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Abstract: RNA pseudouridine modification is particularly important in a variety of cellular biological
and physiological processes. It plays a significant role in understanding RNA functions, RNA struc-
ture stabilization, translation processes, etc. To understand its functional mechanisms, it is necessary
to accurately identify pseudouridine sites in RNA sequences. Although some computational methods
have been proposed for the identification of pseudouridine sites, it is still a challenge to improve the
identification accuracy and generalization ability. To address this challenge, a novel feature fusion
predictor, named PsoEL-PseU, is proposed for the prediction of pseudouridine sites. Firstly, this study
systematically and comprehensively explored different types of feature descriptors and determined
six feature descriptors with various properties. To improve the feature representation ability, a binary
particle swarm optimizer was used to capture the optimal feature subset for six feature descriptors.
Secondly, six individual predictors were trained by using the six optimal feature subsets. Finally, to
fuse the effects of all six features, six individual predictors were fused into an ensemble predictor by
a parallel fusion strategy. Ten-fold cross-validation on three benchmark datasets indicated that the
PsoEL-PseU predictor significantly outperformed the current state-of-the-art predictors. Additionally,
the new predictor achieved better accuracy in the independent dataset evaluation—accuracy which is
significantly higher than that of its existing counterparts—and the user-friendly webserver developed
by the PsoEL-PseU predictor has been made freely accessible.

Keywords: RNA pseudouridine sites; feature fusion; particle swarm optimization; feature selection;
ensemble learning

1. Introduction

With the next generation of sequencing technology rapidly developing, the identifica-
tion of RNA pseudouridine sites has gradually become one of the most significant areas in
transcriptome research. Pseudouridine sites have been found in various RNAs, including
tRNA, mRNA, snRNA, snoRNA, and rRNA. [1]. Pseudouridine sites are considered to be
among the most basic RNA modification sites found in prokaryotes and eukaryotes [2].
As one of the most enriched post-transcriptional modifications, pseudouridylation plays
an important role in the structure, function, and metabolism of RNA [3–6]. Therefore,
the study of pseudouridine modification sites is very important in further revealing their
related biological principles: for instance, their role in stress response and in stabilizing
RNA [7,8]. However, genome-wide analysis experiments are labor intensive, time consum-
ing, and costly [9–12]. Considering the rapidly increasing amount of data generated in the
post-genome era, it is necessary to build computational tools that can identify pseudouri-
dine sites efficiently. In recent years, several fast and inexpensive methods for predicting
RNA pseudouridine site have emerged [13–18].
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Li et al. used the PUS specificity in H. sapiens and in S. cerevisiae to build the first
computational tool, PPUS, to identify pseudouridine sites [13]. Later, inspired by these
works, Chen et al. developed an iRNA-PseU predictor using an SVM model [14]. In addi-
tion, He et al. proposed the PseUI [15] predictor, for further enhancing the accuracy of the
identification of RNA pseudouridine sites. Following this, Tahir et al. used convolutional
neural networks to design a new predictor, iPseU-CNN [16]. Liu et al. used the eXtreme
Gradient Boosting method for RNA pseudouridine site prediction, the predictor of which
is called XG-PseU [17]. Lv et al. built a new predictor, RF-PseU [18], based on the random
forest algorithm, which has achieved state-of-the-art results. Mu et al. proposed an effec-
tive layered ensemble model, designated as the iPseU-Layer, for the identification of RNA
pseudouridine sites [19]. Song et al. used traditional sequence features and 42 additional
genomic features to build a high-accuracy predictor in PIANO [20]. Recently, Aziz et al.
proposed a multi-channel convolutional neural network using binary encoding to construct
a predictor for identifying RNA pseudouridine sites [21]. These existing predictors have
achieved fine results, but they were not constructed in a systematic way for the exploration
and extraction of different types of RNA sequence descriptors. Moreover, concerning
redundant and invalid features, greedy algorithms (e.g., incremental feature selection
methods (IFS) or sequential forward selection strategies (SFS)) are usually employed to
filter the predictors’ features. Therefore, there is still significant room for improvement
in the accuracy of identification and the generalization ability of predictors. Additionally,
these predictors cannot identify RNA sequences of indeterminate length, which need to be
manually cut before batch identification can be performed.

Motivated by this, a novel feature fusion predictor called PsoEL-PseU is proposed
for pseudouridine site identification in this paper. Firstly, we systematically determined
and analyzed six different types of feature descriptors. To make full use of these fea-
ture descriptors, we used a thorough search selection algorithm (binary particle swarm
optimization algorithm) to eliminate a large number of redundant and invalid features,
as compared with the greedy sequence algorithms used in the aforementioned papers.
Afterwards, a parallel fusion strategy was used to fuse these six optimal feature subsets,
which further improved the accuracy in identifying pseudouridine sites. Finally, in our
predictor webserver, we used a sliding window approach to solve the problem of iden-
tifying the pseudouridine site locations of indeterminate length in RNA sequences. The
modeling framework is shown in Figure 1. For the improvement of the feature represen-
tation ability, a binary particle swarm optimizer was used to capture the optimal feature
subset for each of the six feature descriptors (one-hot encoding, k-mer nucleotide frequency,
k-nucleotide density, pseudo dinucleotide composition [22], position-specific k-nucleotide
propensity [23], and nucleotide chemical property). For the parallel fusion strategy, we
used a majority voting strategy for the fusion of the six feature descriptors. Ten-fold
cross-validation on three benchmark datasets indicated that the PsoEL-PseU predictor
significantly outperformed other current state-of-the-art predictors. Additionally, the new
predictor achieved better accuracy in independent dataset evaluations, with significantly
higher accuracy than its existing counterparts. PsoEL-PseU is expected to become a useful
tool for identifying RNA pseudouridine sites. The user-friendly webserver that has been
developed for the PsoEL-PseU predictor can be accessed for free via the following link:
http://www.xwanglab.com/PsoEL-PseU/Server (accessed on 19 July 2021).

http://www.xwanglab.com/PsoEL-PseU/Server
http://www.xwanglab.com/PsoEL-PseU/Server
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optimal subset of feature descriptors is used to train the predictors and assemble the six basic pre-
dictors to construct the PsoEL-PseU predictor. 
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This study used three different species benchmark datasets and two different species 
independent test datasets which were used in iRNA-PseU [14] to perform a comprehen-
sive and unbiased comparison. The three benchmark datasets collected from the S. cere-
visiae, H. sapiens, and M. musculus species consist of 628, 990, and 944 RNA sequences, 

Figure 1. The framework of the proposed PsoEL-PseU predictor. The RNA sequences in the dataset
are represented by feature descriptors, followed by filtering using the BPSO algorithm; finally, the
optimal subset of feature descriptors is used to train the predictors and assemble the six basic
predictors to construct the PsoEL-PseU predictor.

2. Materials and Methods
2.1. Benchmark Datasets

This study used three different species benchmark datasets and two different species
independent test datasets which were used in iRNA-PseU [14] to perform a comprehensive
and unbiased comparison. The three benchmark datasets collected from the S. cerevisiae,
H. sapiens, and M. musculus species consist of 628, 990, and 944 RNA sequences, respectively.



Curr. Issues Mol. Biol. 2021, 43 1847

They have the same number of pseudouridine site sequences and non-pseudouridine site
sequences. The RNA sequences in the S. cerevisiae dataset contain 31 nucleotides, while
the RNA sequences in the H. sapiens and M. musculus datasets both contain 21 nucleotides.
In addition, two independent test datasets, only from the S. cerevisiae and H. sapiens
species, both contain 100 pseudouridine site sequences and 100 non-pseudouridine site
sequences. The benchmark datasets and independent test datasets can be downloaded
from the webserver via http://www.xwanglab.com/PsoEL-PseU/Download (accessed on
19 July 2021).

2.2. Feature Representation
2.2.1. One-Hot Encoding

One-hot encoding encodes the original RNA sequence directly, thus retaining the
most primitive and simple sequence information. It mainly uses the N-bit state register
to encode N states. Each state has an independent register bit, and only one bit is valid
at any time. Therefore, the 4 nucleotides and 16 dinucleotides in RNA can be encoded by
0 and 1, and thus A, U, C, G, AA, AU, . . . GC, and GG can be converted to (1, 0, 0, 0), (0, 1,
0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, . . . 0,1), (0, 0, . . . 1, 0), . . . (0, 1, . . . 0, 0), and (1, 0, . . . ,0, 0),
respectively. Therefore, if the length of the RNA sequence is λ, the RNA sequence can be
represented by a (20λ−16)-dimensional (4λ-dimensional + 16(λ−1)-dimensional) vector.

2.2.2. K-Mer Nucleotide Frequency (K-Mer)

K-mer nucleotide frequency (K-mer) is the most common feature descriptor, in which
the RNA sequences are represented as the occurrence frequency of k neighbor nucleic
acids. In this study, we chose k that is equal to 1 and 2, which means that the method will
extract 20-dimensional features (4-dimensional + 16-dimensional). Because it contains the
frequencies of the mononucleotides and dinucleotides for each RNA sequence, they are
A, U, C, G, AA, AU . . . GC.

2.2.3. K-Nucleotide Density (KD)

For further obtaining the frequency information of RNA sequences, this study adopted
the k-density method (KD) to measure the correlation between positions and frequencies
of k neighboring residues in the RNA sequences. The density of di can be represented by
the following Equation (1):

di =
1
|Ni|

L

∑
j=1

f
(
nj
)

, f
(
nj
)
=

{
1 i f nj = q
0 i f nj 6= q

(1)

where |Ni| denotes the length from the first nucleotide to the current nucleotide position;
L denotes the sequence length; and q is a symbol of {A, U, C, G}. In similar situations,
we chose k that is equal to 1 and 2.

2.2.4. Pseudo Dinucleotide Composition (PseDNC)

A vector defined in a discrete space may completely miss all the sequence order or
pattern information. Therefore, to obtain more long-range sequence information, this
study adopted the pseudo dinucleotide composition (PseDNC) descriptor to make up for
the missing information. This type of pseudo composition can still continuously feed the
global sequence order information and the local sequence order information into the feature
descriptor for RNA sequences. Three physicochemical properties, namely, free energy,
stacking energy, and hydrophilicity, are used to generate feature descriptors composed of
pseudo dinucleotides. The details of the description can be found in [22].

2.2.5. Position-Specific K-Nucleotide Propensity (PSKP)

After extracting information on the frequency (k-mer), density (KD), order (PseDNC),
and original sequence representation (One-Hot) of a single RNA sequence, we hoped

http://www.xwanglab.com/PsoEL-PseU/Download
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to obtain the global nucleotide information of the homotypic sequences. The position-
specific nucleotide propensity [23] descriptor represents a more effective way to obtain
global information, by calculating the differences in the frequency of nucleotides in specific
locations between pseudouridine site and non-pseudouridine site sequences in RNA
sequences. Similarly, we extracted frequency information from homotypic sequences at
specific locations of mononucleotides and dinucleotides.

2.2.6. Nucleotide Chemical Property (NCP)

To extract some intrinsic information between nucleotides, in this study, we adopted
the nucleotide chemical property (NCP) method. This method divides the four types of
nucleotides into three categories based on the functional groups and hydrogen bonds of
the ring structures. Therefore, a 3-dimensional vector representing a given RNA sequence
is used to quantify these chemical properties, (xi, yi, zi), where xi, yi, and zi are represented
as follows:

xi =

{
1, i f Ni ∈ {A, G}
0, i f Ni ∈ {C, U} yi =

{
1, i f Ni ∈ {A, C}
0, i f Ni ∈ {G, U} zi =

{
1, i f Ni ∈ {A, U}
0, i f Ni ∈ {C, G} (2)

Among them, xi encodes nucleotides by ring structure; yi encodes nucleotides by
functional groups; and zi encodes nucleotides by the strength of hydrogen bonds. For a
detailed description, refer to [14]. Thus, according to Equation (2), nucleotide A can be
represented as (1, 1, 1), U as (0, 0, 1), C as (0, 1, 0), and G as (1, 0, 0).

2.3. Feature Selection

To improve the feature representation ability of the genome sequences, selecting
smaller feature subsets to reduce redundancy may improve the generalization ability of
the predictor. Therefore, it is essential to perform feature selection on original features.
In the field of bioinformatics, the most common feature selection method is the sequential
algorithm (e.g., incremental feature selection methods (IFS) [24–27] or sequential forward
selection strategies (SFS) [28–30]). The essence of the sequential algorithm is to use the
idea of the greedy strategy, which tends to fall into the local optimal. Therefore, this study
introduces a heuristic search algorithm that enables a thorough search for genome sequence
features in the feature space.

Binary Particle Swarm Optimization (BPSO)

An improved binary particle swarm optimization (BPSO) algorithm [31] is introduced
for feature selection of genomic sequence information. BPSO is a discrete population-based
optimization computational tool. In this case, each population has multiple particles, and
each particle has its own position x and velocity v. The position x represents the potential
solution to the problem. The velocity v determines the direction of movement of the
particles. The velocity v is determined by the previous historical optimal position of each
particle and the global optimal position of the whole population thus far. Therefore, the
particle moves in the direction of its previous optimal position and the global optimal
position in each iteration, finding the best solution to the problem. For a detailed description
of the formulation, refer to Supplementary Data Equations (S1)–(S4).

In this study, each particle consisted of two parts, where the first part represents the
result of feature selection. Its length is equal to the number of original features. The value
of 0 or 1 of the particle position is used to indicate whether the feature at the corresponding
position is selected. The second part represents the result of the hyperparameter com-
bination trained by the support vector machine, consisting of 10 binary bits, which can
represent a total of 1024 hyperparameter combinations. Finally, in order to obtain more
efficient features, the classification accuracy of the ten-fold cross-validation of the identified
pseudouridine sites was used as the fitness value to ensure that the population particles
move towards a high classification accuracy. The detailed flow chart is shown in Figure 2.
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Figure 2. Flow chart of the BPSO algorithm. The particles are first initialized, and then the fitness
value of each particle is calculated. The fitness value is used to iteratively update the velocity and
position, in order to find the optimal feature subset of feature descriptors.

2.4. Support Vector Machine (SVM)

Support vector machines (SVMs) are dichotomous models. They are widely used
for classification problems in the field of bioinformatics, with very effective results. Their
basic model is a linear classifier defined with the largest spacing between two categories
(positive and negative) in the feature space. Furthermore, SVMs also include kernel
techniques, which essentially make them a nonlinear classifier. This study used the radial
basis function (RBF) as the kernel function of the SVM and implemented the SVM algorithm
in the scikit-learn (v 0.20.0) library in Python3. There are some hyperparameters for the
RBF kernel function, namely, the kernel parameter γ and the regularization parameter C.
To obtain a more accurate model, we set these hyperparameters with a larger search space,
and the search ranges for both parameters are shown belowin Equation (3), where there
are geometric sequences with a common ratio of 2:{

2−16 6 C 6 215 common ration of 2
2−16 6 γ 6 215 common ration of 2

(3)

2.5. Fusion Strategy

To enhance the predictor performance and obtain stronger robustness, two fusion
strategies can be considered: one is serial fusion, and the other is parallel fusion. The
serial fusion strategy means directly serially merging the six optimal genomic sequence
features determined by the BPSO algorithm, and using the SVM to relearn and find the
optimal decision boundaries for identifying pseudouridine sites. The parallel fusion
strategy concerns the fusion of the basic predictors of the six optimal genomic sequence
features determined by the BPSO algorithm, and the fusion approach generally adopts an
ensemble approach.

In this study, a parallel fusion strategy was used to perform information fusion. The
reason for this is that the results of pre-experiments indicated that the parallel fusion
strategy will be better than the serial fusion strategy. We speculated that one of the biggest
reasons why parallel fusion is better than serial fusion is that while using BPSO to optimize
the features, we also select the hyperparameters of the classifier, meaning that the optimized
features often have widely different classification boundaries. If multiple genomic sequence
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features with different classification boundaries are directly fused in series, it will be
relatively difficult for the new classifier to relearn and describe the classification boundaries
of these different genomic sequence features simultaneously. In contrast, the parallel fusion
strategy is a direct fusion of the basic predictors of the selected optimal genomic sequence
features, and the different classification boundaries often have complementary effects,
thus making parallel fusion more straightforward and effective compared to serial fusion.
Therefore, this study finally adopted a parallel fusion strategy for information fusion, and
the parallel fusion method used an ensemble learning approach of the majority voting
strategy to fuse the six basic predictors.

2.6. Model Evaluation

In the field of bioinformatics and recent studies, four metrics are used to evaluate
the quality of predictors. They are specificity (SP), sensitivity (SN), accuracy (ACC), and
Mathew’s correlation coefficient (MCC). The formulas are as follows (Equations (4)–(7)):

SN =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

ACC =
TP + TN

TP + TN + FN + FP
(6)

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(7)

where TP (true positive) is the observation of pseudouridine sites where they were pre-
dicted to be pseudouridine sites; TN (true negative) is the observation of non-pseudouridine
sites where they were predicted to be non-pseudouridine sites; FN (false negative) is the
observation of pseudouridine sites, but they were predicted to be non-pseudouridine
sites; and FP (false positive) is the observation of non-pseudouridine sites, but they were
predicted to be pseudouridine sites.

Hence, SN is the probability of obtaining a correct prediction of pseudouridine sites.
SP is the probability of obtaining a correct prediction of non-pseudouridine sites. ACC
represents the accuracy of the overall RNA sequence site prediction. Because the MCC takes
into account true positive, false positive, true negative, and false negative observations,
it is often seen as a measure of balance.

3. Results and Discussion
3.1. Determining the Optimal Feature Subset

In this study, the binary particle swarm optimization (BPSO) algorithm was used
to select the optimal feature subset. The position and velocity dimensions of the BPSO
algorithm were equal to the feature and hyperparameter dimensions. Based on preliminary
experiments, we found that when the number of particles in the population was between
60 and 80, the global position was updated using Supplementary Data Equation (S3). The
accuracy value almost ceased to improve when the number of iterations reached 150 to 200,
and the particles entered a blind search state. Therefore, in order to accelerate convergence,
we replaced Supplementary Data Equation (S3) with Supplementary Data Equation (S4) to
update the global positions. Then, within approximately 100 iterations, the velocity of all
particles almost reached zero, and they were no longer moving. Thus, we combined the
computational and time costs for consideration, the particle swarm selected 80 particles to
ensure sufficient diversity in the population, and we set 300 iterations to ensure a sufficient
global search. The first 200 iterations used Supplementary Data Equation (S3) to update
the global position, and the last 100 iterations used Supplementary Data Equation (S4) to
update the global position; the velocity range set in this study was (−6, 6).
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This study performed feature tuning experiments on three benchmark datasets. To
show the experimental process more intuitively, we plotted the fitness curve to visualize
the global optimal accuracy in the iterative process. Figure 3 shows the fitness curves of
the six feature descriptors on the S. cerevisiae dataset.
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Figure 3. The fitness curves of six feature descriptors on the S. cerevisiae dataset. K-mer represents
the fitness curve for nucleotide frequency, KD represents the fitness curve for nucleotide density,
PseDNC represents the fitness curve for pseudo dinucleotide composition, PSKP represents the
fitness curve for position-specific k-nucleotide propensity, and NCP represents the fitness curve for
nucleotide chemical property. Additionally, the vertical coordinates represent the accuracy, and the
horizontal coordinates represent the number of iterations.

The fitness curve of the k-mer feature descriptor stabilizes as the number of iterations
reaches 150. The reason for this result may be that the feature dimension of this method
is smaller, with only 20 dimensions, the particle swarm used in this study is relatively
large, and the search is relatively sufficient. Therefore, it is easy to achieve convergence
and find the global optimal feature subset. The ten-fold cross-validation accuracy of the
features for the PseDNC, KD, and PSKP feature descriptors is improved by a total of 7.5%,
8.4%, and 4% with an increasing number of iterations compared with the first iteration,
respectively. The other two feature descriptors (NCP and One-Hot) contain a large number
of discrete and redundant features after 0/1 coding. After full screening and filtering by
the BPSO algorithm, the accuracy of the ten-fold cross-validation is fully improved, which
increases by 12.4% and 11.6% compared with the first iteration. For the H. sapiens dataset
and M. musculus dataset, their performance trends are similar to the S. cerevisiae dataset.
For details, please refer to Supplementary Data Figure S1.

In summary, as the number of iterations increases, an increase in the accuracy of the
ten-fold cross-validation of the fitness curves and the basic predictor on the three species
can be observed. This basically indicates that the larger the feature dimension, the more
obvious the improvement effect, which also shows that the BPSO algorithm plays a very
effective role.

3.2. Comparative Analysis on Different Feature Selection Methods

At the same time, to further demonstrate the superiority of the BPSO feature selection
algorithm, this study compared the BPSO feature selection method with the incremental
feature selection (IFS) method on the three benchmark datasets.

Figure 4 shows the accuracy of the original features, IFS features (selected by the
IFS method), and the BPSO features (selected by the BPSO method) trained on the SVM.
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It can be intuitively found that in the six feature descriptors of the S. cerevisiae dataset, the
accuracy of the IFS method is improved to various degrees compared with the original
feature. However, compared with the IFS method, the BPSO algorithm is further improved.
In particular, the accuracy of the BPSO feature selection method compared with the IFS
feature selection method is increased by 8% and 5.2% with NCP and One-Hot, respectively.
Moreover, compared with the original features, the accuracy is increased by 9.8% and 11.7%.
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BPSO Features represent the optimal subset of features selected using the binary particle swarm
optimization algorithm.

In terms of feature size, the BPSO method selects a relatively balanced feature size,
while the features selects by IFS have two extremes. One extreme is similar to PseDNC on
the S. cerevisiae dataset, where the feature finally selected the full set as the optimal feature
subset. The other is similar to k-mer on the H. sapiens dataset and KD on the M. musculus
dataset. When the size equals 4 and 3, the accuracy of the predictors is the highest, and the
predictors finally select relatively low-dimensional features as the optimal feature subset.
In the later experiments, we found that the overfitting probability of these low-dimensional
features was greater than the probability of higher-dimensional features. The detailed
comparison results are shown in Supplementary Data Table S1.

Through observation, it was found that compared to other feature selection strategies
on the three benchmark datasets, the key features captured using the BPSO feature selection
strategy performed best with the One-Hot and NCP feature descriptors. We attributed
this to two factors: (1) The One-Hot feature descriptor retains the most primitive and basic
RNA sequence information, while the NCP feature descriptor contains sufficient structural
information. These feature descriptors have strong representation capability by themselves.
(2) The BPSO method searches for the optimal feature subset in the global space, and
the search is relatively more thorough compared to the greedy search strategy in the IFS
method. Compared with the other feature descriptors, the One-Hot and NCP feature
descriptors have larger dimensionality after encoding, and they have a larger feature space
and also contain more discrete and redundant features. Therefore, the performance of
these two feature descriptors is the best. This also indicates the ability of the BPSO feature
selection algorithm to capture high-dimensional key features compared to the IFS feature
selection method.
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3.3. Ensemble Predictor

Considering that an ensemble of multiple predictors generally provides a better
performance, in this study, we used a parallel fusion strategy for information fusion, and
the fusion approach used the ensemble approach of the majority voting strategy. The
experimental results indicate that the ensemble predictor is further improved on the three
benchmark datasets, as shown in Table 1. Compared with the six basic predictors, the
accuracy of the H. sapiens, S. cerevisiae, and M. musculus datasets are greatly improved,
increasing by 2.3%~8.6%, 2.4%~15.3%, and 1.5%~16.3%, respectively.

Table 1. The cross-validation scores of the ensemble predictor for three benchmark datasets.

Cross-Validation (Ten-Fold)

Species ACC MCC SN SP

H. sapiens 0.708 0.42 0.669 0.747
S. cerevisiae 0.803 0.62 0.691 0.914
M. musculus 0.765 0.53 0.822 0.708

To elucidate the reasons for the success of the ensemble approach, we performed
a diversity analysis of the six basic predictors using the Pearson correlation coefficient
approach. In this study, the Pearson correlation coefficients among the six features were
calculated separately using the results of the six basic predictors and are shown as a
heatmap. Figure 5 represents the heatmap of the S. cerevisiae dataset, where the shades of
color indicate the strength of similarity between the six basic predictors, with the darker
color indicating weaker correlations. At the same time, from Figure 5, we know that the
final result of the ensemble method is effective because of the ensemble of heterogeneous
predictors. Therefore, the Pearson correlation coefficient was calculated on the predictions
of the six basic predictors to reflect the differences between the six basic predictors, as a
way of exploring why the ensemble is effective. It can be seen from the figure that the
Pearson correlation coefficients between the six features are all lower than 0.5. Among
them, the correlation values of the PSKP and k-mer features, One-Hot and KD features, and
PseDNC and PSKP features with the darkest colors are all lower than 0.2. This indicates that
there is a very weak correlation, or strong heterogeneity, between the nucleotide sequence
information extracted from the global RNA sequences with the nucleotide frequency and
nucleotide order extracted from individual RNA sequences, and there is also a weak
correlation between the original RNA sequence information and the nucleotide density.
In addition, it can be found from the depth of color that there are at least three or more
features with great differences in the six feature descriptions. Therefore, this basically
reflects the complementary effect between these different types of feature descriptors,
which is also the reason for the improvement after forming the ensemble. The provided
Supplementary Data Figure S2 also illustrates the strong differences between the six features
of the H. sapiens dataset and the M. musculus dataset.
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3.4. Comparison with State-of-the-Art Predictors

To further demonstrate the prediction performance of our proposed predictor, PsoEL-
PseU, in this study, we compared PsoEL-PseU with the existing state-of-the-art predictors
including iRNA-PseU [14], PseUI [15], iPseU-CNN [16], XG-PseU [17], and RF-PseU [18]
on the three benchmark datasets using ten-fold cross-validation. Figure 6 shows the
comparative results for the state-of-the-art predictors with PsoEL-PseU. In the H. sapiens and
S. cerevisiae datasets, the accuracy of the PsoEL-PseU predictor is 70.8% and 80.3%, which
is improved by 6.5% and 5.5% compared with the best predictor (RF-PseU), respectively.
As for the M. musculus dataset, the accuracy of the PsoEL-PseU predictor compared with
the existing state-of-the-art predictors also exceeds the range of 1.7–7.4%.
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In general, the result of the PsoEL-PseU predictor using ten-fold cross-validation on
the three benchmark datasets is better than that of the state-of-the-art predictors in the
four metrics, including ACC, MCC, SN, and SP. More detailed results of the evaluation
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metrics are provided in Supplementary Data Table S2. Additionally, ultimately, it can be
found that the overall performance of PsoEL-PseU is markedly better than that of other
state-of-the-art predictors. This indicates that PsoEL-PseU can identify pseudouridine sites
with significantly better accuracy than the existing state-of-the-art predictors.

3.5. Comparative Analysis on Independent Datasets

To demonstrate the generalization ability of our predictor for identifying pseudouri-
dine sites, this study validated them on independent datasets built by Chen et al. [14]. These
include two species datasets, H. sapiens and S. cerevisiae. Through applying the predictor
PsoEL-PseU to the two independent test datasets, four metrics were computed. Finally,
we compared the results with those of seven state-of-the-art predictors, including iR-NA-
PseU [14], PseUI [15], iPseU-CNN [16], XG-PseU [17], RF-PseU [18], iPseU-Layer [19],
and iPseUMultiCNN [21], and the detailed comparison can be found in Table 2. It can
be observed that the PsoEL-PseU predictor remarkably outperforms the state-of-the-art
predictors on the two independent datasets. In particular, for the S. cerevisiae dataset, the
ACC value of the PsoEL-PseU predictor exceeds that of the current best predictor (RF-PseU)
by 5%, and the MCC value is increased by more than 10%. Additionally, compared to
the newer layered ensemble predictor iPseU-Layer and the multi-channel convolutional
neural network predictor iPseUMultiCNN, the ACC values also increase by 9.5% and 6%.
However, on the H. sapiens dataset, our predictor is only slightly improved compared
to the RF-PseU and iPseUMultiCNN predictors, where the ACC value only increases by
0.5% and 1.5%. Additionally, on the SN metric, our predictor is outperformed by the
iPseU-CNN and RF-PseU predictors by 1.7% and 2%. On the SP metric, our predictor is
again outperformed by 4% by the iPseU-Layer predictor. However, on the MCC metric,
which measures the overall predictive balance, our predictor is optimal, with MCC values
improving by 1% to 8% compared to RF-PseU, iPseU-Layer, and iPseUMultiCNN. For
comprehensive comparison, the average metrics for the two independent datasets were
computed. For the PsoEL-PseU predictor, the average values for ACC, MCC, SN, and SP
reach 0.788, 0.575, 0.795, and 0.78, respectively. These results indicate that PsoEL-PseU
exceeds the existing predictors in all evaluation metrics.

Table 2. Comparison of independent testing scores of PsoEL-PseU with existing state-of-the-art pseudouridine site
predictors.

Species Predictor ACC MCC SN SP

H. sapiens IRna-PseU 0.65 0.3 0.60 0.70
PseUI 0.655 0.31 0.63 0.68

iPseU-CNN 0.69 0.40 0.777 0.608
XG-PseU 0.675 / / /
RF-PseU 0.75 0.5 0.78 0.72

iPseU-Layer 0.71 0.43 0.63 0.79
iPseUMultiCNN 0.74 0.48 0.73 0.75

PsoEL-PseU 0.755 0.51 0.76 0.75
S. cerevisiae IRna-PseU 0.60 0.20 0.63 0.57

PseUI 0.685 0.37 0.65 0.72
iPseU-CNN 0.735 0.47 0.686 0.778

XG-PseU 0.71 / / /
RF-PseU 0.770 0.54 0.75 0.79

iPseU-Layer 0.725 0.45 0.68 0.77
iPseUMultiCNN 0.76 0.53 0.80 0.73

PsoEL-PseU 0.82 0.64 0.83 0.81

According to the ten-fold cross-validation and independent test evaluation, PsoEL-
PseU outperforms the existing state-of-the-art predictors. We attributed the success of
PsoEL-PseU to three factors: (1) Previous feature descriptors are relatively simple, whereas
this study systematically and comprehensively explored different types of feature descrip-
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tors and determined six feature descriptors with various properties. (2) This study used
the BPSO algorithm to determine the optimal genome sequence feature for each basic pre-
dictor. Since the BPSO algorithm searches for the optimal feature subset in the global space,
the search is relatively more thorough compared to the greedy search strategy. (3) The
ensemble predictor was developed by combining the six different RNA basic predictors,
which further enhanced the robustness of the predictor. As a result, PsoEL-PseU is antici-
pated to be an essential computational tool for the identification of pseudouridine sites in
H. sapiens, S. cerevisiae, and M. musculus. Although these factors led to a decent improve-
ment in our proposed predictor, especially on the S. cerevisiae species dataset, in the case of
the H. sapiens species dataset, the improvement was slight. We speculated that this may be
a result of the different RNA sequence lengths in the benchmark datasets, with each RNA
sequence possessing a length of 41 bp for the S. cerevisiae dataset and only 21 bp for the
H. sapiens dataset. For longer sequences, five of the six feature representations covered in
this study are able to extract more features (PseDNC, KD, PSKP, NCP, One-Hot). Thus, the
S. cerevisiae species dataset has a larger feature space, and its performance will clearly be
more significantly improved if a more adequate and thorough search is performed to filter
out the optimal feature subset using heuristic search methods.

4. Conclusions

In this study, the PsoEL-PseU predictor was proposed as a novel feature fusion predic-
tor for the prediction of pseudouridine sites. We constructed the PsoEL-PseU predictor by
combining a binary particle swarm optimizer algorithm to capture the optimal subset of
features with different types of feature descriptors, and then employed a parallel fusion
strategy to fuse these features. In addition, we used a sliding window approach to solve the
problem where the predictors cannot identify RNA sequences with indeterminate lengths.
The constructed predictor showed a remarkable improvement in the average prediction
accuracy compared to several current state-of-the-art predictors. However, due to the
large number of updates and iterations required for feature selection, the computational
cost of the particle swarm optimization algorithm is proportional to the dimensionality
of the features. This inevitably results in more computational resources being consumed
when constructing site identification problems for a new species. Moreover, all state-of-
the-art predictors are currently modeled for single species or single sites, which results
in unsatisfactory prediction effects for different species or sites. Inspired by this, we will
attempt to use evolutionary algorithms which solve multi-objective optimization problems
to solve different species or site prediction problems in the future. In addition, we will
use more advanced deep learning techniques to excavate RNA sequence information and
fuse more genomic features to further improve the predictor′s ability to identify RNA sites.
Finally, a user-friendly webserver for the PsoEL-PseU predictor has been developed and
can be accessed for free at http://www.xwanglab.com/PsoEL-PseU/Server (accessed on
19 July 2021).
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Abbreviations

BPSO Binary particle swarm optimizer algorithm
SFS Sequential forward selection strategies
IFS Incremental feature selection strategies
ACC Accuracy
MCC Mathew’s correlation coefficient
SN Sensitivity
SP Specificity
K-mer K-mer nucleotide frequency
PseDNC Pseudo dinucleotide composition
KD K-nucleotide density
PSKP Position-specific k-nucleotide propensity
NCP Nucleotide chemical property
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