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Abstract: Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable
scientific attention in the past years in the field of (bio)sensors since they have unique features that
distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile
preparation and high stability under extreme operation conditions (higher pH and temperature
values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based
on the measurement of small mass changes on the sensor surface. QCM sensors are practical and
convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and
reproducibility. QCM devices are highly suitable for converting the recognition process achieved
using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as
synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites
using size, 3D-shape and chemical function having molecular memories of the prepared sensor
system toward the target compound to be detected. This review aims to highlight and summarize
the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with
molecular imprinting technology.

Keywords: molecularly imprinted polymers (MIPs); quartz crystal microbalance (QCM); biosensors;
biomolecular recognition; synthetic receptors

1. Introduction

Biomolecular recognition plays a crucial role in biological systems where the enzyme-substrate,
DNA-protein and antibody-antigen interactions are carried out [1]. These interactions and binding
phenomena are usually based on lock and key models where receptors and substrates specifically
interact with each other. These specific interactions include non-covalent interactions such as hydrogen
bonding, metal coordination, hydrophobic interactions, Van der Waals interactions, π-π interactions
and electrostatic interactions [2]. This specific molecular recognition phenomenon is commonly used in
biosensor applications. For this purpose, antibodies are used as the recognition elements in biosensors
since they have high selectivity and sensitivity toward the target compound. However, antibodies
display some drawbacks of such as high cost and low stability under extreme conditions (higher pH,
temperature and pressure).

Molecularly imprinted polymers (MIPs) also called “artificial antibodies” can overcome these
disadvantages of natural antibodies. MIPs are man-made artificial materials that show high affinity
and selectivity toward a target compound (“template”). MIPs are prepared by polymerization of an
appropriate functional monomer and a cross-linker in the presence of a template as schematically
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shown in Figure 1. Since MIPs are very selective toward the target compound, they are commonly
used as recognition elements in the fabrication of biosensors. MIPs have the ability to bind target
compounds not only by their 3-D shape, because the incorporation of specific binding groups into
the selective cavities of a polymeric network enhances its affinity and selectivity toward the target
analyte [3–10].
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Figure 1. Schematic representation of molecular imprinting (reproduced with permission from [11]).

On the other hand, the Quartz Crystal Microbalance (QCM), is well suited as a transducer element
for chemical sensors, being rapid, easy to use, highly stable and portable. Increased mass on the
gold surface, associated with the binding reaction, results in a decrease of the frequency. QCM-based
sensors have been used in the detection of several analytes even in very different matrix environments.

The combination of QCMs and MIPs can be carried out by two main approaches which are
immobilization of pre-prepared MIP particles and in-situ polymerization. For the immobilization
of MIP particles on the surface of QCM sensors, modification of the gold sensor surface with
self-assembled monolayers composed of thiol-containing compounds such as 11-mercaptoundecanoic
acid is performed in the first step and then MIP particles are attached to the modified sensor surface.

In in-situ polymerization, a chemical, thermal or photochemical initiator is used [12].
Photochemical initiation has some advantages such as easy control and polymerization at room
temperature. In addition, MIP layers can also be formed by electropolymerization on the surface of the
QCM sensor [13]. In this strategy, the thickness of the MIP layer can easily be controlled by changing
the applied voltage [14]. However, there may be some difficulties such as adhesion problems during
the washing step of the prepared MIP layer on the surface. Thus, some special pre-treatment processes
should be applied to increase the adhesion of MIP layers on the surface of the sensor system. In this
review, we provide an overview of the recent progress and applications of MIP based-QCM sensors.

2. MIP Based-Quartz Crystal Microbalance (QCM) Sensors

There are many reported studies on the applications of QCM sensors based on molecular imprinting
technology. Some examples from the literature are briefly described in the following sections.

2.1. MIP-Based QCM Sensors for Biological Applications

In the last decade, one of the most promising technical applications based on the use of MIPs has
been QCM. QCM sensors have been developed for the detection of various targets such as proteins
(e.g., enzymes) and cells.
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In one of the first reported studies performed by Dickert and Hayden [15], a MIP-based QCM
sensor for selective recognition of yeast cells was prepared by surface imprinting (Figure 2). The
prepared sensor exhibited recognition ability toward target yeast cells in growth media.
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Figure 2. AFM image of a Saccharomyces cerevisiae cell imprinted sensor surface (reproduced with
permission from [15]).

QCM sensors modified with selective MIP layers also have the ability to recognize their target
compounds, even in complex biological samples such as blood. Dickert and Hayden have reported
another interesting study [16]. They developed a QCM sensor coated with MIP for selective recognition
of erythrocytes in blood samples. The functional monomer 1-vinyl-2-pyrrolidone and template
erythrocytes were polymerized in the presence of the cross-linker N,N′-methylene-bis(acrylamide)
under UV-light. Then, the prepared MIP-based QCM sensor was used for the recognition of
erythrocytes. The results obtained from the performance tests showed that the prepared QCM sensor
has affinity and selectivity toward erythrocytes.

Due to their size, viruses cannot be recognized using conventional optical techniques.
Microbiological assays are therefore used for the detection of viruses. In this case, QCM sensors
combined with MIPs prepared by surface imprinting can efficiently be used for selective detection of
viruses. For example, Tai et al. have reported the first study of MIP-based QCM sensors for successful
recognition of dengue virus [17]. In their study, a selective MIP for the recognition of nonstructural
protein 1 was prepared on the surface of a QCM sensor. The prepared sensor was successfully applied
for the recognition of nonstructural protein and the obtained results showed that the developed assay
can be used for the recognition of various flaviviruses such as four different types of dengue viruses.
The authors reported that additional experiments are needed to determine the diagnostic accuracy of
the prepared MIP-based QCM sensor systems for the detection of acute phase dengue virus infection.

In another important study, a MIP film-coated QCM sensor for the detection of anthrax protective
antigen was developed by the same researh group a few years later [18]. The results showed that the
prepared MIP based-QCM sensor display high affinity toward the target epitope of anthrax protective
antigen in a picomolar concentration range. This sensor platform is a fast and selective assay that can
be efficiently applied for the detection of other bacterial antigens.

Liu et al. [19] have produced a QCM sensor for detection of staphylococcal enterotoxin B
(SEB). This QCM sensor was coated by molecularly imprinted sol-gel thin film. They firstly mixed
organosilanes with SEB and then this combination was coated on the sensor surface (Figure 3).
Their results showed that the prepared sensor was successfully applied in the working range of
1.0 × 10−1 to 1.0 × 103 µg·mL−1 and detection limit was 6.1 ng·mL−1. Selectivity studies were
done with staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin C1 (SEC1), bovine serum
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albumin (BSA) and ovalbumin (OVA) and the QCM sensor system exhibited high selectivity toward
the templates’ analogues. These results showed that MIP-QCM combination systems are very effective
tools for the determination of SEB. The studies included a comparison between the MIP-QCM
combination and immunochips for the detection of SEB. Thus, they developed an alternative method
to expensive immunochip systems. In the light of the obtained data the authors stated that they had
developed a simple, rapid, low cost and sensitive MIP-coated QCM sensor.
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Figure 3. Schemes of the preparation of sol-gel imprinted thin film on the surface of the piezoelectric
quartz crystal (PQC) Au-electrode for the detection of staphylococcal enterotoxin B (SEB) (reproduced
with permission from [19]).

In another study, Lu et al. [20] used a biomimetic sensor system for the determination of
glycoprotein 41, gp41. Glycoprotein 41 is a protein related with human immunodeficiency virus
type 1 (HIV-1). In their study the epitope-imprinting technique was used. Figure 4 shows a schematic
diagram of epitope-imprinting. They also used dopamine as the functional monomer; a peptide with
35 amino acid residues of gp41 as template molecule and their report was the first study to describe
the application of polydopamine in epitope-imprinting. The QCM sensor surface was coated with the
hydrophilic MIP film and it was seen that this film is very selective for the template peptide and also
gp41 protein. The dissociation constant (Kd) was found to be 3.17 nM, a value is very close to that
obtained with monoclonal antibodies. They also investigated the analytical performance of the sensor
by the imprinting effect, selectivity and real sample analysis. The presented study is very important in
terms of biomolecule analysis in that it shows that small peptide groups of large biomolecule structures
can be used as template molecules.
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Liu et al. [21] have developed MIP-QCM-based sensors for the detection of staphylococcal
enterotoxins (SEs), the cause of the most common type of food poisoning known as staphylococcal
food poisoning. They used real substances for the determination of SEA and SEB. Unlike their previous
study, they used QCM-D. They demonstrated that, QCM-D is more stable than QCM 200 for detection
of SEA and SEB from real substances. QCM-D device is more advantageous due to the fact that the
dissipation shift (∆D) can also be measured. TEOS, APTES, OTES and template molecule- containing
sol gel was coated on a QCM electrode by a spin coater. The prepared electrode was evaluated by
repeated measurements of spiked milk samples. This study showed that MIP-based QCM sensors
have very beneficial properties when applied in different areas such as food safety, environmental and
biological applications.

Another QCM-MIP based study was published by Phan et al. [22] in 2014. This study is very
important because the authors investigated the effects of changes in cross-linker and monomer ratio on
the sensitivity and response time. They have also examined the effects of different polymer preparation
mechanisms such as stamp imprinting, bulk imprinting and solvent effect. For this purpose an albumin
imprinted polymer was prepared on a QCM sensor. Studies have shown that a more hydrophilic
polymer is obtained when acrylic acid is used instead of methacrylic acid, that when the amount of
cross-linker is increased, the sensor response time is reduced and the effect of solvent change is very
small. The study is very useful in terms of examining the different parameters.

In 2015, El-Sharif et al. [23] studied different acrylic amides (acrylamide, AA; N-hydroxymethyl-
acrylamide, NHMA; N-isopropylacrylamide, NiPAm) and showed their effects on MIP selectivity.
Their studies are composed of two parts: spectrophotometric and QCM sensor systema. The selectivity
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of protein-specific MIP and the control NIP was also compared towards the template molecule bovine
haemoglobin (BHb). One other important result is that they achieve more selectivity and recognition
capacity through the use of hydrophilic NHMA.

Boronic acids can reversibly interact with diols, α-hydroxyacids and α-amino alcohols. Due
to their high binding ability toward diol-containing compounds through this feature, they are
commonly used as the recognition unit of the sensor systems for the detection of carbohydrates.
Immunoglobulin M (IgM) has high mannose content. Considering this, Diltemiz et al. [24] developed
mannose-imprinted QCM sensors for the selective detection of mannose and IgM. The synthesis of the
functional monomer methacryloylamidophenylboronic acid (MAPBA) and its use for the preparation
of MIPs were performed for the first time in the literature. For the MIP film preparation on the sensor
surface, a MAPBA-mannose pre-organized system was prepared. The QCM electrode surface was
coated with a molecularly imprinted film by a spin-coater and the polymerization was completed
under UV light. The binding affinity was evaluated by using the Langmuir isotherm and the prepared
electrode has high affinity toward the analyte. This study also showed that the imprinting of mannose
has the capability of determining IgM.

Latif et al. [25] used a bulk imprinting technique for the detection of the estradiols which are a kind
of endocrine disrupting chemicals (EDCs). To achieve highly sensitive and selective detection even
in the presence of very similar compounds that have nearly same structure, they used 17β-estradiol
(E2) as a template. The interesting point of this study was the successful imprinting of bacterial cells.
Therefore, both small molecules and analytes such as bacteria with their larger size could be imprinted
on QCM electrode via a polyurethane layer.

L-Nicotine was also used as a template molecule in MIP-QCM studies in the literature. Alenus et al.
have published two different studies on the detection of L-nicotine. One of the studies is in aqueous
solution [26] while the other one is in a biological sample [27]. Although many researchers have
studied L-nicotine template molecules in aqueous solution, Alenus et al. studied the detection of
L-nicotine in saliva and urine. They used bulk-polymerized L-nicotine MIPs for this purpose in both
studies. The monomer solutions were prepared using MAA as the functional monomer, EDMA as
the cross-linker, AIBN as the initiator and L-nicotine as the template molecule, then these solutions
were polymerized at 60 ◦C for 72 h. The obtained polymers were ground, washed to extract excess
L-nicotine and then coated on a quartz crystal microbalance-dissipation (QCM-D) electrode with PVC.
They demonstrated that MIPs bind 4.03 times more L-nicotine than NIPs in water and 1.99 times
more in PBS at pH 9. L-Nicotine-spiked saliva and urine samples were diluted in water and PBS
solution. L-Nicotine was successfully determined in samples of patients’ saliva after using nicotine
gums and smokeless tobacco. This study shows that even though the L-nicotine concentration is in the
micromolar range, it could be detected directly in saliva and urine samples.

Another study for the determination of L-nicotine was accomplished by Croux et al. [28]. They
used a different approach and application with a MIP-based QCM sensor and prepared a multi-channel
system. Their four channel system contains two NIP/MIP pairs. The mixture of MAA, EGDM, AIBN
and template molecule L-nicotine was placed on the QCM electrode via a PDMS mold (Figure 5). Finite
element analysis (FEA) was used for this study to investigate the flow inside the system. In this way
turbulence causing concentration problems was prevented.

Electropolymerization is another crucial approach for the preparation of MIPs on the surface of
QCM sensors. In situ polymerization strategies can be used for this purpose. The first attempts using
phenolic functional monomers were carried out to investigate the effect of electropolymerization on
MIP film preparation, but the obtained MIP film layers were thick and non-specific interactions had to
be blocked using other compounds [29,30]. Considerable progress has been achieved in this area by
depositing thin film layers at a certain point of the sensor surface [31]. One of the main advantages
of the electropolymerization technique is that the thickness of the MIP film layer can be changed by
applying different voltage values. Lenain and co-workers [32] first prepared an electrode composed
of molecularly imprinted sub-micron spherical particles for the recognition of metergoline. Hybrid
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structures can also be prepared by using MIPs with proteins or a self-assembled monolayer. The first
combination of an enzyme with a MIP film on the sensor surface for the detection of electroactive
proteins was reported by the research group of Yarman [33].Sensors 2017, 17, 454  7 of 18 
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Figure 5. (a) Schematic demonstration of MIP-based QCM sensor; (b) Prepared MIP based-QCM sensor
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Apodaca et al. [34] have developed a MIP-based QCM sensor for the selective recognition of
folic acid. MIP film using bisterthiophene dendrons and folic acid as the template was prepared
by electropolymerization on the sensor surface. The analytical performance of the prepared sensor
was investigated in the presence of pteroic acid, caffeine and theophylline. The obtained results
showed that the prepared MIP-based QCM sensor exhibited high affinity and selectivity toward target
compound folic acid. The detection limit was found to be as 15.4 µM.

It is also possible to detect target proteins in biological samples by using MIP-based QCM sensors.
If the template is a large biomolecule such as an enzyme or protein, the surface imprinting strategy
is used. In another remarkable study, a MIP-based QCM sensor selective to ribonuclease A was
developed by Liu and his research group [35].

In their previous attempts, they prepared calcium carbonate nanoparticles as the porogen for the
preparation of MIP thin layers and the obtained results showed that the synthesized polymeric film
exhibited high porous effects. Considering this, a MIP film responsive to ribonuclease A was prepared
on a gold sensor surface using a surface imprinting approach by polymerization of ribonuclease
A template and CaCO3 nanoparticles in the presence of methacryloylamidohistidine (MAH) and
trimethylolpropane trimethacrylate (TRIM) as the functional monomer and cross-linker, respectively.
Figure 6 shows the schematic representation of the prepared QCM sensor coated with ribonuclease A
MIP film. The results obtained from the experiments on the performance of the prepared QCM sensor
toward ribonuclease A showed that the prepared sensor exhibits high selectivity toward the target
protein ribonuclease A in the presence of lysozyme as the control protein. The selectivity factor was
calculated to be 3.3 at the protein concentration of 1−10−6 g·mL−1.
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The chelating properties of various metal ions with the desired compounds are also used
for the preparation of the selective MIPs. Considering this feature, MIPs prepared by using
metal-chelate functional monomers were designed for the construction of MIP-based QCM sensors
toward biological compounds in real samples. For example, Ersöz et al. [36] have prepared a QCM
sensor composed of 8-hydroxy-2’-deoxyguanosine (8-OHdG) imprinted film for the detection of
8-OHdG levels in biological samples. For this purpose, MIP film selective to 8-OHdG was synthesized
by using a photo-graft surface polymerization technique. Methacryloylamidoantipyrine-iron,
N-N′-methylenebisacrylamide and 8-OHdG were used as the complex functional monomer,
cross-linker and template, respectively. The preparation of a MIP-based QCM sensor toward 8-OHdG
is schematically represented in Figure 7. The results obtained from the performance studies of the
prepared sensor showed that the prepared MIP-based QCM sensor displays high affinity and selectivity
toward 8-OHdG. The affinity constant (Ka) of the sensor was found to be 48,510 M−1.

In a study reported by Lee et al. [37] MIP film-coated QCM sensors were used for the selective
recognition of lipase, amylase and lysozyme which are digestive enzymes found in saliva. For this
purpose, the sensor surface was coated with a mixture of target protein and poly(ethylene-co-vinyl
alcohol). Then, a MIP thin film was prepared applying the thermally induced phase separation
approach. The prepared sensors were applied to recognize lipase, amylase and lysozyme in real
samples. The obtained results showed that the prepared MIP-based QCM sensors have the ability to
recognize target proteins at lower concentrations and the limit of detection values were found to be
7 pM, 2.5 pM and 3.5 pM for lysozyme, lipase and amylase, respectively.

A QCM sensor coated with lysozyme imprinted macroporous film was developed by Zhou and
co-workers [38]. In their study, methyl methacrylate (MMA) and TRIM were used as the functional
monomer and cross-linker, respectively. In addition, CaCO3 nanoparticles were used as porogen to
form interconnected macropores in the MIP film on the QCM sensor surface (Figure 8). The results of
experiments for the selective recognition of target protein lysozyme by using the prepared MIP-based
QCM sensor showed that the prepared sensor displays high affinity and selectivity toward lysozyme
in the presence of myoglobin. The selectivity factors were calculated as 3.1, 4.0 and 3.6 at protein
concentrations of 5 × 10−5 g·mL−1, 20 × 10−5 g·mL−1 and 50 × 10−5 g·mL−1, respectively.
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Mirmohseni et al. [39] have reported the preparation of a MIP-based QCM sensor for the selective
detection of phenylalanine. MIP film sensitive toward phenylalanine on the surface of the sensor was
synthesized by co-polymerization of acrylonitrile (AN) and acrylic acid (AA) [poly(AN-co-AA)] in
the presence of the target amino acid phenylalanine. The prepared MIP-based QCM sensor exhibited
a linear response toward phenylalanine in the concentration range of 50–500 mg·L−1. The limit of
detection was found to be 45 mg·L−1.

In another study, a thymine-imprinted thin film-coated QCM sensor was developed by
Diltemiz et al. [40]. For this purpose, methacryloylamidoadenine (MA-Ade) and thymine were
used as the functional monomer and template compound, respectively. Polymerization was carried out
under UV-light to form allyl-based self-assembled monolayers (SAMs) which have rougher surfaces
compared to traditional monolayers formed by thiol modification. This approach provides an efficient
recognition of DNA. The prepared MIP-based QCM sensor was used for the detection of thymine
in the presence of uracil nucleobase. The Langmuir binding isotherm was applied to investigate the
binding behavior of the prepared QCM sensor. The obtained results showed that the prepared sensor
has homogeneous binding sites and displays high affinity toward the target compound thymine and
Ka value was calculated as 1.0 × 105 M−1. This reported approach offers a cost-effective, easy and
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sensitive MIP-based sensor system based on mimicking of DNA. The prepared allyl-based SAMs are
great choice for the optimization of QCM sensors coated with MIP layers which exhibit high potential
to become a commercial products.

In 2015, Jha and Hayashi have prepared a MIP coated-QCM sensor for the recognition of
aldehyde compounds in body odor [41]. Gas chromatography-mass spectrometer (GC-MS) was
applied for the characterization of odor samples. The functional monomer polyacryclic acid (PAA)
with presence of a template aldehyde was polymerized on the sensor surface. The obtained results
showed that the prepared MIP-based QCM sensor for heptanal exhibits high sensitivity, fast response
and reproducibility compared to other prepared sensors toward hexanal and nonanal.

2.2. MIP-Based QCM Sensors for Food and Beverage Applications

Food and beverage industries need sensitive and reliable analytical techniques for the quality
control of their products. During the production process, continuous monitoring should be carried out
for the food safety. Traditional approaches such as enzyme assays and immuno techniques based on
natural antibodies are commonly used for the analysis of food samples, but these techniques have some
drawbacks such as high cost, low stability. QCM sensors combined with MIPs as plastic antibodies can
be an alternative approach and overcome these drawbacks of traditional approaches.

For example, Sun et al. [42] have reported the preparation of MIP film-coated QCM sensors for
the selective recognition of quinine and saccharine in bitter drinks. The functional monomer MAA and
cross-linker (EDMA) were polymerized in the presence of template compounds quinine and saccharine
to obtain selective MIP films on the sensor surface. Then, recognition performance of the prepared
sensors toward target compounds was investigated. Other possible interfering compounds such as
vanillin, caffeine, citric acid, sodium benzoate, sodium bicarbonate and sucrose were used to test
selectivity of the prepared MIP-based QCM sensor. The obtained results from the experiments showed
that the prepared sensor systems have high sensitivity (2.04 mg·L−1 and 32.8 mg·L−1 for quinine and
saccharine, respectively). The MIP-coated QCM sensor systems were developed to provide a sensitive,
facile and fast method for the determination of quinine and saccharine in tonic water at a practical
concentration range with fast sample throughput and sufficient repeatability. MIP film-coated QCM
technology thus provides a promising methodology for the taste application in flavor forecast and
quality control of experimental, intermediate and final products for food, drinks and beverages.

In another important study, Iqbal et al. [43] have developed QCM sensors with polystyrene-
based MIP membranes for the determination of different terpenes (limonene, α-pinene, β-pinene,
estragole, eucalyptol and terpinene) in fresh and dried herb samples. The prepared sensor systems
were succesfully applied to recognize target terpenes in rosemary, basil and sage. The sensitivity of the
prepared sensors was <20 ppm of target compounds and the linear concentration range of the sensor
response was <20 ppm to 250 ppm. Are the following really food and beverage applications?

The research group of Dickert [44] has developed a QCM sensor coated with MIP film for selective
detection of tobacco mosaic virus in tobacco plant sap. MIP film on the sensor surface was prepared
by polymerization of the functional monomer MAA, cross-linker EDMA and template virus. The
prepared sensor was successfully used for the recognition of the target virus in real samples. The
results showed that the prepared MIP-based QCM sensor exhibits high recognition ability toward
tobacco mosaic virus in the concentration range of 10 ng·mL−1 to 1.0 mg·mL−1 and that qualitative
detection of virus in infected leaf sap was successfully achieved. In this study, the authors also showed
that the prepared sensor based on biomimetic polymers in combination with QCM is a new approach
for monitoring of plant viruses directly in the plant sap within minutes. Ebarvia et al. [45] has prepared
a MIP-based QCM sensor for the selective detection of chloramphenicol. In their work, selective MIP
toward chloramphenicol was prepared by using precipitation polymerization and MAA, TRIM and
chloramphenicol were used as the functional monomer, cross-linker and the template, respectively.
MIP suspension in polyvinylchloride-tetrahydrofuran solution was coated onto the 10 MHz AT-cut
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quartz crystal by spin-coating. The obtained results showed that the prepared MIP based QCM sensor
exhibits high affinity toward chloramphenicol.

In another study published in 2015 by Eren et al. [46], a MIP based-QCM sensor for selective
determination of lovastatin (LOV) in red yeast rice was developed by formation of allylmercaptane
monolayer on the sensor surface. For this purpose, LOV imprinted poly(2-hydroxyethyl
methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was prepared on the
surface of a QCM sensor. The obtained results from the performance tests of the prepared sensor
showed that the linearity range was 0.10–1.25 nM and the limit of detection was found as 0.030 nM.

In 2014, Dai et al. [47] developed a novel material based on MIP-QCM sensor for histamine in
food samples. Histamine (HA) is a critical marker of food quality, being an indicator of bacterial
contamination. The obtained results showed that the sensor exhibited linear behavior for HA
concentrations of 0.11 × 10−2 to 4.45 × 10−2 mg·L−1, a detection limit of 7.49 × 10−4 mg·kg−1

(S/N = 3), and high selectivity for HA (selectivity coefficient > 4) compared with structural analogues,
good reproducibility, and long-term stability were observed. Also, the sensor was used to determine
the concentration of HA in spiked fish products and the recovery values were found be 93.2%–100.4%.
These outstanding detection limits are highly suitable for on-line monitoring of small amounts
of histamine.

In another study published by Yan et al. [48], a QCM sensor was coated with MIP film for the
determination of daminozide, which is a potential carcinogen in apple samples. For the daminozide
sensor preparation, a MIP film using MAA as the functional monomer and EDMA as the cross-linker
was prepared in the presence of the target molecule. The obtained results from the performance
studies of the prepared MIP based-QCM sensor showed that the sensor has high selectivity and affinity
toward the target compound daminozide in real samples. The limit of detection was found to be
5.0 × 10−8 mg·mL−1.

Sun and Fung [49] prepared MIP based-QCM sensor systems for pirimicarb residues in vegetables
which are potentially mutagenic and carcinogenic. For this purpose, they synthesized three different
MIP particles using the functional monomer MAA by bulk and precipitation polymerization techniques.
Then, the prepared MIP particles were coated on the surface of the QCM sensor. The obtained results
showed that the nanoscale MIP particles prepared by precipitation polymerization were the best
coating material for the sensor surface. The recognition performance of the prepared MIP based-QCM
sensor toward pirimicarb in the presence of other interfering compounds such as atrazine, carbaryl,
carbofuran and aldicarb was investigated. The prepared sensor showed high selectivity toward
pirimicarb in the linear working range of 5.0 × 10−6 to 4.7 × 10−3 M and the limit of detection was
calculated as 5.0 × 10−7 M.

Avila et al. [50] developed a QCM sensor coated with MIP for the detection of vanillin in vanilla
sugar samples. Other similar compounds such as 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxy-
benzyl alcohol and 4-hydroxybenzaldehyde as potential interferences were used for the selectivity
experiments. The obtained results showed that the prepared sensor has high affinity and selectivity
toward vanillin. The linear concentration range for the sensor response was 5 to 65 µM.

In another study, a MIP based-QCM sensor for citrinin was prepared by Fang and co-workers [51].
They developed a novel 3D-composite QCM sensor composed of MIP/Au nanoparticles/mesoporous
carbon. The prepared sensor was successfully applied for the detection of citrinin in several cereals
such as rice, white rice vinegar and wheat. The limit of detection was found as 1.8 × 10−9 M.

2.3. MIP-Based QCM Sensors for Environmental Applications

Environmental pollution is one of the crucial and challenging problem in the world today. Many
compounds found in water and soil such as heavy metals, phenolics, pesticides, herbicides and
pharmaceuticals, etc. are hazardous for humans, plants, animals and may cause serious health
problems. Therefore, it is important to detect and remove these compounds from environmental
samples. Conventional techniques such as HPLC, GC and CE have been applied for the analysis of
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these compounds in environmental samples [52–55]. However, these approaches are quite expensive,
time consuming and require experienced researchers. These disadvantages of conventional approaches
can be overcome by design and contruction of MIP-based QCM sensor systems that have high affinity
and selectivity toward desired analyte in complex matrices.

One of the first examples of a MIP-based QCM sensor for environmental applications was reported
by Percival et al. [56]. In their study, a selective QCM sensor coated with MIP thin film sensitive
toward L-menthol in aqueous solutions was prepared. To obtain a selective MIP for L-menthol, MAA,
L-menthol and EDMA were used as the functional monomer, template and cross-linker, respectively.
The prepared thin MIP film was coated on the surface of QCM by using a sandwich casting approach.
The limit of detection was found to be 200 ppb within a response range of 0 to 1.0 ppm.

An interesting work regarding the use of MIPs in QCM sensors was performed by Iglesias and
his colleagues in 2009 [57]. They prepared a hybrid system composed of a polyurethane based-MIP
coated QCM sensor for selective recognition and separation in chromatographic systems. The prepared
hybrid system was successfully applied for selective recognition and separation of benzene, toluene,
ethylbenzene, and xylenes in gasoline vapors.

In another interesting study reported by Dickert et al. [58], a QCM sensor coated with a
polyurethane based-MIP film was developed for detection of degradation products in automotive
engine oils.

These reported examples show that QCM sensors combined with MIPs selective to target
compound/s can be succesfully used for the desired analyte/s in complex matrices in liquid and
gas phases.

The recognition of chemical nerve agents has also been successfully achieved by using MIP-based
QCM sensors. In 2012 Vergara et al. [59] developed an electrochemically MIP polythiophene film
QCM surface for selective and sensitive detection of pinacolyl methylphosphonate (PMP). The
lectrochemistry-QCM (EC-QCM) technique was used for the deposition of the MIP film onto the
electrode. Figure 9 shows the schematic depiction of the MIP-based QCM sensor toward PMP. The
synthesis was performed using cyclic voltammetry (CV) techniques applying apotential in the range
of 0 to 1100 mV.

Organophosphate pesticides are able to cause neurological diseases and are considered toxic
compounds. Paraoxon is the most commonly used organophosphate pesticide. Novel MIPs-based
QCM biosensors for paraoxon recognition have been investigated by Özkütük et al. [60]. In their
study, chitosan-Cd(II) (TCM-Cd(II)) modified with thiourea and epichlorohydrin were used as the
functional monomer and cross-linker, respectively. The obtained results showed that the prepared
QCM sensor-coated MIP film exhibited high affinity toward paraoxon in the concentration range of
0.02 to 1 µM and the limit of detection was found to be 0.02 µM. In another work [61], they used
N-(2-aminoethyl)-3-aminopropyltrimethoxysilane–Cu(II) (AAPTS–Cu(II)) as a new metal–chelating
monomer and tetraethoxysilane (TEOS) crosslinking agent for the polymerization.

The MIP-based QCM biosensor technique was applied to the detection of some drugs by
Eslami et al. [62] and Kim et al. [63] in 2015. The nanostructured conducting MIP film was synthesized
by CV method on the QCM electrode. The electrode was successfully applied for selective detection of
ibuprofen in sample solutions.

In another study, a QCM sensor was coated with nano-MIP film for the determination of naproxen
(NAP) [64]. MIP film preparation was performed on the surface of gold electrode by polymerization of
pyrrole in the presence of template compound NAP as schematically shown in Figure 10. Scanning
electron microscopy (SEM), infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) were used for the characterization of the prepared sensor. The obtained
results from performance tests of the MIP-based QCM sensor toward NAP showed that the prepared
sensor shows high affinity and selectivity toward NAP. The limit of detection was calculated to be
0.04 µM.
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Gao et al. developed QCM sensors coated with ultra-thin MIP films for the detection in tap water
of profenofos, which is an organophosphorus pesticide [65]. The sensor systems were prepared by
using entrapment and in-situ self-assembly approaches. The results showed that the best recognition
performance was obtained by a MIP-based QCM sensor prepared by in-situ self-assembly. Selectivity
studies were also carried out in the presence of other potentially interfering compounds such as
chlorpyrifos, parathion dichlorvos and omethoate. The prepared MIP based-QCM sensor displayed
high affinity and selectivity toward profenofos in real samples. The limit of detection was calculated
as 2.0 × 10−7 mg·mL−1.

Another important study was performed by He and co-workers [66]. In their study, MIP-based
QCM sensors were prepared for selective recognition of microcystin-LR (MC-LR) (a toxic peptide
produced by some types of algae) in lake water. For this purpose, MAA, MC-LR and EDMA were used
as the functional monomer, template and cross-linker, respectively. Selectivity of the prepared MIP
film coated sensor was investigated in the presence of MC-RR, MC-RY and nodularin as interfering
compounds. The obtained results showed that the prepared sensor has high selectivity toward target
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MC-LR in the presence of interfering compounds in lake water. The limit of detection was found as
0.04 nM. In this study, the investigation of binding performance of the prepared sensor toward target
in real samples shows the potential practical use of the prepared sensor.

In another study, a MIP coated-QCM sensor was prepared for the detection of atrazine in
wastewater samples [67]. For the preparation of MIP film on the sensor surface, HEMA, atrazine
and EDMA were used as functional monomer, template and cross-linker respectively. The prepared
MIP based-QCM sensor showed high affinity and sensitivity toward target compound atrazine. The
obtained linear concentration range was 0.08 to 1.5 nM and the limit of detection was calculated as
0.028 nM. Recently reported studies of MIP-based QCM sensors in different applications are given in
Table 1.

Table 1. Recent reported studies of MIP-based QCM sensor in different applications.

Reference Composition of QCM Sensor Target Sample

Applications to Environmental Samples

[68] MIP film prepared by using functional monomer MAA on the
sensor surface Propranolol Aqueous solutions

[69] MIP film prepared by using functional monomer MAA on the
sensor surface Cu2+ and Ni2+ ions Aqueous solutions

[70] MIP film prepared by using functional monomer MAA on the
sensor surface Cu2+ Wastewater

[71] MIP film prepared by using functional monomer pyrrole on the
sensor surface Trichloroacetic acid Drinking water

[72] MIP film prepared by using functional monomer MAA on the
sensor surface Methomyl Natural water

[73] MIP film prepared by using functional monomer 3-thiophene
acetic acid (3-TAA) on the sensor surface Melphalan Aqueous solutions

[74] Cyclodextrin-modified poly(L-lysine) based- MIP film on the
sensor surface Bisphenol A Aqueous solutions

Applications to Biological Samples

[75] MIP film prepared by using functional monomer
1-Vinyl-2-pyrrolidone on the sensor surface Heparin Human plasma

[76] MIP film prepared by using functional monomer MAA and
poly(amidoamine) dendrimer on the sensor surface Methimazole Human urine

[77] MIP film prepared by using functional monomer
methacryloylamido tryptophan on the sensor surface Bilirubin Human plasma

and Urine

[78] MIP film prepared by using functional monomer
methacryloylamido histidine on the sensor surface Cholic acid Human serum and

Urine

[79] MIP film prepared by using 3-dimethylaminopropyl
methacrylamide as the functional monomer on the sensor surface Albumin Human serum

[80] MIP film prepared by using functional monomer MAA on the
sensor surface D-Methamphetamine Human urine

Applications to Food and Beverage Samples

[81] MIP microsphere modified QCM sensor Endosulfan Drinking water and
milk

[82] MIP/poly(o-aminothiophenol) membrane/Au nanoparticles
composite on the sensor surface Ractopamine Swine feed

[83] MIP film prepared by using functional monomer
methacryloylamido antipyrine on the sensor surface Caffeic acid Tea, apple and

potato

[84] MIP film on the surface of the alkanethiol modified-gold electrode Thiacloprid Celery Juice

[85]
Gold electrode coated with molecularly imprinted nanoparticles
prepared by using functional monomer
methacryloylamido histidine

Lysozyme Chicken egg white

[86] MIP film prepared by using methacryloylamidoaspartic acid as
the monomer on the sensor surface Kaempferol Orange and apple

juice
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3. Conclusions and Future Trends

The examples described in this review highlight the recent progress and applications of MIP
based-QCM sensors over the past years. The growing number of reported studies in which QCM
sensor systems based on the molecular imprinting technique have been used in various application
areas showed that these sensor systems are promising for selective recognition. QCM sensors with
high specificity and sensitivity are commonly used as monitoring tools for target compounds in
complex matrices where the selectivity is crucial. The combination of QCM sensors with target
molecule memories having MIP thin films through the pre-recognition provides affinity toward the
target compound, highly selective binding sites and novel, more sensitive sensing systems based
on homogeneity in a larger number of recognition sites in MIPs. This combination has led to the
design and development of a next generation of sensor platforms providing useful information for
the progress of analytical sciences. On the other hand, MIP-coated QCM sensor platforms can also be
potentially applied to process control and monitoring, assistance in the development of new products,
as well as to the assessment of synergistic effects of food, drug, artificial enzyme and inhibitors and
other innovative products.
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85. Şener, G.; Özgür, E.; Yılmaz, E.; Uzun, L.; Say, R.; Denizli, A. Quartz crystal microbalance based nanosensor
for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron. 2010, 26, 815–821.
[CrossRef] [PubMed]

86. Gupta, V.K.; Yola, M.L.; Atar, N. A novel molecular imprinted nanosensor based quartz crystal microbalance
for determination of kaempferol. Sens. Actuators B Chem. 2014, 194, 79–85. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C5RA08066E
http://dx.doi.org/10.1016/j.snb.2014.10.103
http://dx.doi.org/10.3390/chemosensors4040021
http://dx.doi.org/10.1016/j.msec.2014.05.055
http://www.ncbi.nlm.nih.gov/pubmed/25063139
http://dx.doi.org/10.1016/j.bios.2004.01.028
http://www.ncbi.nlm.nih.gov/pubmed/15142579
http://dx.doi.org/10.1007/s00216-010-3865-7
http://www.ncbi.nlm.nih.gov/pubmed/20526767
http://dx.doi.org/10.1039/c3ay40697k
http://dx.doi.org/10.1016/j.bios.2013.07.043
http://www.ncbi.nlm.nih.gov/pubmed/23974160
http://dx.doi.org/10.1016/j.talanta.2013.11.053
http://www.ncbi.nlm.nih.gov/pubmed/24401452
http://dx.doi.org/10.1021/ac801786a
http://www.ncbi.nlm.nih.gov/pubmed/19086904
http://dx.doi.org/10.1016/j.bios.2010.06.003
http://www.ncbi.nlm.nih.gov/pubmed/20605089
http://dx.doi.org/10.1016/j.snb.2013.12.077
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	MIP Based-Quartz Crystal Microbalance (QCM) Sensors 
	MIP-Based QCM Sensors for Biological Applications 
	MIP-Based QCM Sensors for Food and Beverage Applications 
	MIP-Based QCM Sensors for Environmental Applications 

	Conclusions and Future Trends 

