive efforts
have focused on earlier identification of patients at risk for
developing AD, such as patients with mild cognitive
impairment (MCI), and demonstrate that biomarkers related
to AD pathology play an important role [14,15].

Amyloid PET ligands are approved by regulatory
agencies to estimate Ab neuritic plaque density in patients
with cognitive impairment being evaluated for AD, along
with other diagnostic evaluations. Although PET ligands
provide an early biomarker, cost, limited access, and lack
of treatment options have limited use [16]. CSF biomarkers
could overcome cost and access issues, but unlike PET
ligands, no CSF assay is approved by regulatory agencies
as a diagnostic tool. Although CSF assays are available
with a Conformit�e Europ�eene (European Conformity, CE)
mark and documented analytical validation, these assays
are not accompanied by a universal cutpoint to enable an
AD diagnosis. Robust assays with good reliability and repro-
ducibility have been difficult to develop.

There are several challenges in developing robust CSF as-
says that meet regulatory requirements. First, collection
methods have varied and may be confounded by a significant
loss of Ab42 because of binding to test tubes [17]. Second,
there are concerns about intralaboratory and interlaboratory
variability [18]. Third, most studies reporting cutoffs used
single cohorts for distinguishing AD from healthy elderly
control (HC) subjects, although not confirming sensitivity
and specificity with replication samples, possibly overesti-
mating key performance characteristics. In addition, under-
standing the correlation between CSF results and amyloid
PET imaging is important for their clinical use. To address
this gap, investigational use tau and Ab42 assays were devel-
oped using the Luminex xMAP platform and validated
to Clinical Laboratory Improvement Amendments’ stan-
dards [19] to address interlaboratory and intralaboratory
variability (full methods/results in Supplementary Data).
A cutoff ratio of tau/Ab42 was determined, which distin-
guished patients with mild-to-moderate Alzheimer’s disease
(mmAD) from HC subjects across four countries and five
sites. Among candidate ratios, the cutoff was set by opti-
mizing concordance with amyloid PET imaging. This cutoff
was confirmed in a validation study of HC and mmAD
subjects across a wider geographic range. Finally, correla-
tion with amyloid PET imaging was assessed using both
18F-flutemetamol and Pittsburgh Compound B (PiB).

2. Methods

2.1. Study design

The cutoff-setting study (Merck Protocol 290) was con-
ducted at five sites (United States, Netherlands, Norway,
and Australia [two sites]). CSF samples collected between
2009 and 2013 used a convenience sampling approach, al-
lowing each site to use site-specific noninterventional study
protocols for local Institutional Review Board approval.
Subjects were enrolled per each site’s protocol/work plan;
each subject signed informed consent before study proced-
ures were conducted. The validation study (Merck Protocol
261) was conducted at nine sites in six countries (United
States, Canada, Argentina, Spain, Germany, and UK).

2.2. Subjects

The cutoff-setting study enrolled subjects �50 to
�85 years with a clinical diagnosis of AD, HC, MCI, or
non-AD dementia. Subjects clinically diagnosed as AD or
MCI had a Mini-Mental State Examination (MMSE) score

http://creativecommons.org/licenses/by-nc-nd/4.0/
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�12 and,28, andHC subjects had a score�28 andwere free
of cognitive deficits based on site-specific neuropsychologi-
cal testing. Standard of care medications for AD were al-
lowed; however, subjects were excluded if they participated
in a clinical trial within the last 2 months or had ever received
an AD vaccine. Before CSF testing, clinical results were re-
viewed by a central monitoring team to prespecify subjects to
include in each analysis. PET images were 6180 days from
the date of CSF collection and used 18F-flutemetamol or C-11
PiB (11C-PiB) tracers. The PET imaging data for subjects
clinically diagnosed with mmAD, amnestic MCI, and HC
were analyzed and standardized uptake value ratios (SUVRs)
were computed and included in the concordance analyses.

For the validation study, subjects completed the MMSE
and Clinical Dementia Rating Scale–Sum of Boxes at
screening to determine cognitive health (HC population) or
probable mmAD based on the 1984 National Institute of
Neurological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders
Association criteria and Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, Text Revision. Patients
with AD required an MMSE score �15 and �26. Patients
with AD were required to have a magnetic resonance imag-
ing scan within 1 year of screening to rule out non-AD con-
ditions. HC subjects required an MMSE score �28, a
Clinical Dementia Rating Scale–Sum of Boxes of 0, and a
modified Hachinski score of �4.
2.3. Procedures

Details of the CSF collection procedures are described in
the Supplementary Data.
2.4. PET methods

PET imagingwas conducted for the cutoff-setting study at
sites 2, 3, and 4. 18F-Flutemetamol dose was administered as
a single intravenous bolus of 185 MBq [5 millicuries (mCi)]
in amaximum dose volume of 10mL, within 40 seconds, fol-
lowed by an intravenous flush of 5 to 15 mL of 0.9% sterile
sodium chloride injection. A 20-minute PET image was ac-
quired starting 90 minutes after 18F-flutemetamol injection,
using a PET scanner in three-dimensional (3D) mode with
appropriate data corrections, patient head positioning to
reduce movement and image acquisition. PET images with
11C-PIBwere acquired for 30minutes starting 40minutes af-
ter an intravenous injection of 370MBqof the radiotracer [4].

After PET image reconstruction and coregistration with
magnetic resonance imaging anatomic images, PET images
were scored (6) by readers blinded to patient’s diagnosis
following recommended methods or using approved visual
read methodology. 18F-Flutemetamol PET images from sites
3 and 4 were scored at Bioclinica, Inc (San Francisco, CA),
whereas images from site 2 subjects were scored by a local
radiologist. If any one of the brain regions systematically re-
viewed for 18F-flutemetamol uptake was positive in either
brain hemisphere, the scan was considered positive. Other-
wise, it was considered negative. For 11C-PIB, the images
were processed and SUVR determined [4]. The cerebellar
cortex was used as the reference region and the cortical com-
posite index was the average SUVR of the area-weighted
mean of frontal, superior parietal, lateral temporal, lateral
occipital, and anterior and posterior cingulate regions. An
SUVR cutoff value of 1.5 was applied to differentiate posi-
tive from negative scans [4].

2.5. Luminex xMAP tau/Ab42 assay

The Ab42 sandwich immunoassay comprised clones
1-11-3 and 6E10 (both from Covance, Catalog# SIG-39169,
and SIG-39320, respectively). Antibody 1-11-3 is specific
for the free carboxyl terminus of Ab42, whereas antibody
6E10 recognizes an amino terminal epitope within amino
acids 3 to 8 of beta amyloid (EFRHDS). The tau sandwich
immunoassay was comprised of clones 10H8 and 19G10.
These antibodies were made by Merck & Co., Inc., and
(based on Tau441 isoform) recognize amino acid sequences
220-224 (TREPK), and 188-194 (PPKSGDR), respectively.
For more details of the assay, including linear ranges, preci-
sion profiles, lot-to-lot and site-to-site precision, analytic
reactivity, sensitivity, hook effect and carry over, and effect
of interfering substances, see Supplementary Data.

CSF samples and control subjects were diluted 1:2 for tau
and 1:20 for Ab42 analysis to prepare 50 mL/well final vol-
ume. A bead mix (50 mL) containing beads coated with cap-
ture antibody to either tau or Ab42 was added to each well.
After aspirating the bead carrier liquid from the wells, 50 mL
of each diluted CSF or control sample was added and incu-
bated for 2 hours. Liquid was removed and two washes with
150 mL of 1! wash buffer were completed, followed by
1 hour of incubation with 50 mL of tau or Ab42 detection
antibody. Liquid was removed from the wells, two bead
washes with 150 mL of 1!wash buffer were completed, fol-
lowed by 30 minutes of incubation in 50 mL of Reporter so-
lution. Liquid was removed, two washes with 150 mL of 1!
wash buffer were completed, and samples were resuspended
with 100 mL of wash buffer followed by detection on a Flex-
Map 3D instrument. All incubations occurred at 25�C in the
dark on an orbital shaker at 800 rpm.

2.6. Statistical methods

The main objective of the statistical analysis was to set a
cutoff for the CSF tau/Ab42 ratio that met or exceeded pre-
specified performance criteria of sensitivity�80% and spec-
ificity �60% for the discrimination of disease status, AD
versus HC, and maximized concordance with amyloid
PET tracer visual read results (18F-flutemetamol tracer). Re-
sults for tau and Ab42 alone are also presented. For tau/
Ab42, the set of cutoffs with one-sided 95% confidence limit
[20] for specificity .60% and for sensitivity .80% was
identified. For possible cutoffs in this window, nonpara-
metric kernel density estimators of concordance with
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amyloid PET 18F-flutemetamol visual read values were used
to identify the value with the highest total agreement [21].
Bootstrap resampling was used to adjust for bias and
construct confidence intervals (CIs) for agreement parame-
ters along with corresponding significance tests. For ana-
lyses of correlations between PET and CSF measures, all
subjects with PET scans were used, including subjects
with MCI (N 5 15) and indeterminate diagnosis (N 5 5).

For the validation analysis, assuming the tau/Ab42 cutoff
established in the cutoff-setting study had a true sensitivity of
0.8 and a true specificity of 0.6, simulations indicated that 51
patients with AD provided 93% power (a5 0.05, one-sided)
to show that the true sensitivity was.0.6. Similarly, with 51
control subjects there was 88% power (a5 0.05, one-sided)
to show that the true specificity was.0.4. Therefore, the po-
wer to show both a true sensitivity.0.6 and a true specificity
.0.4 was .80% (93% ! 88% 5 81.8%).
3. Results

3.1. Subject demographics and cutoff-setting study
disposition

The AD and HC cohorts were well matched for gender
and age (Table 1). The cohort used to estimate concordance
had almost equal gender representation (49% male), ages
ranged from 52 to 85 years, and MMSE scores ranged
from 17 to 30. Supplementary Table 1 gives similar demo-
graphic information for samples used in the amyloid PET
18F-flutemetamol concordance and 11C-PiB SUVR and
CSF analyses.
Table 1

Demographics in subjects analyzed for the cutoff-setting study

Diagnosis N

Female/male

(% male) Mean age (y) MMSE

Sensitivity and specificity analysis

HC 188 104/84 (45%) 67 (50, 84) 29 (28, 30)

AD 155 86/69 (45%) 64 (52, 84) 22 (12, 27)

All subjects 343 190/153 (45%) 66 (50, 84) 28 (12, 30)

Concordance analysis (flutametamol visual read vs. CSF)

HC 44 24/20 (45%) 71 (53, 82) 29 (28, 30)

AD 33 16/17 (52%) 63 (52, 78) 22 (17, 27)

MCI 13 6/7 (54%) 69 (56, 85) 27 (21, 30)

IND 5 2/3 (60%) 63 (59, 74) 27 (27, 29)

All subjects 95 48/47 (49%) 67 (52, 85) 28 (17, 30)

PiB versus CSF analysis

HC 15 10/5 (33%) 75 (65, 84) 29 (28, 30)

AD 4 4/0 (0%) 74 (57, 77) 20 (12, 22)

MCI 2 2/0 (0%) 72 (68, 77) 27 (25, 29)

All subjects 21 16/5 (24%) 75 (57, 84) 29 (12, 30)

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; HC,

healthy control subjects; IND, indeterminate; MCI, mild cognitive impair-

ment; PiB, Pittsburgh Compound B.

NOTE. Summary statistics for age and Mini-Mental State Examination

(MMSE) are median (min, max). Also, HC and AD subjects in concordance

analysis were used in the sensitivity/specificity analysis. HC and AD sub-

jects in PiB versus CSF Analysis were used in the sensitivity/specificity

analysis.
Overall, 478 subjects were screened; 67 did not meet en-
try criteria (Fig. 1). An additional 10 subjects were excluded
from all analyses: four had an indeterminate (IND) clinical
diagnosis (within the HC-MCI-AD spectrum but not clear
which category) and did not have a PET measurement, one
subject had an MCI diagnosis and no PET measurement,
three subjects did not have a definitive clinical diagnosis,
and two subjects’ CSF samples had blood contamination.
Overall, 401 subjects were included in at least one analysis.
3.2. Cutoff setting and performance estimates

The mean (standard deviation) in HC and AD subjects for
CSFAb42 and tau is indicated in Table 2. In AD versus HC
CSF, the mean Ab42 concentration was 2.2-fold lower and
mean tau concentration was 1.7-fold higher, which is consis-
tent with prior findings [10,12,22,23].

Fig. 2 shows sensitivity and specificity estimates to
discriminate AD from HC subjects with 95% lower confi-
dence bound (CL) for each level of tau/Ab42. The interval
(0.169, 0.360) yielded a window with 95% CL for sensitivity
of �80% and the 95% CL for specificity of �60%. Total
agreement with PET estimates (blue curve) were maximized
within this window at tau/Ab4 5 0.215 using the rule that
samples are considered positive when tau/Ab42 �0.215. As
selected, the estimated sensitivities and specificities demon-
strated general consistency across sites (data not shown).

Table 3 summarizes sensitivity, specificity, and agree-
ment estimates with 18F-flutemetamol PET visual read based
on the proposed cutoff (also see Supplementary Figs. 1 and 2).
For the rule based on the tau/Ab42 ratio, the initial estimate
of total agreement was 87.1%. Bootstrap estimation, which
reduces bias and estimates precision, yielded a total agree-
ment estimate of 88.0% with 95% CI (82.3%, 92.6%). Sub-
tracting a bias estimate because of the optimization over
prospective cutoffs in the window yielded a final total agree-
ment estimate of 86.9% with 95% CI (80.7%, 91.9%). As
employed in the cutoff cohort, the estimated sensitivity for
AD detection using tau/Ab42 with the 0.215 cutoff was
94.8% (95% CL 5 91.1%) and estimated specificity was
77.7% (95% CL 5 72.3%).

For Ab42 measure alone, the value maximizing concor-
dance within the sensitivity/specificity window was the right
end point of the window (Table 3) at 663 pg/mL. Agreement
with PET for this cutoff was estimated to be 77.9%, which is
lower than for tau/Ab42 (P,.01). For tau, nowindow existed
that met the prespecified sensitivity and specificity perfor-
mance criteria. Agreement statistics for tau correspond to
the value maximizing total agreement with PET overall
(184 pg/mL).However, at this cutoff, the estimated sensitivity
to discriminate AD from HC subjects was 56.8%, and the es-
timate of total agreement with PETwas the lowest at 72.9%.

The tau/Ab42 cutoff was also examined in 21 HC, MCI,
and AD subjects with 11C-PiB SUVR data. Using a PiB
SUVR cutoff of 1.5, estimated total agreement was 91.7%
for classifying brain amyloidwith the tau/Ab42 cutoff (Fig. 3).



Patients screened
N=478

Subjects with CSF samples
N=411

Subjects not included N=10
   IND without PET n=4
   MCI without PET n=1
   No definitive clinical diagnosis n=3
   Contamination of samples n=2

Subjects not meeting criteia
N=67

Subjects included in
at least one analysis N=401
   HC n=188
   AD n=155
   MCI n=15
   IND n=5
   Non-AD dementia n=38

Fig. 1. Patient disposition for cutoff-setting study. Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; HC, healthy control subjects; MCI, mild

cognitive impairment; IND, indeterminate.
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3.3. Validation of the tau/Ab42 cutoff

For patients with AD in the validation study, 40 of 51 pa-
tients had tau/Ab42 �0.215 (Supplementary Table 3). Esti-
mated sensitivity was 78.4%, with a one-sided 95% CI lower
bound 5 66.8%, supporting the first coprimary hypothesis,
because the lower bound on sensitivity was .60%. For
HC subjects, 45 of 53 subjects had tau/Ab42 ,0.215. The
estimated specificity was 84.9%, with a one-sided 95%
CL 5 74.4%, supporting the second coprimary hypothesis,
because the lower bound on specificity was .40%
(Supplementary Table 3). As in the training set, the esti-
mated sensitivities and specificities by site demonstrated
general consistency across sites (Supplementary Table 3).
P
er

ce
nt

20

40

60 Total Agreement
4. Discussion

Amyloid PET tracers have achieved regulatory approval
to aid in AD evaluation. Diagnostic CSF assays are not avail-
Table 2

Summary statistics for CSF Ab42 and tau measures used for cutoff setting

and non-AD dementia samples

Clinical

diagnosis N

Ab42 (pg/mL)

mean (SD)

Tau (pg/mL)

mean (SD) Ratio tau/Ab42

HC 188 823 (303) 126 (39) 0.175 (0.096)

AD 155 379 (155) 208 (83) 0.613 (0.302)

MCI 13 500 (207) 171 (78) 0.421 (0.281)

IND 5 868 (384) 136 (68) 0.201 (0.188)

NON 38 540 (241) 127 (41) 0.308 (0.244)

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; HC,

healthy control subjects; MCI, mild cognitively impaired; IND, indetermi-

nate; NON; non-Alzheimer’s dementia; SD, standard deviation.

NOTE. CSF: negative5CSF tau/Ab42, cutoff (0.215); positive5CSF

tau/Ab42 � cutoff (0.215). Values in table are number of individuals.
able, although they would represent a more accessible and
cost-effective option. The tau and Ab CSF assays reported
herein demonstrated performance characteristics required
of an AD diagnostic aid, including acceptable lot-to-lot
and site-to-site variability. The cutoff-setting study demon-
strated that a tau/Ab42 5 0.215 cutoff provides 94.8%
(91.1%, 100%) sensitivity and 77.7% (72.3%, 100%)
0.1

0

0.2 0.4
Tau/Aß 42 (log spacing)

0.8 1.6

Fig. 2. Cutoff plot: estimates of sensitivity, specificity, and total agreement

with PET versus CSF tau/Ab42. The cutoff plot displays estimates of sensi-

tivity, specificity, and total agreement with PET (flutemetamol visual read)

versus prospective cutoffs for CSF tau/Ab42 using log scaling. Sensitivity

(solid line, black) and specificity (solid line, gray) are displayed along

with 95% lower confidence limits (dashed lines). The estimate of total

agreement (solid line, blue) is based on nonparametric density estimation.

Vertical lines (gray) show the CSF window (0.169, 0.360) that achieves

the acceptable sensitivity and specificity performance. The value that max-

imizes total agreement within this window (0.215) is also shown with a ver-

tical line and identified on the top axis. Abbreviation: CSF, cerebrospinal

fluid.



Table 3

CSF proposed cutoff and performance estimates at cutoff

Ratio tau/Ab42 Ab42 (pg/mL) Tau (pg/mL)

Cutoff 0.215 663 184

Window: sensitivity �80% and specificity �60% (0.169, 0.360) (469, 663) No window

Sensitivity and specificity to discriminate AD from HC

Specificity (%, 95% CL) 77.7 (72.3, 100) 66.0 (60.1, 100) 92.6 (88.8, 100)

Sensitivity (%, 95% CL) 94.8 (91.1, 100) 94.8 (91.1, 100) 56.8 (50.2, 100)

Concordance with PET (flutemetamol visual read)

Initial estimates

Total agreement (%) 87.1 78.5 73.7

Negative agreement (%) 80.2 64.3 90.8

Positive agreement (%) 94.0 92.8 56.6

Bootstrap estimates adjusted for optimization bias

Total agreement (%), (95% CI) 86.9 (80.7, 91.9) 77.9 (71.1, 83.9) 72.9 (66.7, 79.1)

Negative agreement (%), (95% CI) 80.1 (68.8, 89.0) 67.9 (55.3, 81.1) 83.1 (51.9, 95.6)

Positive agreement (%), (95% CI) 94.0 (86.9, 98.0) 89.4 (74.9, 95.3) 69.1 (45.9, 90.0)

Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; CL, lower confidence bound; HC, healthy control subjects.

NOTE. Estimates of concordance were based on nonparametric kernel density estimation. Initial estimates were used to determine the cutoff. Estimates at the

proposed cutoff were based on 5000 bootstrap samples. Optimization bias was estimated using bootstrap resampling. Total agreement defined as 0.5*negative

agreement1 0.5*positive agreement. The response bootstrapped was the logit transformation of agreement, and CIs were based on percentiles of the bootstrap.

Y. Mo et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 6 (2017) 201-209206
specificity in discriminating AD from HC subjects. The cut-
off selected from a range of values maximized concordance
with flutemetamol PET scan visual reads, giving an estimate
of 86.9% concordance. The agreement of 91.7%with a sepa-
rate group of subjects and PiB SUVR confirms that the cutoff
likely detects brain amyloid deposition. The cutoff was vali-
dated in an independent cohort of AD and HC subjects from
different sites and countries, showing an estimated 78.4%
0.1
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This study is notable for several reasons. The good
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suggests that the CSF measure may be used, similar to am-
yloid PET tracers, for detecting amyloid pathology in the
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trials [24–26]. The amyloid PET tracers were approved, in
part, as they demonstrated good concordance with
postmortem amyloid pathology, including modified
Bielschowsky silver staining of plaque. For an alternate
method to detect brain amyloid as a registered diagnostic
device, a CSF device would most likely need to
demonstrate similar concordance to postmortem plaque,
or perhaps an amyloid PET tracer could be considered as
a new “truth standard.” Other studies using different PET
tracers and CSF assays also report relatively high
concordance between CSF analytes and amyloid PET
deposition [22,27–31]. Here we demonstrated 86.9% and
91.7% concordance between CSF tau/Ab42 and either
flutemetamol or PiB, respectively.

Prior studies comparing CSF and amyloid PET measures
used SUVR cutoffs for PET amyloid classification. Our
study used the visual read method approved by regulatory
agencies for PET amyloid classification and showed a
concordance rate of 86.9%, comparable to rates in two
recent large studies (tau/Ab42 ratios) of 86% and 92%
[30,31] and in a recent phase 2 clinical trial in prodromal
AD (87%) [27]. In our cutoff-setting study, concordance
rates with 18F-flutemetamol PET using SUVR cutoffs from
two different methods were similar to the overall concor-
dance rate using visual reads. In addition, in a smaller sub-
group of subjects assessed with PiB PET SUVR, the
concordance rate was consistent at 91.7%. Taken together,
the high agreement between the cutoff ratio and different
PET tracers using different classification methods suggests
that tau/Ab42 can accurately identify subjects with brain
amyloidosis. The correlation is not perfect; however, the
lower bound of the 95%CI for most studies falls well,90%.

An important issue is whether tau, Ab42, or the ratio
tau/Ab42 shows superior performance characteristics.
Palmqvist et al. [31] found the agreement in MCI subjects
between CSF Ab42 and 18F-flutemetamol PET with SUVR
was 92%. Tau/Ab42 did not improve concordance. Our
study showed Ab42 concordance with 18F-flutemetamol
PET visual reads of 77.9%; tau/Ab42 increased the concor-
dance to 86.9%. This difference may be because of many
factors including the use of different assays (INNOTEST
enzyme-linked immunosorbent assay), visual reads versus
SUVR, and different patient cohorts (MCI vs. AD and
HC) [31]. As visual read is the method approved for clin-
ical practice, future studies may be needed to replicate the
results. Interestingly, in a recent head-to-head comparison
of amyloid PET and CSF biomarkers in MCI subjects
who later developed dementia (MCI-AD) compared with
HC subjects, tau/Ab42 had better diagnostic accuracy for
distinguishing MCI-AD from HC subjects than Ab42 alone
and was comparable to amyloid PET measures [14]. As
amyloid PET tracers detect neuritic plaque with a sur-
rounding of tau-containing abnormal neurites, and not
diffuse amyloid, perhaps the increased CSF tau along
with the reduced amyloid is more reflective of this lesion
compared with CSF amyloid alone.
Prior studies attempting to define tau/Ab42 distinguishing
AD and HC subjects using other assay methods have reported
similar results [5,32,33]. A review of nine studies reported
sensitivities between 71% and 90% and specificities
between 80% and 100% [33]. In ameta-analysis of 11 studies,
average sensitivities were 89% (95% CI: 84%, 92%) and
specificities were 87% (95% CI: 83%, 90%) for the combina-
tion of tau with Ab42 to distinguish HC from AD subjects
[32]. A third review, including 16 studies, each with sample
sizes �100, reported mean sensitivity of 88.7% (95% CI:
84.0%, 93.5%) and mean specificity of 88.7% (95% CI:
85.6%, 91.8%) [5]. Most prior studies compared tau and
Ab42 separately as well as the ratio, and in general, meta-
analyses indicate that the ratio performs better than either
one alone. Given that establishing and assessing a cutoff in
the same cohort will likely produce higher sensitivities and
specificities compared with replication cohorts using a pre-
specified cutoff, the published literature to date may tend to
overestimate sensitivity and specificity. In this study, we
selected.60% for specificity based on prior reports of means
and CIs and a feasible sample size. Failure to hit this target
would suggest that this assay was inadequate for differenti-
ating patients with AD from HC subjects.

Studies of MCI subjects demonstrated that tau/Ab42 also
predicts which subjects develop AD dementia in the next 2 to
5 years [34]. These studies reported sensitivities between
64% and 95% and specificities between 53% and 97% [34].
A meta-analysis of 10 studies reported overall sensitivity of
87% (95% CI: 80%, 95%), specificity of 70% (95% CI:
57%, 83%), and positive predictive value of 65% (95% CI:
53%, 77%) [34]. These results along with those from the pre-
sent studies suggest the assay cutoff may be useful in identi-
fying MCI subjects at risk of progressing to dementia.
4.1. Limitations

One potential limitation of a cutoff-setting study is the
concern that a CSF cutoff appropriate in one region may
not be appropriate for others. Here, the cutoff-setting study
included sites from the United States, Norway, the
Netherlands, and Australia, and the validation study was
conducted in six countries. Despite regional differences
in both study populations, there were neither noticeable
differences in CSF ratios between sites for HC or AD sub-
jects nor any apparent difference in cutoff performance in
the present study. This study was, however, limited by
the CSF cutoffs that could be used to distinguish subjects
with AD versus non-AD dementia. In the present study,
50% of the non-AD dementia subjects tested positive using
the CSF ratio (data not shown), which is consistent with
prior studies indicating lower specificity relative to HC
subjects [14]. Although this may reflect the assay, it may
also be that some of the patients with AD were misclassi-
fied and that some of the control subjects have preclinical
AD. Furthermore, negative agreement of tau/Ab42 and
18F-flutemetamol PET was 80.1%, indicating that a subject
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with a negative PET scan had a w20% chance of a positive
CSF result. The negative agreement (80.1%) was lower
than the positive agreement (94%) and may have been
because of assay variability or could instead suggest that
the CSF measures detected amyloid pathology before the
stage of neuritic amyloid plaque formation. [3], Finally,
given that the underlying amyloid and tau pathologies are
continuous and not discrete, the use of a cutpoint may
not be optimal. Further analyses may provide alternative,
clinically useful approaches to tau and Ab42 measures,
which could include “gray zones.”

In conclusion, this study demonstrates a robust tau/Ab42
measure that distinguished AD subjects from HC subjects
and identified subjects with brain amyloidosis. This cutoff
was validated in a second cohort. Our results support the
view that CSF tau/Ab42 measures are useful surrogates to
amyloid PET to aid in diagnosis of AD, possibly at early
stages of disease. Finally, given the robust performance char-
acteristics of this measure, these results support widespread
use of tau/Ab42 in clinical settings, including an ongoing
phase III trial of a beta-site APP-cleaving enzyme (BACE)
inhibitor in a prodromal AD population (clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT01953601).
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources. Cere-
brospinal fluid (CSF) tau and Ab42 analytes
change with the development of Alzheimer’s amy-
loid brain pathology. Few tau and Ab42 assays are
produced using good manufacturing practices,
validated to clinical laboratory improvement amend-
ments’ standards, and have demonstrated good lot-
to-lot and site-to-site analytical consistency.

2. Interpretation: Using a novel assay meeting good
manufacturing practices and Clinical Laboratory
Improvement Amendments’ standards, a CSF tau/
Ab42 cutoff ratio distinguished Alzheimer’s disease
(AD) from HC subjects and demonstrated good
concordance with amyloid PET imaging. This sug-
gests a tau/Ab42 ratio is a useful alternative to amy-
loid PET for evaluating subjects at risk for AD.

3. Future directions: These results support use of CSF
tau/Ab42 measures in clinical settings to evaluate
subjects at risk for AD.
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